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ABSTRACT U* ~1/3), the necessary forces and phase lag are determined
Potential flow and two-dimensional Navier—Stokes cal- by the interaction of the wake of the moving cylinder with the

culations are used to investigate the role of vortex sheddin  surrounding cylinders.

in the non-resonant flow-induced vibration of periodic tube Paidoussis & Price (1988) developed a simple negative

arrays. This dual approach untangles the effects of palenti damping theory of fluidelastic instability in tube bundles b

and vortical flow. The negative damping theory is shown to be assuming a phase lag between the cylinder motion and total

inconsistent with the Navier—Stokes simulations, andnaiig fluid force. (If there is no phase lag, the dynamics is purely p
only a single degree of freedom in tube motion significantly tential and only a non-oscillatory divergent instabilypiossi-
overestimates the critical velocity. In contrast, Navi&tiekes ble.) Consider an array of cylinders as in figure 1(a) in which

simulations which allow all tubes to move in both the trans- the central cylinder is free to vibrate in tige-direction trans-
verse and streamwise directions give results in good agree- verse to the mean flow (all other cylinders are fixed). If the
ment with experiment. Somewhat surprisingly, potentiakflo response of the cylinder is modelled as a simple harmonic os-
calculations including an artificial phase lag between fluid cillator, the equation of motion for the vibrating cylinder

force and tube motion give reasonably accurate results for a

wide range of phase lags. This may be due to the fact that the 5

most unstable mode at onset appears to be streamwise anti- Y+ —wnY+ oy = 5, Q)
phase (not whirling), as observed in the potential flow case. T m

wherewy is the natural frequencyn is the mass (including
INTRODUCTION added mass) andlis the logarithmic decrement (i.e. mechan-
ical damping). For small displacements quasi-static theor

In this paper we consider the case of the free vibration gives the total fluid force as

of circular cylinders in a tightly packed periodic squarknia
array of cylinders with a pitch to diameter rat®yD = 1.5.
The role of vortex wake dynamics in the flow-induced vibra- 1 o dC 1 .

tion of tube arrays is still not well understood, particiydor Ry(t)~ 5pU Dd—yy(t —T) = 3PUDGYY, ()
inline arrays (whose wake dynamics are characterized by in-

complete vortex shedding). Two principal theories havenbee
advanced to explain the vibrational instability of sucheub
arrays: negative damping (which requires only that one tube
move relative to its fixed neighbours), astiffness controlled
(which requires that adjacent tubes move out of phase in a
“whirling” mode). We use appropriate numerical simulaton

to investigate both scenarios.

If a single cylinder free to vibrate in the transverse direc-
tion is surrounded by fixed cylinders (a common experimental
configuration), the flow asymmetries caused by the movement
of the central cylinder relative to its neighbours generate
“galloping” type instability in addition to the pure vortex
induced vibration of the isolated cylinder case. Althoulgis t
galloping is often treated as a purely potential flow indtabi Ug N 4 mo
] . . . — =Uli=|l—————|(—= |- ()
ity mechanism (except in the resonant vortex shedding case fnD crit —Cp — uDdC, /dy} ( pDZ)

where the first term is the force due to the cylinder displace-
ment and the second term is the fluid damping. andCp

are respectively the lift and drag coefficients at equilibrj
whereC = 0 due to symmetry. Note that we assuminae

lag T between the cylinder displacement and the resulting
force. This time lag leads to an additional drag term sirfte

is assumed to be sinusoidal. Substituting (2) in (1), assum-
ing thatT ~ uD/Ug < 1 (whereUy is mean velocity in the
gap between the cylinders apd~ O(1)) and setting the total
drag equal to zero gives the critical velocity for the negati
damping instability,
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This expression suggests thi@ /dy must be large and neg-
ative for instability. This is consistent with vortex shéugl
flows since a positive vortex is shed from the lower side of a
cylinder when its displacement is maximal. Note that in prac
tice the phase lag paramejeand the linear force coefficients
Cp anddC,_/dy must be measured experimentally.

