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ABSTRACT
Based on highly accurate three-dimensional measure-

ments of a scalar field θ , which in the present study is the
concentration field of gaseous propane discharging into ambi-
ent air from a turbulent round jet, we validate the model equa-
tion for the normalized marginal probability density function
(pdf) P̃(l̃) derived by Wang and Peters in the context of dissi-
pation element analysis. Combining a two-dimensional high-
speed Rayleigh scattering technique with Taylor’s hypothesis
allows to resolve the Kolmogorov scale η in every spatial di-
rection so that the theoretically derived model equation can
be checked against the experimental results at various con-
ditions. We find a very good agreement between theory and
experiment and can confirm both, a linear diffusion controlled
increase at the origin as well as an exponential tail of the pdf.

INTRODUCTION
One of the many approaches in turbulence research is

to study geometrical structures or characteristic points in the
flow field, which allow the extraction of representative in-
formation to describe and statistically reconstruct the whole
field. [1] analyzed the behaviour at the smallest scales of tur-
bulent scalar fields in terms of the properties of zero gradient
points and minimal gradient surfaces. He concluded that these
regions of the field are of physical importance to the problem
of turbulent mixing.

Based on the extreme points of turbulent scalar fields, i.e.
points of vanishing scalar gradient, [2,3] developed the theory
of dissipation elements, which arise as natural geometries in
turbulent scalar fields, when these are analyzed by means of
gradient trajectories. Starting from every grid point, trajecto-
ries along the ascending and descending gradient directions
can be calculated, which inevitably end in extreme points.
All points that share the same two ending points define a fi-
nite volume which is called a dissipation element. These el-
ements are parameterized by two values, namely the linear
length l between and the scalar difference ∆θ at the extreme
points. Based on this theory, space filling and non-arbitrary el-
ements are identified, which allow the reconstruction of statis-
tical properties of the field as a whole in terms of conditional
statistics within the elements. Examples of such analysis can

be found in [3–6]. From the definition of dissipation elements
it follows that their temporal evolution in turbulent fields is
inherently connected to the evolution of their ending points,
which are separated by a mean linear distance lm of the or-
der of the Taylor microscale λ (= (10k/ε)1/2, where k is the
turbulent kinetic energy and ε denotes the energy dissipation
rate), see [2]. In addition, direct numerical simulations of ho-
mogeneous shear turbulence revealed that a resolution of the
order of the Kolmogorov scale η is needed to obtain grid in-
dependent statistics. As dissipation elements have only been
analyzed in simulations so far, an experimental verification is
desirable.

Due to their corrugated three-dimensional geometry in
combination with the required resolution, an experimental
validation is challenging. For a first attempt at compara-
tively low Reynolds numbers Reλ and resolution using three-
simensional measurements of the velocity field in a channel
flow obtained via tomographic PIV see [7].

We will study dissipation elements in a passive scalar
field θ , which is governed by the convection-diffusion equa-
tion

∂θ/∂ t +ui(∂θ/∂xi) = D∂
2
θ/∂x2

i , (1)

where D is the constant diffusion coefficient and ui de-
notes the velocity component in i-direction, while repeated in-
dices imply summation. A wide range of experimental inves-
tigations of such a scalar field can be found in the literature,
three-dimensional data however is limited as often single- or
multi-point measurements in combination with Taylor’s hy-
pothesis are conducted, see for instance [8–10], which for
obvious reasons are of limited use in the context of dissipa-
tion element analysis. The development of advanced laser
optical techniques with a high pulse energy at a high repeti-
tion rate has facilitated the experimental investigation of spa-
tially three-dimensional conserved scalar quantities. In such
measurements, the three-dimensional information is found ei-
ther by imaging in parallel, spatially distinct two-dimensional
planes or via a sweeping of a single two-dimensional laser
sheet in sheet normal direction, see [11] for an overview. For
the present purpose however, both approaches are impractical
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Figure 1. Experimental arrangement of the high-speed Rayleigh system

as in the first one the minimal distance, i.e. the best possible
resolution, is limited by the minimal distance between the two
planes at which the signals do not interfere. This restriction is
not only of importance for dissipation elements, but also cre-
ates a severe restriction with respect to accuracy, when three-
dimensional gradient quantities in scalar turbulence such as
the scalar dissipation rate χ are considered. The latter is for
any dynamically passive, conserved scalar θ defined as the
scalar gradient magnitude squared times the diffusion coeffi-
cient D, yielding

χ = D(∂θ/∂xi)
2 = D

[(
∂θ

∂x

)2
+

(
∂θ

∂y

)2
+

(
∂θ

∂ z

)2
]
.

