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ABSTRACT
Temporally evolving direct numerical simulations of

transitioning plane wakes are conducted to study the influ-
ence of compressibility on the developed structures in the
flow. Four cases are investigated with free stream Mach num-
bers of 0.3, 0.8 1.2 and 2.0. The growth rate of the inviscid
linear stability approximation collapses the turbulence statis-
tics in the linear region of the flow for the low compressible
cases. At higher Mach, the scaling does not provide as good
of an agreement. The investigation of the preferential wave-
lengths reveals an increased three-dimensionality with Mach
number, a result that is supported by experimental observa-
tions but contradicts the linear stability results. We attribute
the increased three-dimensionality to the receptivity of the
wake to the symmetric (varicose) mode. The varicose mode
is two-dimensional at low Mach number but becomes oblique
in the supersonic regime. In opposition to the mixing layer,
the high-speed wake undergoes a spreading rate increase with
increased Mach number during transition, despite a reduced
linear growth rate. As the principal instability wavelength in-
creases with compressibility, the developed rollers are larger
with a higher circulation. The pairing of these structures re-
sults in a stronger cross wake momentum transfer and con-
sequently, an increased lateral spreading. In addition, the in-
stantaneous visualization of the braided structures reveals an
increased streamwise alignment with increasing compressibil-
ity.

INTRODUCTION
The dependence of the spreading rate on the convective

Mach number is a well-established characteristic of the high
speed mixing layer [1–5]. The current consensus attributesthe
inhibited turbulence production to a reduction in the pressure-

strain term [2]. An a priori analysis would suggest that these
findings should also be applicable to the case of the planar
wake. Yet the literature on the high speed wake does not seem
to show a convincing spreading rate reduction with increasing
Mach number. At first thought, it might be an expected result
as the compressibility effects decay with the wake evolution;
to this effect Clemens and Smith [6] noted many similarities
between the supersonic and incompressible wakes in the far-
field. But, on closer inspection, the possibility of a coupling
between the compressibility and lateral spreading of the wake
raises a fundamental inconsistency which has not yet been ad-
dressed. On the one hand, if there is a spreading reduction
caused by compressibility effects, we must question the scal-
ing of the wake half-width, as it appears rather invariant tothe
Mach number [7, 8]. On the other hand, if there is no spread-
ing rate reduction, there must be a structural characteristic,
which distinguishes it from the mixing layer. The essence of
the present work is to understand the effect of compressibil-
ity in the planar wake by investigating the structures during
transition.

The extensive studies on the compressibility effects in
the mixing layer guide our investigation of the high speed
wake. The two notable features of the mixing layer are an
increased three-dimensionality and a reduction of the lateral
spreading with increasing Mach. The three-dimensionalityis
related to the linear stability characteristics as primaryinsta-
bility mode changes from a two- to three-dimensional wave
above the convective Mach numberMac = 0.6 [9]. The ques-
tion of the reduced spreading has been the focus of many re-
cent investigations on the compressible mixing layer [2,3,10].
It is generally accepted that the lateral spreading reduction is
related to a reduction of the turbulent kinetic energy produc-
tion as opposed to increased dilatational effects [11] or re-
duced linear instability mode growth. Vremanet al. [2] found
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that the pressure-strain term is reduced with increasing com-
pressibility and developed a model to illustrate this finding.
Similarly, Pantano and Sarkar [10] suggested the energy trans-
fer from the streamwise to the cross-flow direction is inhibited
by compressibility. Physically, they noted that the finite speed
of sound adds a time delay in the pressure transmission, which
effectively reduces the correlation of the developed eddies.

Despite many studies on the mixing layer, a clear and
quantitative evaluation of the spreading rate reduction remains
an open question [5] as the scatter in the available data remain
quite large. That said, some workers have noted a better agree-
ment when the spreading rate is scaled with different param-
eters [12]. Furthermore, nothing in these studies on the mix-
ing layer suggest that the compressible wake should behave
any differently; yet, a convincing demonstration of a spread-
ing rate reduction has not yet been shown (despite a reduced
exponential growth of the most unstable mode [14, 16]). As
stated previously, this raises an important issue which puts
into question to use of the wake half-width as the principal
scaling parameter in the high speed wake.