On the other hand, if neighbouring tubes can move out of
phase then tube vibration may be amplified via the stiffness-
controlled mechanism. Linear stability analysis (Connors
1978) then gives

m5 \ /2
orit = C (72) ~
pD

Observations suggest that the dominant vibrational itistab
ity is a whirling mode where adjacent tubes along a col-
umn transverse to the mean flow move in phase, while every
other tube moves anti-phase: i.8; = Xj;1, ¥j = Yj+1, but
Xj+1 = —X_j—1, Yj+1 = —Yj-1. Adjacent columns of tubes
move approximately anti-phase. Assuming such a whirling
vibrational mode, Connors (1978) used linear stabilitylygzna
sis to show that the critical velocity coefficieGtcan be ex-
pressed in terms of the linear fluid force coefficients (which
can be measured experimentally).

Experimentally, it is found that if the mass damping ratio
mé/pD? > 0.7 the critical velocityU s, follows an approx-
imately square root dependence on the mass damping ratio
as in (4). However, there is significant scatter in the mea-
sured values fo€, with C ~ 3.4+ 1.4 for inline square ar-
rays (Blevins, 2001). Despite their qualitative differeac
equations (3) and (4) give similar results for mass damp-
ing ratios smaller than 100 provided the relevant pararseter
are measured experimentally. Although these expressiens a
based on an essentially inviscid quasi-static analysesgth
fect of the vortex shedding wakes is encoded in the param-
eters. It is still unclear to what extent the negative dampin
and stiffness-controlled theories can predict flow-indleie

(4)

bration, even when the relevant parameters are measured ex-

perimentally (Whiston & Thomas, 1982).

In tube arrays vortex shedding is considered to the be
the primary cause of instability only whéh* ~ 1/S. How-
ever, vortex-induced vibration (VIV) and fluidelastic iabtl-
ity (FEI) are clearly not separate effects since, according
potential theorydC /dy > 0 and there is no phase lag be-
tween cylinder motion and the fluid force. The goal of this
paper is to help elucidate the relative roles of potential flo
and vortex effects in generating flow-induced vibratioripe
arrays.

We focus on the following questions:

Are the 2-D Navier—Stokes simulation results consistent
with the negative damping (single degree of freedom)
theory?

Do the single moving cylinder and multiple moving
cylinder cases give similarly accurate estimates of the
critical flow velocity for instability?

What is the role of vortex-induced vibration in non-
resonant fluidelastic instability?

How accurate are periodic potential flow simulations for
predicting FEI (i.e. estimating the critical velocity ceef
ficientC)?

How accurate are 2-D periodic Navier—Stokes simulation
for predicting FEI?

Since our goal is to evaluate the relative contributions@®f p
tential flow and vortex shedding to flow-induced instabijlity
we use two distinct numerical methods: a charge simulation
method for potential flow on doubly-periodic domains Amano
et al. (2001) and a penalized pseudo-spectral method for the
2-D Navier—Stokes equations on periodic domains Kevlahan
& Wadsley (2005). The response of the cylinder is modelled
as an harmonic oscillator forced by the fluid forces (eitteer p
tential alone or potential and vortical together).

1 Method

In order to evaluate the relative contributions of poten-
tial flow and vortex shedding to the flow-induced instabijlity
we use two distinct numerical methods. We calculateptiie
tential flow through the periodic tube array using a modified
version of the charge simulation method Amastal. (2001);
Amaya & Sakajo (2008) . The complex potentiglz) for the
periodic two-dimensional flow arountdisks with centre®;
and radiis; is given by

SNt 01((z— Qkj)/Lx. €xp(—TiLy/Ly)))
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wherecjx are the strengths of thi charges located in the
interior of each of thej = 1,...,J disks at points{y j =
0j +0.7sj exp(2mik/N). The charge strengths are found by
enforcing the no-penetration (inviscid) velocity boundeon-
ditions at the collocation pointg j = &j +sj exp(2mik/N) on
the disks. The Jacol#—function 6;(u;q) formulation en-
sures doubly-periodic boundary conditions, with peridgs
andLy in thex— andy—directions, respectively. Note that the
cylinders can be given an instantaneous velocity by syitabl
modifying the boundary conditions on the disks. This method
produces highly accurate results (to machine precisioig). F
ure 3(a) shows streamlines for a typical example.

The complex forcé on the diskj is then found by eval-

uating the integral
dw) ?
(E) @,

which is discretized (to exponential accuracy) using the co
location pointsz . To the best of our knowledge, this is the
first time the charge simulation method has been applied to
fluid—structure interaction.

