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ABSTRACT
Potential flow and two-dimensional Navier–Stokes cal-

culations are used to investigate the role of vortex shedding
in the non-resonant flow-induced vibration of periodic tube
arrays. This dual approach untangles the effects of potential
and vortical flow. The negative damping theory is shown to be
inconsistent with the Navier–Stokes simulations, and allowing
only a single degree of freedom in tube motion significantly
overestimates the critical velocity. In contrast, Navier–Stokes
simulations which allow all tubes to move in both the trans-
verse and streamwise directions give results in good agree-
ment with experiment. Somewhat surprisingly, potential flow
calculations including an artificial phase lag between fluid
force and tube motion give reasonably accurate results for a
wide range of phase lags. This may be due to the fact that the
most unstable mode at onset appears to be streamwise anti-
phase (not whirling), as observed in the potential flow case.

INTRODUCTION
In this paper we consider the case of the free vibration

of circular cylinders in a tightly packed periodic square inline
array of cylinders with a pitch to diameter ratioP/D = 1.5.
The role of vortex wake dynamics in the flow-induced vibra-
tion of tube arrays is still not well understood, particularly for
inline arrays (whose wake dynamics are characterized by in-
complete vortex shedding). Two principal theories have been
advanced to explain the vibrational instability of such tube
arrays:negative damping (which requires only that one tube
move relative to its fixed neighbours), andstiffness controlled
(which requires that adjacent tubes move out of phase in a
“whirling” mode). We use appropriate numerical simulations
to investigate both scenarios.

If a single cylinder free to vibrate in the transverse direc-
tion is surrounded by fixed cylinders (a common experimental
configuration), the flow asymmetries caused by the movement
of the central cylinder relative to its neighbours generates a
“galloping” type instability in addition to the pure vortex-
induced vibration of the isolated cylinder case. Although this
galloping is often treated as a purely potential flow instabil-
ity mechanism (except in the resonant vortex shedding case

U∗ ≈ 1/St), the necessary forces and phase lag are determined
by the interaction of the wake of the moving cylinder with the
surrounding cylinders.

Paidoussis & Price (1988) developed a simple negative
damping theory of fluidelastic instability in tube bundles by
assuming a phase lag between the cylinder motion and total
fluid force. (If there is no phase lag, the dynamics is purely po-
tential and only a non-oscillatory divergent instability is possi-
ble.) Consider an array of cylinders as in figure 1(a) in which
the central cylinder is free to vibrate in they−direction trans-
verse to the mean flow (all other cylinders are fixed). If the
response of the cylinder is modelled as a simple harmonic os-
cillator, the equation of motion for the vibrating cylinderis

ÿ+
δ
π

ωN ẏ+ω2
N y =

Fy

m
, (1)

whereωN is the natural frequency,m is the mass (including
added mass) andδ is the logarithmic decrement (i.e. mechan-
ical damping). For small displacements quasi-static theory
gives the total fluid force as

Fy(t) ≈
1
2

ρU2D
dCL

dy
y(t − τ)−

1
2

ρUDCD ẏ(t), (2)

where the first term is the force due to the cylinder displace-
ment and the second term is the fluid damping.CL andCD
are respectively the lift and drag coefficients at equilibrium,
whereCL = 0 due to symmetry. Note that we assume atime
lag τ between the cylinder displacement and the resulting
force. This time lag leads to an additional drag term sincey(t)
is assumed to be sinusoidal. Substituting (2) in (1), assum-
ing thatτ ≈ µ D/Ug ≪ 1 (whereUg is mean velocity in the
gap between the cylinders andµ ∼ O(1)) and setting the total
drag equal to zero gives the critical velocity for the negative
damping instability,

Ug

fND
= U∗

crit =

[

4
−CD −µDdCL/dy

](

mδ
ρD2

)

. (3)
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This expression suggests thatdCL/dy must be large and neg-
ative for instability. This is consistent with vortex shedding
flows since a positive vortex is shed from the lower side of a
cylinder when its displacement is maximal. Note that in prac-
tice the phase lag parameterµ and the linear force coefficients
CD anddCL/dy must be measured experimentally.