(2)
The second approach has been used successfully for

measurements in water, see for instance [12], but proves to be
difficult in the gas-phase as the Schmidt number Sc(= ν/D,
where ν is the kinematic viscosity), is in liquids roughly three
orders of magnitude larger than in the gas-phase. In the next
chapter, we will therefore present a method, which combines
a high-speed Rayleigh scattering technique with Taylor’s hy-
pothesis to resolve the Kolmogorov scale η in all three spa-
tial directions, though at moderate Reynolds numbers Reλ

(=uλ/ν , where u denotes the longitudinal r.m.s. velocity) of
O(102). In chapter three, we will give a brief introduction to
dissipation elements and validate the marginal pdf P̃(l̃), be-

fore the paper is concluded in chapter four.

EXPERIMENTAL INVESTIGATION
In the present study, a turbulent round propane jet dis-

charging from a nozzle with a diameter d=6mm into surround-
ing air has been chosen as the core of the experimental set-
up. The scalar field, i.e. the concentration of propane, is
visualized via Rayleigh scattering of a diode pumped dou-
ble cavity Nd:YLF laser (Litron Lasers LDY303HE-PIV) at
the molecules. The laser emits frequency-doubled light at a
wavelength of 527nm, has a pulse energy of 2x22.5mJ with a
pulse width of 150ns at 1kHz and can operate at up to 10kHz,
see [13] for further information. To account for energy fluc-
tuations, the signal is corrected on a shot by shot basis by a
12bit energy monitor (LaVision Online Energy Monitor).

Laser-Rayleigh scattering is used to determine the instan-
taneous concentration of the binary mixture of jet and reser-
voir gas in a small focal plane within the turbulent core of
the jet. Laser-Rayleigh scattering has been used and docu-
mented in many previous studies, see for instance [10,14,15],
and is therefore only described briefly here. The technique
makes use of the fact that gas molecules elastically scatter
photons, and that different molecules have different Rayleigh-
scattering cross-sections. In the present study for instance,
the cross-section of propane is roughly thirteen times higher
than the one of the surrounding air. The signal obtained via
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Table 1. Characteristics of the propane jet at various downstream positions

Case 1 2 3 4

Downstream position x/d 30 30 40 40

Jet exit velocity U0[m/s] 2.15 4.00 2.15 5.10

ε[m2/s3] 4.73·10−2 3.05·10−1 1.78·10−2 3.10·10−1

θ̄ 0.097 0.116 0.076 0.089

Kolmogorov scale η [mm] 0.213 0.134 0.272 0.133

Reynolds number Re0 2804 5217 2804 6652

Reynolds number Reλ 69 94 69 106

Schmidt number Sc 1.64 1.62 1.67 1.66

Resolution ∆x/η 0.34 0.97 0.20 0.98

Resolution ∆y/η = ∆z/η 0.07 0.12 0.06 0.12

Rayleigh scattering from a binary gas mixture is related in a
linear manner to the concentration θi of the respective gases
in the mixture. Considering the gas exiting from the jet to
have a concentration in the mixture of θ1 the two end points
θ1=0 and θ1=1 of this linear relation are recorded for the cali-
bration, before the conversion from signal to concentration is
simply accomplished by linear interpolation.

For the illumination of a two-dimensional plane, a sheet
optic for thin, collimated sheets of 130µm diameter and
25mm height is installed behind laser and energy monitor,
thereby illuminating a plane perpendicular to the jet center-
line, see fig. 1 for a schematic overview of the full experimen-
tal set-up. The resulting signal is recorded with a 12bit LaV-
ision high speed CMOS-camera HighspeedStar6 with a full
resolution up to 5.4kHz and 8GB internal memory in combi-
nation with a two step high speed intensified relay optic (LaV-
ision HighSpeed IRO). This image intensifier is an electronic
shutter device with a maximal repetition rate of 2MHz and an
extremely variable exposure time. In contrast to a standard
CMOS or CCD, which usually has an exposure time in the ms
range, the IRO can be operated in the ns range, thereby al-
lowing time resolved analysis of shortest light pulses as they
are produced by pulsed laser sources. In addition, this IRO
has an extremely reduced vignetting, as the light is focused
to the image intensifier entrance window, converted to elec-
trons and amplified. Then it is reconverted to light at the exit
window, which is focused onto the chip. For further informa-
tion regarding camera and IRO sensitivity and signal as well
as noise considerations see [16, 17].