The two-dimensionatortical flow through the periodic
tube array is calculated by solving the followihé-penalized
equations,

ip
F=2P
2 Cj

du 1 1
P +u-Ou+0OP= EeAu— ﬁx(x,t)(u—uo), d-u=0,

(6)
where the last term on the rhs of (6) approximates the no-slip
boundary conditions on the surface of the cylinder moving

with velocity up asn — 0 (where the characteristic function



X(x,t) =1 or 0 in the solid and fluid regions of the flow, re-
spectively). Note thay is the union of the characteristic func-
tions corresponding to each cylindgy(x,t). The Reynolds
numberRe = U,D/v, whereU, is the mean velocity over
both the solid and fluid parts of the periodic domain (equiv-
alent to the free stream mean flow upstream of a tube array),
andD is the tube diameter. Note that the force on a cylinder
can be found simply by integrating its penalization term,

F :'/%Xj(x,t)(u—uo)dxl )

The penalized Navier-Stokes equations (6) are solved
using a Fourier transform based pseudo-spectral method in
space (e.g. Vincent & Meneguzzi, 1991) and a Krylov method
in time (Edwardset al., 1994). The pseudo-spectral method
is computationally efficient and highly accurate for sgatia
derivatives, while the Krylov method is a stiffly stable exijl
method with an adaptive step-size to maintain a specified er-
ror tolerance. We consider only two-dimensional flow at a
Reynolds numbeRe = 200 (based on the free stream mean
velocity). At this Reynolds number the flow is still approxi-
mately two-dimensional, and is characterized by strong per
odic vortex shedding.

In both the potential and vortical flow simulations the re-
sponse of cylindej is modelled as a forced simple harmonic
oscillator,

50+ 20+ Ry =Fi0/m  @®)

wheremis the mass (including added mass)s the logarith-
mic decrement (i.e. mechanical dampingy is the natural
frequency andr  is the total fluid force (vortex and potential)
on cylinderj. We assume that all cylinders are mechanically
identical (i.e.m, d andwy are the same for all cylinders). The
cylinders are free either to oscillate in both directionspmly

in the direction transverse to the mean flow. By coupling the
potential flow force calculation to the oscillator equati@B),
and introducing an artificial time lagin the fluid forcing, i.e.
Fi(t) — Fj(t—1), one can derive a set of ordinary differen-
tial delay equations to model the negative damping instgbil

In the vortical flow case the cylinder motion is coupled to the
fluid motion by updating the mask functiong(x,t) accord-
ing to the coupled oscillator equations (8).

2 Results
2.1 Configuration

We investigate the flow through inline square arrays with
a pitch to diameter rati®/D = 1.5 as shown in figure 1(a,b).
The periodic unit cell contains between four and twenty-five
complete cylinders (depending on the case), and either all
cylinders can move in both streamwise and transverse direc-
tions (multiple degrees of freedom), or we allow only trans-
verse motion of the central cylinder (single degree of free-
dom). All vortical simulations are done at Reynolds number
Re = 200.

© @ Or
KB = 45{rotated), or 0{inline)

Figure 1. (@) Tube configuration for a square array of circu-
lar cylinders. We consider only inline flow. (b) Vortex wake
dynamics for two-dimensional flow &= 200 with all cylin-
ders fixed.
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It is important to note that there are two distinct defini-
tions of mean velocity: the mean velocity over the entire do-
main (including the cylinderd).,, and the velocity averaged
across the gap between the tuhks U corresponds to the
mean velocity upstream of a tube array, and measures the to-
tal mass flux through the array, whllgy measures the typical
velocity through the array. If all flow must pass through the
array (i.e. for an infinite array, or for ducted arrays)

P
——Up =3 if

Uy =
97 P-D

P/D =15. 9)

Note that the Reynolds number basedlis also larger:
Rey = 3Re= 600 in our case.

As emphasized below, relation (9) doeat hold for an
isolated bundle of tubes. In this case some of the mean flow
can by-pass the array due to the blockage effect @gds
correspondingly lower.

2.2 Potential flow

We first consider the case of potential flow, where the
periodic unit cell contains 2 complete cylinders free to os-
cillate in both the transverse and streamwise directioms (t
transverse-only mode is stable). Since the tube array dues n
have a vibrational instability mode for zero phase lag (aly
divergent mode), we perform a nonlinear stability analfis
arange of non-zero phase lags from 0 to 180 degrees. In order
to determine the critical velocity for each phase lag we sim-
ply solve the relevant delay equations (describefilirfor the
system of coupled oscillator ordinary differential eqaas,
with the fluid forcing for each cylinder determined by the nu-
merical potential flow calculation. The results for theicat
velocity coefficientC do not depend on the mass damping ra-
tio, at least in the rangf®.1,100, and are not significantly
affected by using more than four cylinders in the periodiit un
cell.