On the other hand, if neighbouring tubes can move out of
phase then tube vibration may be amplified via the stiffness-
controlled mechanism. Linear stability analysis (Connors,
1978) then gives

U∗
crit = C

(

mδ
ρD2

)1/2

. (4)

Observations suggest that the dominant vibrational instabil-
ity is a whirling mode where adjacent tubes along a col-
umn transverse to the mean flow move in phase, while every
other tube moves anti-phase: i.e.x j = x j+1, y j = y j+1, but
x j+1 = −x− j−1, y j+1 = −y j−1. Adjacent columns of tubes
move approximately anti-phase. Assuming such a whirling
vibrational mode, Connors (1978) used linear stability analy-
sis to show that the critical velocity coefficientC can be ex-
pressed in terms of the linear fluid force coefficients (which
can be measured experimentally).

Experimentally, it is found that if the mass damping ratio
mδ/ρD2 > 0.7 the critical velocityU∗

crit follows an approx-
imately square root dependence on the mass damping ratio
as in (4). However, there is significant scatter in the mea-
sured values forC, with C ≈ 3.4± 1.4 for inline square ar-
rays (Blevins, 2001). Despite their qualitative differences,
equations (3) and (4) give similar results for mass damp-
ing ratios smaller than 100 provided the relevant parameters
are measured experimentally. Although these expressions are
based on an essentially inviscid quasi-static analysis, the ef-
fect of the vortex shedding wakes is encoded in the param-
eters. It is still unclear to what extent the negative damping
and stiffness-controlled theories can predict flow-induced vi-
bration, even when the relevant parameters are measured ex-
perimentally (Whiston & Thomas, 1982).

In tube arrays vortex shedding is considered to the be
the primary cause of instability only whenU∗ ≈ 1/St. How-
ever, vortex-induced vibration (VIV) and fluidelastic instabil-
ity (FEI) are clearly not separate effects since, accordingto
potential theory,dCL/dy > 0 and there is no phase lag be-
tween cylinder motion and the fluid force. The goal of this
paper is to help elucidate the relative roles of potential flow
and vortex effects in generating flow-induced vibration in tube
arrays.

We focus on the following questions:

Are the 2-D Navier–Stokes simulation results consistent
with the negative damping (single degree of freedom)
theory?
Do the single moving cylinder and multiple moving
cylinder cases give similarly accurate estimates of the
critical flow velocity for instability?
What is the role of vortex-induced vibration in non-
resonant fluidelastic instability?
How accurate are periodic potential flow simulations for
predicting FEI (i.e. estimating the critical velocity coef-
ficientC)?

How accurate are 2-D periodic Navier–Stokes simulation
for predicting FEI?

Since our goal is to evaluate the relative contributions of po-
tential flow and vortex shedding to flow-induced instability,
we use two distinct numerical methods: a charge simulation
method for potential flow on doubly-periodic domains Amano
et al. (2001) and a penalized pseudo-spectral method for the
2-D Navier–Stokes equations on periodic domains Kevlahan
& Wadsley (2005). The response of the cylinder is modelled
as an harmonic oscillator forced by the fluid forces (either po-
tential alone or potential and vortical together).

1 Method
In order to evaluate the relative contributions of poten-

tial flow and vortex shedding to the flow-induced instability,
we use two distinct numerical methods. We calculate thepo-
tential flow through the periodic tube array using a modified
version of the charge simulation method Amanoet al. (2001);
Amaya & Sakajo (2008) . The complex potentialw(z) for the
periodic two-dimensional flow aroundJ disks with centresδ j

and radiis j is given by

w(z)=
J

∑
j=1

N−1

∑
k=1

ck j log

[

θ1((z−ζk, j)/Lx,exp(−πLy/Lx)))

θ1((z−ζk+1, j)/Lx,exp(−πLy/Lx))

]