NUMERICAL DETAILS
Numerical scheme

We developed and validated a predictor/corrector fi-
nite difference solver, which was used to compute the com-
pressible Navier-Stokes equations. The spatial scheme is
fourth-order accurate inside the domain with a biased third-
order scheme at the finite boundaries. The high-order
MacCormack-like spatial scheme was chosen as the biased
stencil on the convective terms provides a robust and efficient
method to deal with the high gradients appearing in the form
of shocklets while offering adequate dispersion and dissipa-
tive qualities. The over-resolution needed for a good small-
scale calculations compared to other higher-order schemes
(spectral, Padé etc.) is offset by the computational effi-
ciency, parallelisability and small memory footprint allowed.
The time-dependent compressible Navier-Stokes equations
are solved in conservative form with skew-symmetric con-
vective terms for robustness and to reduce the aliasing er-
rors. The time was advance using a second-order Runge-
Kutta scheme in which the time-step was set by an imposed
acoustic Courant number. The numerical code was exten-
sively validated against the analytical solution of a viscous
shock, Taylor-Green vortex, decaying compressible isotropic
turbulence and mixing layer in addition to the incompressible
wake.

Grid, boundary and initials conditions
A homogeneous grid was used in the stream- and span-

wise direction. In the cross wake direction, the grid was clus-
tered about the centerline using a hyperbolic tangent mapping.
The grid resolution was chosen to resolve down to the order
of the Kolmogorov scale. As the flow is temporally evolving,
periodic boundary conditions were set in the streamwise (x)
and spanwise (z) directions and a finite boundary in the nor-
mal direction (y). In the bounded direction, a non-reflecting
boundary condition [15] is supplemented with a sponge layer
in order to remove any numerical oscillations caused by the in-
viscid approximation at the boundary. The domain size for all

cases was: 50 , 35, 12.5 in the streamwise, normal and span-
wise directions. With the current Mach and Reynolds number
the domain allows for the development of a minimal of 16 to
20 rollers in the streamwise direction.

We simulated the flow for a constant Reynolds number of
1500 at four different free stream Mach numbers:Ma∞=0.3,
0.8, 1.2 and 2.0. A laminar initial velocity profile was used:
〈u(y)〉=U∞ −Ud exp(− log(2)y/b)2 whereU∞, Ud andb are
respectively the free stream velocity, the initial deficit velocity
and the initial wake half-width. The mean velocity and mean
temperature fields are related through the Crocco-Busemann
relationship. The mean wake profile is perturbed by broad-
band fluctuations inx- andy-directions with anrms value of
10% of the velocity deficit in order to break the symmetry
about the centerline. The broadband perturbations adds gen-
erality to the obtained results at the cost of longer transitional
time compared to specific mode forcing. The initial wake half-
width was unity resulting in constant momentum flux deficit
at ṁ≈ 0.9.

RESULTS
The transitional mechanism of the incompressible pla-

nar wake is well understood as the wake is inherently unsta-
ble because of an inflectional velocity profile. The principal
instability modes, which generally agree with linear stability
approximations, grow as energy is transferred from the mean
to the fluctuating flow. As the spanwise coherent rollers de-
velop, ribs (also called braids) appear between neighbouring
structures along the separatrix of the flow. The streamwise
inclined vorticity of the ribs represents the first sign of three-
dimensionality in the wake. The rollers pair when the energy
content of the principal instability modes becomes saturated
which leads to the onset of full turbulence in the wake. The ef-
fect of compressibility on the transitional features of thewake
is important although very subtle.

In order to assess the influence of the Mach number on
the flow, we need to quantify the level of compressibility dur-
ing the transition of the wake. The free stream Mach number,
Ma∞, is not a dynamically relevant velocity scale. Instead, the
relation between the free stream and centerline Mach number
is a more meaningful flow parameter as it defines the rela-
tive velocity of the large-scale eddies with respect to the free
stream. Analogous to the convective Mach number in the mix-
ing layer, the relative Mach number is:Mar = Ma∞ −Mao =
U∞−U0

c∞
. As the defect varies with the evolution of the flow, so

does the relative Mach number. Figure 1 shows the monoton-
ically decreasing relative Mach number; given a long enough
domain, the relative Mach number asymptotically tends to-
ward zero. During transition, which roughly corresponds to
the timet = [20 : 80], the relative Mach number decays at an
increasing rate with the Mach number. The maximum slope
of the relative Mach number is: -0.011, -0.0275, -0.0380 and-
0.0532 forMa∞=0.3, 0.8, 1.2 and 2.0 respectively. In addition
to the relative Mach number, we may also define the turbu-

lent Mach number as:Mat =
〈u′〉max

c∞
. The maximum turbulent

Mach number is reached during transition and corresponds to:
0.048, 0.128, 0.192 and 0.32 (respectively for casesMa∞=0.3,
0.8, 1.2 and 2.0). In the far-wake the turbulent Mach numbers
fall to about a fourth of its maximal value.