Figure 2 shows that the potential flow results for the crit-
ical velocity coefficientC ~ 5.2 for phase lag® € [40,140,
is surprisingly close to the experimental data. Figure swsho
that that potential flow results are within the experimental
scatter for square arrays for phase lggs [40,140. How-
ever, as we will see below, the actual phase lag measured in th
Navier—Stokes simulations is about 268hich corresponds
to a significantly large€ ~ 7.6. This suggests that the poten-
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Figure 2. Nonlinear stability calculations for periodideo-

tial flow with 2 x 2 unit cell. The potential flow value of the
critical velocity coefficienC is close to the experimental data
for a wide range of phase lags.

tial flow results, although accurate, do not adequately@ppr
imate the vortical flow dynamics. In addition, the vibratibn
mode is strictly streamwise for the potential flow, with ad-
jacent cylinders vibrating anti-phase. This is quite dife
from the fully developed whirling mode seen in vortical flows
where the vibration mode is essentially transverse (seg.4(b
This shows that the phase lag does not correctly model the
effect of vortex shedding, even though it gives a reasonable
estimate for the critical velocity.

This result appears to be inconsistent with Paidoussis
et al. (1982)'s potential flow calculations, who found critical
velocities three to five times higher than the experimeraél v
ues. This discrepancy may be due to the fact that Paidoussis
et al. (1982) apparently made their linear stability analysis us-
ing small (non-periodic) arrays assuming that the gap gloc
Ug = P/(P—D)U». However, as mentioned earlier, this re-
lation does not hold for isolated arrays, due to the blocking
effect which diverts the mean flow around the array. In fact,
this relation significantly overestimates the gap velo6dy
isolated arrays (by a factor of about 1.55 for:a 3 array with
P/D = 1.5), which would therefore overestimate the critical
velocity by a factor of about.55? ~ 2.4. Note that this over-
estimation is not improved by using larger arrays.

2.3 Vortical flow

We now consider numerical solutions of the full 2-D
Navier—Stokes equations Be = 200, which allows us to di-
rectly measure the parameters in (3) and to perform nonlin-
ear stability analyses including vortical effects. Re¢ = 200
the flow is still approximately two-dimensional, and is char
acterized by strong periodic vortex shedding at a Strouhal
frequencyS = 1.08. In order to ensure that we are well
outside the domain of the resonant vortex-induced vibmatio
instability, we choose the natural frequency of the cylinde
fn = 1, mean flow velocityo = 5 (Ug = 15), 6 = 0.1 and
mass damping ratimd/(pD?) = 1.0 . Since the Strouhal

frequencyS = 1.08 atRe = 200, this choice of parameters
ensures that we focus on the non-resonant fluidelastic eegim
U* > Ug; > 1/9. We consider periodic unit cells contain-
ing between 2 2 and 5x 5 cylinders (see figure 1(a) and
figure 4(a)).

When the cylinders are fixed figure 1(b) shows that the
vortex wakes do not undergo complete vortex shedding (i.e.
complete detachment of the shed vortices). Nevertheless,
the wake develops periodic transverse oscillations whioh p
duce a periodic oscillation of the lift force with an ampli-
tude of 0.333 (normalized bygy) and frequency 1.08. Cylin-
der motion generates complete vortex shedding, similar to
von Karman vortex shedding in the isolated cylinder case (se
Williamson & Govardhan, 2004) and in the rotated tube ar-
ray configuration (see Priogt al., 1995). This observation
indicates that the vibrational instability is a form of sihar
perturbation that qualitatively changes the wake dynamics