,

(5)
wherec jk are the strengths of theN charges located in the
interior of each of thej = 1, . . . ,J disks at pointsζk, j =
δ j + 0.7s j exp(2π ik/N). The charge strengths are found by
enforcing the no-penetration (inviscid) velocity boundary con-
ditions at the collocation pointszk, j = δ j + s j exp(2π ik/N) on
the disks. The Jacobiθ−function θ1(u;q) formulation en-
sures doubly-periodic boundary conditions, with periodsLx

andLy in thex− andy−directions, respectively. Note that the
cylinders can be given an instantaneous velocity by suitably
modifying the boundary conditions on the disks. This method
produces highly accurate results (to machine precision). Fig-
ure 3(a) shows streamlines for a typical example.

The complex forceF on the diskj is then found by eval-
uating the integral

F =
iρ
2

∮

C j

(

dw
dz

)2

dz,

which is discretized (to exponential accuracy) using the col-
location pointszk, j. To the best of our knowledge, this is the
first time the charge simulation method has been applied to
fluid–structure interaction.

The two-dimensionalvortical flow through the periodic
tube array is calculated by solving the followingL2-penalized
equations,

∂u
∂ t

+u ·∇u +∇P =
1

Re
∆u−

1
η

χ(x,t)(u−uO), ∇ ·u = 0,

(6)
where the last term on the rhs of (6) approximates the no-slip
boundary conditions on the surface of the cylinder moving
with velocity uO asη → 0 (where the characteristic function
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χ(x,t) = 1 or 0 in the solid and fluid regions of the flow, re-
spectively). Note thatχ is the union of the characteristic func-
tions corresponding to each cylinderχ j(x,t). The Reynolds
numberRe = U∞D/ν, whereU∞ is the mean velocity over
both the solid and fluid parts of the periodic domain (equiv-
alent to the free stream mean flow upstream of a tube array),
andD is the tube diameter. Note that the force on a cylinder
can be found simply by integrating its penalization term,

F =
∫

1
η

χ j(x,t)(u−uO)dx. (7)

The penalized Navier–Stokes equations (6) are solved
using a Fourier transform based pseudo–spectral method in
space (e.g. Vincent & Meneguzzi, 1991) and a Krylov method
in time (Edwardset al., 1994). The pseudo-spectral method
is computationally efficient and highly accurate for spatial
derivatives, while the Krylov method is a stiffly stable explicit
method with an adaptive step-size to maintain a specified er-
ror tolerance. We consider only two-dimensional flow at a
Reynolds numberRe = 200 (based on the free stream mean
velocity). At this Reynolds number the flow is still approxi-
mately two-dimensional, and is characterized by strong peri-
odic vortex shedding.

In both the potential and vortical flow simulations the re-
sponse of cylinderj is modelled as a forced simple harmonic
oscillator,

ÿ j(t)+
δ
π

ωN ẏ j(t)+ω2
Ny j(t) = F j(t)/m, (8)

wherem is the mass (including added mass),δ is the logarith-
mic decrement (i.e. mechanical damping),ωN is the natural
frequency andF j is the total fluid force (vortex and potential)
on cylinder j. We assume that all cylinders are mechanically
identical (i.e.m, δ andωN are the same for all cylinders). The
cylinders are free either to oscillate in both directions, or only
in the direction transverse to the mean flow. By coupling the
potential flow force calculation to the oscillator equations (8),
and introducing an artificial time lagτ in the fluid forcing, i.e.
F j(t) → F j(t − τ), one can derive a set of ordinary differen-
tial delay equations to model the negative damping instability.
In the vortical flow case the cylinder motion is coupled to the
fluid motion by updating the mask functionsχ j(x,t) accord-
ing to the coupled oscillator equations (8).

2 Results
2.1 Configuration

We investigate the flow through inline square arrays with
a pitch to diameter ratioP/D = 1.5 as shown in figure 1(a,b).
The periodic unit cell contains between four and twenty-five
complete cylinders (depending on the case), and either all
cylinders can move in both streamwise and transverse direc-
tions (multiple degrees of freedom), or we allow only trans-
verse motion of the central cylinder (single degree of free-
dom). All vortical simulations are done at Reynolds number
Re = 200.