In order to confirm the linear evolution in the pre-
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Figure 1. Evolution of relative Mach number in the flow.

transitional domain, we validate our results against results
from an inviscid linear stability calculations for a compress-
ible wake by [14] in figure 2. We calculate the time takes the
flow to reach arbitrarily chosen fixed velocity fluctuation of
vrms(t) = 0.2 which is located within the linear transitional
domain. Using the case of Mach 0.3 as the baseline, we com-
pare the ratio of elapsed time with the ratio linear stability
growth rates for different Mach numbers. As we are normaliz-
ing on the Mach 0.3 case we find a maximum difference under
1.5% for cases 0.8 and 1.2. For the case ofMa= 2.0, the vari-
ation between theoretical growth and computed was slightly
larger at 3.5%. When we normalize the time by the growth
rate of the lowest Mach number case, an excellent collapse
is observed (apart from the case 2.0) which has a very slight
offset in figure 3. The collapse between all the cases is even
greater for the streamwise velocity fluctuations. Considering
the underlying assumption of inviscid flow for the theoretical
analysis, these are rather good comparison which allow us to
gain confidence in our results. The larger discrepancy with the
higher Mach number case will be discussed below.
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Figure 2. Growth rate and streamwise wavenumber of the
most unstable mode as calculated by Chen et al., 1990.

Overlooked by most of the previous studies on the transi-
tioning high speed wake is the influence of increased stream-
wise wavelength of the most unstable anti-symmetric mode
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Figure 3. Evolution of the maximum cross-wake turbulent
fluctuation (Favre-averaged). The time is normalized using
the growth rate from linear stability.

with increasing Mach number, see figure 2. In order to eval-
uate the preferential modes in the transitional flow, the two-
point correlation with streamwise separation of the cross-
wake velocity fluctuation was found to be a very sensitive
measure of the preferential wavelength in figure 4. The two-
point correlation was measured along the plane with the high-
est vorticity magnitude, which roughly corresponds to the lo-
cation at the wake half-width. During transition, the first pos-
itive peak of the two-point correlation represents the average
spacing of the spanwise rollers and is directly proportional
to the size of the coherent structures. Using this metric, we
can follow the evolution of the size of the rollers in 6. A key
feature in all wakes is the growth of the rollers in the pre-
transitional region followed by a plateau. By comparing with
other integral statistics, the plateau in the streamwise wave-
length occurs over the same time frame as the very rapid decay
of the centerline velocity (figure 1) and the rapid spreadingof
the wake half-width (figure 7). These features are attributable
to the pairing of the main structures. The observed plateau
(and even wavelength reduction) followed by a rapid increase
in the diameter of the structure is an expected result duringthe
vortex pairing [13]. The visualization of the idealized vortex
pairing simulations (figures 3 (a) and (b) in [13]) reveal the
formation of oval-shaped structure which, after pairing, even-
tually regains a circular shape after pairing. The oval shaped
structure has a reduced streamwise extent when the principal
axis of the paired structure is perpendicular to the plane of
the shear layer. Once both vortex cores merge, the structure
regains its circular shape and the diameter increases rapidly.

The study of linear stability theory on the wake reveals
that two-dimensional anti-symmetric (sinuous) modes have
the highest growth rate. Chenet al. [14] noted that for Mach
numbers below 1.2, the most unstable symmetric (varicose)
mode is perfectly two-dimensional. At a Mach number above
1.0, the symmetric mode with the greatest growth is found at
an angle of approximately 50−55◦ from the streamwise di-
rection. As the calculated growth rate of the anti-symmetric
modes are about an order of magnitude greater than the sym-
metric modes, it is generally accepted that the wake maintains
its two-dimensionality during the linear evolution. But byin-
vestigating the two-point correlation of the streamwise vortic-
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Figure 5. Two-point correlation of the streamwise vorticity
(ωx) with a spanwise separation (z) along the plane of peak
vorticity magnitude at timet = 30.

ity with spanwise separation, figure 5, we note an increased
three-dimensionality with the Mach number. Using the peaks
in the two-point correlation in the stream-(4) and spanwise(5)
directions, we infer an inclination of about 66◦. Similar ex-
perimental work on transitional planar wakes for a freestream
Mach number of 2.0 has also reported three-dimensional per-
turbations to be the most unstable Lysenko [22]. It was sug-
gested that the receptivity of the wake to the varicose modes
may result in an optimal growth for a three-dimensional dis-
turbance.