In order to observe the Rayleigh signal without interac-
tion between optical arrangement and turbulent flow, a mirror
is installed in some distance to the laser sheet, which has a
thin coating of enhanced aluminium reflecting above 95% of
the incomming light at a wavelength of 527nm, thereby min-
imizing signal losses. To protect the propane jet from exte-
rior influences such as dust particles, a mild co-flow of clean,
dry air discharges from a surrounding tube with a diameter of
150mm and a length of 450mm, which guarantees a uniform
velocity profile as a honeycomb is installed in the lower third

of the tube.
In a next step, the recorded time series of the plane at

a fixed downstream position is transformed into a spatial sig-
nal based on Taylor’s hypothesis, see [18], so that we obtain
a frozen three-dimensional concentration field. This approx-
imation estimates the spatial derivative in the streamwise x-
direction from the local instantaneous value of the time deriva-
tive from a single-point or planar measurement, when the
required three-dimensional multipoint measurements are im-
practical or unavailable. In the limit of low turbulence inten-
sities, the motion of gradients relative to the local mean flow
can be approximated as one of pure convection. Assuming
fluctuations of θ to be considered frozen over the time scale
of the temporal derivative, one obtains

(
∂θ

∂x

)
=− 1

U

(
∂θ

∂ t

)
, (3)

or ∆x =U ·∆t respectively, where U is the local mean ve-
locity in streamwise direction. Due to the importance of two-
point statistics and spatial gradient quantities in turbulence,
it is common to use Taylor’s hypothesis to estimate spatial
derivatives. Even in multipoint probe measurements of veloc-
ity gradients, cf. [19, 20], it has been invoked to estimate pdfs
and derivatives along the mean streamwise direction.

As the camera can resolve a plane of 10242 pixels at a
frequency of 5kHz, this bounds the jet exit velocity U0 to a
value, at which the resolution in x-direction remains below
the Kolmogorov scale. The resulting experimental parame-
ters at two different downstream positions x/d are given in ta-
ble 1, in which the Taylor based Reynolds number Reλ stems
from Reλ = 1.3

√
Re0 (with Re0 = U0d/ν), cf. [21]. As the

jet exit velocity is limited to the respective values, the dis-
tance between two recorded images is always below η after
Taylor’s hypothesis is applied. In this relation however, an
approximation formula taken from [22] is used to estimate ε .
Furthermore, values for the mean scalar value θ̄ and the local
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Figure 2. Joint probability density function P(l,∆θ) for case 2 at x/d=30.

Schmidt number Sc are displayed in table 1 to give an impres-
sion of the physical parameters.

Based on the raw images recorded by the camera, sev-
eral corrections of the data are applied before any analysis
can be performed. In a first step, noise stemming from dark
current and background are subtracted before the intensity of
each image is corrected on a shot-by-shot basis to compensate
for fluctuations in the laser energy using the energy monitor
data as well as for an inhomogeneous illumination in the laser
sheet. The size of the images is then reduced from 10242

to 8502 to remove areas without signal due to vignetting be-
tween IRO and camera. Afterwards, a Mie-filter consisting
of an mixed intensity threshold and particle size approach is
applied to remove undesirable effects originating from dust
particles in the test region. Due to the relatively low jet veloc-
ity in combination with the high-speed recording, the signal
of a dust particle is captured on several images, once it enters
the quadratic area of interest. Based on these corrected im-
ages, the signals corresponding to pure air and pure propane
respectively are calibrated and used to convert the recorded
photon counts to propane concentration. Finally, boxes with a
distance ∆x =U ·∆t in streamwise direction between two im-
ages are formed in which then a three-dimensional diffusion
as well as a spectral cut-off filter are applied, before a paral-
lelized trajectory search algorithm is used to identify extreme
points and properties of dissipation elements.