D = 1

P = 1.5

U θ = 45 (rotated), or 0 (inline)
o o

(a)

Figure 1. (a) Tube configuration for a square array of circu-
lar cylinders. We consider only inline flow. (b) Vortex wake
dynamics for two-dimensional flow atRe = 200 with all cylin-
ders fixed.

It is important to note that there are two distinct defini-
tions of mean velocity: the mean velocity over the entire do-
main (including the cylinders)U∞, and the velocity averaged
across the gap between the tubesUg. U∞ corresponds to the
mean velocity upstream of a tube array, and measures the to-
tal mass flux through the array, whileUg measures the typical
velocity through the array. If all flow must pass through the
array (i.e. for an infinite array, or for ducted arrays)

Ug =
P

P−D
U∞ = 3U∞ if P/D = 1.5. (9)

Note that the Reynolds number based onUg is also larger:
Reg = 3Re = 600 in our case.

As emphasized below, relation (9) doesnot hold for an
isolated bundle of tubes. In this case some of the mean flow
can by-pass the array due to the blockage effect andUg is
correspondingly lower.

2.2 Potential flow
We first consider the case of potential flow, where the

periodic unit cell contains 2×2 complete cylinders free to os-
cillate in both the transverse and streamwise directions (the
transverse-only mode is stable). Since the tube array does not
have a vibrational instability mode for zero phase lag (onlya
divergent mode), we perform a nonlinear stability analysisfor
a range of non-zero phase lags from 0 to 180 degrees. In order
to determine the critical velocity for each phase lag we sim-
ply solve the relevant delay equations (described in§1) for the
system of coupled oscillator ordinary differential equations,
with the fluid forcing for each cylinder determined by the nu-
merical potential flow calculation. The results for the critical
velocity coefficientC do not depend on the mass damping ra-
tio, at least in the range[0.1,100], and are not significantly
affected by using more than four cylinders in the periodic unit
cell.

Figure 2 shows that the potential flow results for the crit-
ical velocity coefficient,C ≈ 5.2 for phase lagsφ ∈ [40,140],
is surprisingly close to the experimental data. Figure 5 shows
that that potential flow results are within the experimental
scatter for square arrays for phase lagsφ ∈ [40,140]. How-
ever, as we will see below, the actual phase lag measured in the
Navier–Stokes simulations is about 168o, which corresponds
to a significantly largerC ≈ 7.6. This suggests that the poten-
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Figure 2. Nonlinear stability calculations for periodic poten-
tial flow with 2×2 unit cell. The potential flow value of the
critical velocity coefficientC is close to the experimental data
for a wide range of phase lags.

tial flow results, although accurate, do not adequately approx-
imate the vortical flow dynamics. In addition, the vibrational
mode is strictly streamwise for the potential flow, with ad-
jacent cylinders vibrating anti-phase. This is quite different
from the fully developed whirling mode seen in vortical flows
where the vibration mode is essentially transverse (see 4(b)).
This shows that the phase lag does not correctly model the
effect of vortex shedding, even though it gives a reasonable
estimate for the critical velocity.

This result appears to be inconsistent with Paidoussis
et al. (1982)’s potential flow calculations, who found critical
velocities three to five times higher than the experimental val-
ues. This discrepancy may be due to the fact that Paidoussis
et al. (1982) apparently made their linear stability analysis us-
ing small (non-periodic) arrays assuming that the gap velocity
Ug = P/(P−D)U∞. However, as mentioned earlier, this re-
lation does not hold for isolated arrays, due to the blocking
effect which diverts the mean flow around the array. In fact,
this relation significantly overestimates the gap velocityfor
isolated arrays (by a factor of about 1.55 for a 3×3 array with
P/D = 1.5), which would therefore overestimate the critical
velocity by a factor of about 1.552 ≈ 2.4. Note that this over-
estimation is not improved by using larger arrays.