When the central cylinder is free to move in the trans-
verse direction, and all other cylinders are fixed, it undesy
large periodic oscillations. Figure 3(b) confirms that tioe-v
tex wake dynamics is strongly modified by the cylinder mo-
tion. The wake is stabilized (i.e. it becomes essentially po
tential flow) at the narrow gap side, while the wide gap side
allows for complete vortex shedding. Comparing figures 3(b)
and figure 4(a) suggests visually (as confirmed by quantita-
tive calculations) that the 8 3 periodic unit cell captures the
main vortex wake dynamics. Figu@(a) shows that the vor-
tex contribution to the total lift is large: about twice agjain
magnitude as the contribution from the potential flow. How-
ever, since the contributions from the vorticity and pant
flow are exactly anti-phase, the maximum amplitude of the to-
tal lift force is is similar to that of the potential flow alon&
is important to remember, however, that the potential fisce
proportional to cylinder displacement, and so the vortegdo
will strongly dominate for small amplitude vibrations. The
vortex force is anti-phase with the cylinder motion (anddeen
the potential force) because a positive vortex is shed fi@n t
lower side of the cylinder when cylinder displacemettt)
is maximum, thus generating a strong downward force. The
fundamental difference between the potential flow and vorti
cal flow is illustrated by figure 3(c), which shows that vortex
shedding reverses the sign@f(y), breaks monotonicity and
introduces significant hysteresiS (depends on the velocity
of the cylinder as well as its position). In particular, maxi
mum lift force is achieved for intermediate (not maximum)
displacements of the cylinder in the vortical flow.

It is interesting to check whether the negative damping
theory (3) is consistent with the Navier—Stokes simulat®n
sults. Curve fitting shows that the cylinder displacemert an
lift force (normalized by the gap velocityg = 3U.) are re-
spectively

y(t) = 0.27 sin 11ont,
CL(t) = —0.7y(t —0.03) — 0.19 siSUs /D 211t).

These results confirm that, as required for the negative damp
ing instability mechanism (34C_ /dy = —0.7 < 0 and there

is a phase lag between the fluid force and the cylinder motion
of ¢ = wt = m— 0.2 (taking into account the change in sign).
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Figure 3. Flow induced vibration in an inline tube array
with P/D = 1.5. The central cylinder is free to move in
the transverse direction only. (a) Potential flow stream-
lines. (b) Re=200 vorticity (red is positive, blue is nega}i

(c) Comparison of lift force (normalized Wyg) as a function

of cylinder position for potential flow and Navier—Stokesiflo
at Re = 200. The lift force for the Navier—Stokes flow has
been averaged over many periods of cylinder oscillatiore Th
dotted line is—C_(y) for the potential flow and the arrows give
the direction of cylinder motion (note hysteresis).

Note the distinct Strouhal frequency contributiorCidt) due
to vortex shedding.

However, the actual numerical results of the Navier—
Stokes simulation are inconsistent with negative dampieg t
ory, even in the ideal case when only a single tube is free to
vibrate transverse to the mean flow and the relevant parame-
ters are measured precisely. Substituting the simulatitreg
Cp =0.27, u = tUg/D = 0.45 anddC_/dy = —0.7 into (3)
gives a critical velocityJ;; = 89, which is much larger than
the actual valudJj;; = 8.7+ 0.1 measured for the Navier—
Stokes simulation, which is in turn much larger than the expe
imental value of about};; ~ 3.4. These results suggest that
considering only a single (transverse) vibrational modg si
nificantly overestimates the critical velocity. Figure Dals
each of these results compared with the experimental data.

On the other hand, if all cylinders are free to vibrate in
both directions, the 2-D Navier—Stokes simulation gives es
timates for the critical velocity in good agreement with the
experimental data for a wide range of mass damping ratios, as
shown in figure 5. Although these results were calculated for
a fixed Reynolds numbeRe = 200, they should be relatively
robust as the force amplitudes do not depend sensitively on
Reynolds number once vortex shedding has developed. It is
interesting to note that thaitial instability at onset is in fact
streamwise (as in the potential flow case), although the vi-
bration quickly switches to an essentially transverserfame
precisely, whirling) mode, as observed in experiments.sThi
may explain why linear stability analysis based on an anti-
phase whirling mode have not successfully predicted the cri
ical velocity in inline arrays (Whiston & Thomas, 1982).

It is instructive to separate the contributions to the fluid
force from the potential and vortical parts of the flow. Fig-
ure ??(a) shows the total lift force compared with its poten-
tial and vortical parts. This decomposition is done durimg t
Navier—Stokes simulation by first calculating the totalcfor
and then subtracting the potential force contribution walc
lated based on the instantaneous position and velocityeof th
cylinder using the charge simulation method described ear-
lier. A curve fit shows that vortex force is almost exactly out

5

Figure 4. (a) Vorticity field aRe = 200 for a 5x 5 periodic
unit cell with the central cylinder free to move in the trans-
verse direction. (b) Cylinder trajectories for a«% periodic
unit cell with all cylinders free to move.