As observed in the incompressible and compressible
wakes [8, 17], the spreading (defined asdb2/dt) is constant
in the intermediate and far-wake. Despite the modest scatter
in the measured spreading rates, no distinctive trend is ob-
served between different levels of compressibility, see figure
7. During transition, where the compressibility effects are the
most prevalent, significant variation in the spreading rateis
observed. As expected from linear stability theory, the in-
creased Mach number stabilizes the flow which results in a
delayed transition. But unlike the velocity perturbations, the
lateral spreading does not scale with the theoretically calcu-
lated growth rate of the wake. A striking feature during tran-
sition is the higher spreading rate with increased Mach num-
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Figure 7. Evolution of the lateral spreading in the wake. In-
set shows spreading during transition to turbulence.

ber which is shown in the inset of figure 7. As the pairing of
vortical structures is the main mechanism responsible for the
lateral spreading of the wake during transition [18, 19], the
larger structures (resulting from the longer instability modes
of the high Mach number) lead to a faster spreading of the
wake.

Structural features
We visualize the flow using theλ2-method by [20] in

the transitional regime. Admittedly, the physical definition
of the second eigenvalue of the velocity tensor is somewhat
lost for dilatational flows. But using the assumption that the
compressibility of the turbulence is negligible compared to the
compressibility of the mean, the visualization of the structures
in compressible case can be approximated by this method. To
confirm that these structures are significant, we plotted theiso-
surface of the minimum pressure and found a general agree-
ment with theλ2 structures. Figure 8 presents the structures
for the limiting cases ofMa=0.3 and 2.0 at a similar stage of
transition based on the normalized time oft ≈ 36 (based on
the growth rate of the instability modes). The overall struc-
tures in the high-speed wake differ rather significantly from
those observed in the temporally evolving plane mixing layer
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which show a very distinctive diamond pattern [21]. A clear
difference can be seen between the essentially incompress-
ible and supersonic cases; a close up on a single structure
in figure 9 highlights the main features. The braids in the
case atMa=2.0 have a greater alignment (≈+/−25◦) in the
streamwise direction, while the low Mach number case has a
greater inclination (≈+/−45◦). The greater alignment of the
braids for Mach 2.0 explains the observed negative correla-
tion with spanwise separation in figure 5. It could be inferred
from these figures that the longer wavelength, which results
in an increased spacing between rollers, allows for a greater
alignment of the secondary structures along the streamwise
direction, although, a further study is necessary to confirma
causal link between the wavelength and angle of the braids.
The phenomenological features of a three-dimensional insta-
bility mode appear in our present high-Mach number simula-
tion, namely in the structures (fig. 8) and statistics (fig. 5).
This is a rather surprising feature as both inviscid [14] and
viscid [16] linear stability calculation clearly reveal a two-
dimensional primary instability mode. The appearance of a
three-dimensional mode at higher-Mach number might also
explain the poorer scaling with the linear stability theory.

Figure 9. Close-up of one structure of the iso-surfaces of
λ = −0.10 at normalized timet ≈ 36. Mach number of 0.3
(left) and 2.0 (right). Top:x− z plane. Bottom:x− y plane.
Only the top half of the wake is shown for clarity in all figures

CONCLUSION
We presented four temporally evolving direct numerical

simulations of transitioning planar wakes. The free stream
Mach numbers of 0.3, 0.8, 1.2 and 2.0 are chosen to cover a
range from the incompressible limit well into the supersonic
regime. The maximal growth rate of the inviscid linear sta-
bility theory collapses the turbulence statistics in the linear
region of the flow of the low compressible flows. At Mach
2.0, the scaling does not agree as well with the linear evo-
lution of the flow. The investigation of the primary wave-
lengths reveal an increased three-dimensionality with Mach
number, a result is supported by experimental observations
[22] but contradicts the linear stability results. A sourceof
the three-dimensionality might be caused by the receptivity of

the varicose mode which is unaccounted for the linear sta-
bility calculations. In opposition to the mixing layer, the
high-speed wake undergoes a spreading rate increase with in-
creased Mach number during transition as the larger struc-
tures, which are related to the longer wavelength of the princi-
pal instabilities, pair and effectively reduce the mean velocity
gradients in the wake. The visualization of the braided struc-
tures reveals an increased streamwise alignment with increas-
ing compressibility.
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