2.3 Vortical flow
We now consider numerical solutions of the full 2-D

Navier–Stokes equations atRe = 200, which allows us to di-
rectly measure the parameters in (3) and to perform nonlin-
ear stability analyses including vortical effects. AtRe = 200
the flow is still approximately two-dimensional, and is char-
acterized by strong periodic vortex shedding at a Strouhal
frequencySt = 1.08. In order to ensure that we are well
outside the domain of the resonant vortex-induced vibration
instability, we choose the natural frequency of the cylinder
fN = 1, mean flow velocityU∞ = 5 (Ug = 15), δ = 0.1 and
mass damping ratiomδ/(ρD2) = 1.0 . Since the Strouhal

frequencySt = 1.08 atRe = 200, this choice of parameters
ensures that we focus on the non-resonant fluidelastic regime
U∗ ≫ U∗

crit ≫ 1/St. We consider periodic unit cells contain-
ing between 2× 2 and 5× 5 cylinders (see figure 1(a) and
figure 4(a)).

When the cylinders are fixed figure 1(b) shows that the
vortex wakes do not undergo complete vortex shedding (i.e.
complete detachment of the shed vortices). Nevertheless,
the wake develops periodic transverse oscillations which pro-
duce a periodic oscillation of the lift force with an ampli-
tude of 0.333 (normalized byUg) and frequency 1.08. Cylin-
der motion generates complete vortex shedding, similar to
von Karman vortex shedding in the isolated cylinder case (see
Williamson & Govardhan, 2004) and in the rotated tube ar-
ray configuration (see Priceet al., 1995). This observation
indicates that the vibrational instability is a form of singular
perturbation that qualitatively changes the wake dynamics.

When the central cylinder is free to move in the trans-
verse direction, and all other cylinders are fixed, it undergoes
large periodic oscillations. Figure 3(b) confirms that the vor-
tex wake dynamics is strongly modified by the cylinder mo-
tion. The wake is stabilized (i.e. it becomes essentially po-
tential flow) at the narrow gap side, while the wide gap side
allows for complete vortex shedding. Comparing figures 3(b)
and figure 4(a) suggests visually (as confirmed by quantita-
tive calculations) that the 3×3 periodic unit cell captures the
main vortex wake dynamics. Figure??(a) shows that the vor-
tex contribution to the total lift is large: about twice as large in
magnitude as the contribution from the potential flow. How-
ever, since the contributions from the vorticity and potential
flow are exactly anti-phase, the maximum amplitude of the to-
tal lift force is is similar to that of the potential flow alone. It
is important to remember, however, that the potential forceis
proportional to cylinder displacement, and so the vortex force
will strongly dominate for small amplitude vibrations. The
vortex force is anti-phase with the cylinder motion (and hence
the potential force) because a positive vortex is shed from the
lower side of the cylinder when cylinder displacementy(t)
is maximum, thus generating a strong downward force. The
fundamental difference between the potential flow and vorti-
cal flow is illustrated by figure 3(c), which shows that vortex
shedding reverses the sign ofCL(y), breaks monotonicity and
introduces significant hysteresis (CL depends on the velocity
of the cylinder as well as its position). In particular, maxi-
mum lift force is achieved for intermediate (not maximum)
displacements of the cylinder in the vortical flow.

It is interesting to check whether the negative damping
theory (3) is consistent with the Navier–Stokes simulationre-
sults. Curve fitting shows that the cylinder displacement and
lift force (normalized by the gap velocityUg = 3U∞) are re-
spectively

y(t) = 0.27 sin1.1ωN t,

CL(t) = −0.7y(t −0.03)−0.19 sin(StU∞/D2πt).

These results confirm that, as required for the negative damp-
ing instability mechanism (3),dCL/dy = −0.7 < 0 and there
is a phase lag between the fluid force and the cylinder motion
of φ = ωτ = π −0.2 (taking into account the change in sign).
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Figure 3. Flow induced vibration in an inline tube array
with P/D = 1.5. The central cylinder is free to move in
the transverse direction only. (a) Potential flow stream-
lines. (b) Re=200 vorticity (red is positive, blue is negative).
(c) Comparison of lift force (normalized byUg) as a function
of cylinder position for potential flow and Navier–Stokes flow
at Re = 200. The lift force for the Navier–Stokes flow has
been averaged over many periods of cylinder oscillation. The
dotted line is−CL(y) for the potential flow and the arrows give
the direction of cylinder motion (note hysteresis).