LEGEMD %
Square
Rotated Square °
Triangle &
Rotated Triangle 3
Mean C = 4.0 &
Suggested C = 2.4 «'B/

>+ o0

UNSTABLE @ 2-D Navier-Stokes, all

cylinders move.

B 2-D Navier-Stokes, single
cylinder moves,

A Negative damping theory,
using numerical fits, single
cylinder moves.

STABLE

FLOW VELOCITY U/fD

— . —. - Negative damping, using
optimal phase lag, C=5.2:

10 . - :
0 10’ 102 10°

MASS DAMPING m(2n )/ pD 2
Figure 5. Potential flow and 2-D Navier—Stokes calculations
compared with data and theory. Results are normalized with
respect to the gap velocityy. (Modified from Blevins (2001)
Fig. 5-6.)

of phase with the cylinder motion,

CL vorTex(t) = —2y(t—0.01) —0.203sin(S U /D 211t +0.03).
(10)
Because the mass damping ratio is relatively small, theiampl
tude of motion is largeA = 0.27), and the size of the poten-
tial force is also correspondingly large. Despite the nebdy
large potential force it is clear that the total force is colied
by its vortical component, apart from a small change in am-
plitude.

We now propose a physical explanation for the phase
lag, and give a rough estimate for its magnitude. If we as-
sume that the vortex force is generated by a vortex of sthengt
Ug/DRe'/2 shed at speedy in a direction 48 to the mean
flow direction (whereq is the mean speed in the gap between
cylinders), then the maximum lift force magnitude should
be approximately; vorTex = 1/v2Ret?/Ug. For the case
presented here, this giv€} vorTex =~ 0.667, in reasonable
agreement with the observed valué4l from equation (10).
(In comparison, the potential forc€_portentiaL = Yy for
tube arrays withP/D = 1.5.) Note that this approximation
is strictly valid only for two-dimensional flows at moderate
Reynolds numbers. The phase shift may be estimated by not-
ing that the vortex shedding begins at maximum cylinder am-



plitude (minimum gap). However the vortex initially moves
vertically (generating no lift). The lift is maximum when
the vortex moves below the cylinder into the fast downstream
flow. This gives@ortex ~ 1/8 D/Ug w =~ 0.18 in our case,

in reasonable agreement with the observed val@dtbe 1/8

of the circumference estimate was used based on observing
flow animations). This estimate agrees with the experimienta
observation that 00 D/Ug (Blevins, 2001).

3 Conclusions

The results presented here have helped to untangle the
roles of vortex shedding and potential flow in the non-resbna
fluidelastic instability of tube arrays. We have shown ttat v
tex wake dynamics (especially vortex shedding) is the domi-
nant factor determining the vibrational stability of irgitube
arrays, even in the non-resonant case.

In particular, we have shown how flow asymmetry (a po-
tential flow effect) ensures that the vortex-generateddifte
dC /dy < 0, which is necessary for the negative damping in-
stability mechanism. The negative damping mechanism also
requires that the fluid force lag behind the cylinder motion
and our results allowed us to measure this phase lag, and to
understand why it is proportional @/Uy, as observed exper-
imentally. However, we found that the simple negative damp-
ing theory is inconsistent with the results of the 2-D Navier

the gap velocity is measured correctly and that the cylider
are free to vibrate in the streamwise direction. It also sstg
that the linear instability analysis of tube arrays shoskslane

a streamwise anti-phase mode, rather than the usual whirlin
(or transverse) anti-phsase mode.

In summary, we found that 2-D Navier—Stokes simula-
tions of periodic arrays of cylinders give good predictiaris
the critical flow velocity for the vibrational instabilityfinline
tube arrays over a wide range of mass damping ratios. The
fact that the potential flow stability analysis also givea-re
sonably good results for the critical flow velocity is sugimg
and requires further analysis, focusing on the form of tle in
tial instability mode. The initial instability mode is liketo be
qualitatively different from the fully-developed mode hese
the dynamics of the wake changes qualitatively in inlinaysr
once the tubes start to vibrate (from jet-like to von Karman-
like with complete vortex shedding).
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