DISSIPATION ELEMENT ANALYSIS
The motivation for dissipation elements is the recon-

struction of the entire three-dimensional scalar field by means
of an adequate description of an element’s characteristics,
those being the linear length l and the scalar difference ∆θ .
The corresponding joint probability density function (jpdf)
P(l,∆θ) is expected to contain most of the information needed
for a statistical reconstruction. Based on a trajectory search
algorithm, the passive scalar field has been analyzed for the

different experimental cases and the resulting joint pdf for
case 2 is shown in figure 2 (to relate the values of l and ∆θ

given in this figure to other characteristic flow quantities see
table 1). In this illustration, different physical effects are illus-
trated. Besides a distinct maximum, one observes a decrease
at the origin, corresponding to the annihilation of small el-
ements due to molecular diffusion. The region in the upper
right hand area of the jpdf is dominated by extensive strain, as
large elements are exposed to large velocity differences.

This jpdf can be described by a model equation. Based
on Bayes theorem, it is decomposed into a marginal pdf P(l)
of the linear distance and a conditional pdf P(∆θ | l) of the
scalar difference, yielding

P(l,∆θ) = P(l) P(∆θ | l), (4)

where the marginal pdf P(l) is defined by

P(l) =
∫

∞

0
P(∆θ , l)d∆θ . (5)

For this pdf in its normalized form P̃(l̃), with P̃ = P lm and
l̃ = l/lm, the following model equation was derived in [3]

∂ P̃(l̃, t̃)
∂ t̃

+
∂

∂ l̃
(P̃(l̃, t̃)[ṽD(l̃)+ ã(l̃)l̃]) =

Λs

∫
∞

l̃
P̃(z̃, t̃)dz̃−Λa l̃P̃(l̃, t̃).

(6)

In this equation, ã represents the conditional mean strain rate
a of the elements of length l
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a =
< ∆un | l >

l
, (7)

where ∆un denotes the velocity difference at the ending points
projected in direction of the linear connecting line, normalized
by its asymptotic value a∞, which is approached for l → ∞.
Furthermore, ṽD is defined as

ṽD = vD/(lm a∞) =−4D/l
(
c l̃ exp(−l̃)

)
/(lm a∞), (8)

and denotes the normalized drift velocity due to molecu-
lar diffusion in eq. 6. It is responsible for the linear decrease
of P̃(l̃) for l̃ → 0 as will be shown below. The constant c in
eq. 8 is determined from the condition that the total length
of the array must not change, cf. [3], and D is the molecu-
lar diffusion coefficient. In addition in eq. 6 the two non-
dimensionalized numbers Λs and Λa appear. These describe
the splitting (respectively reconnection) of larger (smaller) el-
ements into smaller (larger) ones and are determined from the
normalization and the first moment during the solution of the
equation as eigenvalues of the problem, cf. [23]. Eq. 6 can be
solved numerically and will be compared to the experimental
results in the following as it is considered to be independent
of the Reynolds number and type of turbulent flow, cf. [6] for
a detailed discussion.

Figures 3-6 depict the results for the normalized pdf of
the length distribution P̃(l̃) obtained at the different down-
stream positions and jet exit velocities given in table 1. In
general, one observes a very good agreement of the experi-
mental results with the solution of the theoretically derived
model. Slight differences can be identified at x/d=40, where
the maximum of the experimentally obtained length distribu-
tion is slightly tilted to the left and small deviations in the
exponential tail can be identified. The maximal value of the
pdf however, is well described by the model solution and the
linear increase at the origin as well as the exponential tail,
see especially the log-insets, follow closely the predicted so-
lution. In addition, figures 3-6 illustrate that the equation for
P̃(l̃) seems not to be a function of the Reynolds number as
the values of Rλ vary roughly between 70 and 100, so that

Figure 3. Marginal pdf P̃(l̃) for case 1

Figure 4. Marginal pdf P̃(l̃) for case 2

Figure 5. Marginal pdf P̃(l̃) for case 3

Figure 6. Marginal pdf P̃(l̃) for case 4

the shape of the non-dimensional marginal pdf P̃(l̃) and its
model equation may be considered independent from inhomo-
geneities and anisotropies, a finding which is in good agree-
ment with the results obtained in [6].

CONCLUSION
Based on three-dimensional measurements of the con-

centration field at different downstream positions around the
center line of a turbulent round jet, we have presented detailed
experimental validation for the theoretically derived marginal
pdf for the length of dissipation element. Overall, we find an
excellent agreement between model and experimental data. In
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particular, the linear increase at the origin due to diffusion
as well as the exponential tail stemming from the Poisson
process employed in the derivation can be confirmed by the
present data. Finally, no dependance on the Reynolds num-
ber is implied by the results, which is in good agreement with
theory and numerical results.
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