Note the distinct Strouhal frequency contribution toCL(t) due
to vortex shedding.

However, the actual numerical results of the Navier–
Stokes simulation are inconsistent with negative damping the-
ory, even in the ideal case when only a single tube is free to
vibrate transverse to the mean flow and the relevant parame-
ters are measured precisely. Substituting the simulation values
CD = 0.27, µ = τ Ug/D = 0.45 anddCL/dy = −0.7 into (3)
gives a critical velocityU∗

crit = 89, which is much larger than
the actual valueU∗

crit = 8.7± 0.1 measured for the Navier–
Stokes simulation, which is in turn much larger than the exper-
imental value of aboutU∗

crit ≈ 3.4. These results suggest that
considering only a single (transverse) vibrational mode sig-
nificantly overestimates the critical velocity. Figure 5 shows
each of these results compared with the experimental data.

On the other hand, if all cylinders are free to vibrate in
both directions, the 2-D Navier–Stokes simulation gives es-
timates for the critical velocity in good agreement with the
experimental data for a wide range of mass damping ratios, as
shown in figure 5. Although these results were calculated for
a fixed Reynolds number,Re = 200, they should be relatively
robust as the force amplitudes do not depend sensitively on
Reynolds number once vortex shedding has developed. It is
interesting to note that theinitial instability at onset is in fact
streamwise (as in the potential flow case), although the vi-
bration quickly switches to an essentially transverse (or,more
precisely, whirling) mode, as observed in experiments. This
may explain why linear stability analysis based on an anti-
phase whirling mode have not successfully predicted the crit-
ical velocity in inline arrays (Whiston & Thomas, 1982).

It is instructive to separate the contributions to the fluid
force from the potential and vortical parts of the flow. Fig-
ure ??(a) shows the total lift force compared with its poten-
tial and vortical parts. This decomposition is done during the
Navier–Stokes simulation by first calculating the total force
and then subtracting the potential force contribution calcu-
lated based on the instantaneous position and velocity of the
cylinder using the charge simulation method described ear-
lier. A curve fit shows that vortex force is almost exactly out

(a) (b)

Figure 4. (a) Vorticity field atRe = 200 for a 5×5 periodic
unit cell with the central cylinder free to move in the trans-
verse direction. (b) Cylinder trajectories for a 5×5 periodic
unit cell with all cylinders free to move.

2−D Navier−Stokes, all 
cylinders move.

2−D Navier−Stokes, single
cylinder moves.

using numerical fits, single
Negative damping theory,

cylinder moves.

Negative damping, using
optimal phase lag, C=5.2.

Figure 5. Potential flow and 2-D Navier–Stokes calculations
compared with data and theory. Results are normalized with
respect to the gap velocityUg. (Modified from Blevins (2001)
Fig. 5-6.)

of phase with the cylinder motion,

CL VORTEX(t)=−2y(t−0.01)−0.203sin(St U∞/D 2πt +0.03).
(10)

Because the mass damping ratio is relatively small, the ampli-
tude of motion is large (A = 0.27), and the size of the poten-
tial force is also correspondingly large. Despite the relatively
large potential force it is clear that the total force is controlled
by its vortical component, apart from a small change in am-
plitude.

We now propose a physical explanation for the phase
lag, and give a rough estimate for its magnitude. If we as-
sume that the vortex force is generated by a vortex of strength
Ug/DRe1/2 shed at speedUg in a direction 45o to the mean
flow direction (whereUg is the mean speed in the gap between
cylinders), then the maximum lift force magnitude should
be approximatelyCL VORTEX = 1/

√
2Re1/2/Ug. For the case

presented here, this givesCL VORTEX ≈ 0.667, in reasonable
agreement with the observed value 0.541 from equation (10).
(In comparison, the potential forceCL POTENTIAL ≈ y for
tube arrays withP/D = 1.5.) Note that this approximation
is strictly valid only for two-dimensional flows at moderate
Reynolds numbers. The phase shift may be estimated by not-
ing that the vortex shedding begins at maximum cylinder am-
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plitude (minimum gap). However the vortex initially moves
vertically (generating no lift). The lift is maximum when
the vortex moves below the cylinder into the fast downstream
flow. This givesφvortex ≈ π/8 D/Ug ω ≈ 0.18 in our case,
in reasonable agreement with the observed value 0.2 (the 1/8
of the circumference estimate was used based on observing
flow animations). This estimate agrees with the experimental
observation thatτ ∝ D/Ug (Blevins, 2001).

3 Conclusions
The results presented here have helped to untangle the

roles of vortex shedding and potential flow in the non-resonant
fluidelastic instability of tube arrays. We have shown that vor-
tex wake dynamics (especially vortex shedding) is the domi-
nant factor determining the vibrational stability of inline tube
arrays, even in the non-resonant case.

In particular, we have shown how flow asymmetry (a po-
tential flow effect) ensures that the vortex-generated liftforce
dCL/dy < 0, which is necessary for the negative damping in-
stability mechanism. The negative damping mechanism also
requires that the fluid force lag behind the cylinder motion
and our results allowed us to measure this phase lag, and to
understand why it is proportional toD/Ug, as observed exper-
imentally. However, we found that the simple negative damp-
ing theory is inconsistent with the results of the 2-D Navier–
Stokes simulations, even when the relevant parameters mea-
sured from the simulation are used to predict the critical flow
velocity. Moreover, we found that the critical flow velocity
measured in the 2-D Navier–Stokes simulations for a single
cylinder moving transverse to the flow is much higher than
that measured in experiments. In contrast, nonlinear stability
analysis using the 2-D Navier–Stokes simulations of the case
where all cylinders are free to move in both the streamwise
and transverse directions gave results consistent with theex-
periments over a large range of mass damping ratios, from 1
to 100.

In order to check that the fully-developed vibrational in-
stability is controlled by the vortical part of the total fluid force
(and that the potential part does not play a direct role) we per-
formed 2-D Navier–Stokes simulations where the cylinder is
forced either by the total force, or by the potential force alone,
or by the vortical force alone. These numerical experiments
confirmed that the vibrational instability is due to the vorti-
cal part of the force, and that the vortex shedding ensures that
the force is approximately anti-phase to the cylinder motion
(together with a Strouhal frequency component).

Surprisingly, we found that the potential flow simulations
gave reasonably accurate predictions of the critical flow veloc-
ity for a wide range of phase lags, provided all cylinders are
free to oscillate in both streamwise and transverse directions.
The instability mode in this case is essentially streamwise,
with adjacent cylinders moving anti-phase. We conjecture that
the accuracy of the potential flow calculations is due to the
fact that the initial instability mode in the 2-D Navier–Stokes
simulations is also streamwise (although the fully-developed
instability mode is the so-called whirling mode, as observed
in experiments). This suggests that potential flow calculations
may be far more accurate than previously thought, provided

the gap velocity is measured correctly and that the cylinders
are free to vibrate in the streamwise direction. It also suggests
that the linear instability analysis of tube arrays should assume
a streamwise anti-phase mode, rather than the usual whirling
(or transverse) anti-phsase mode.

In summary, we found that 2-D Navier–Stokes simula-
tions of periodic arrays of cylinders give good predictionsof
the critical flow velocity for the vibrational instability of inline
tube arrays over a wide range of mass damping ratios. The
fact that the potential flow stability analysis also gives rea-
sonably good results for the critical flow velocity is surprising
and requires further analysis, focusing on the form of the ini-
tial instability mode. The initial instability mode is likely to be
qualitatively different from the fully-developed mode because
the dynamics of the wake changes qualitatively in inline arrays
once the tubes start to vibrate (from jet-like to von Karman-
like with complete vortex shedding).
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