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ABSTRACT
Separated flows, characterized by the presence of a recir-

culation bubble and a shear-layer developping along the bub-
ble, are often the seat of self-sustained low-frequency (LF) dy-
namics. The case of the shock-wave turbulent boundary layer
interaction (SWTBLI) on a flat plate is analysed by means of
LES simulations. A recent non-linear modal analysis, based
on the ’dynamic mode decomposition’ (DMD) is applied to
an LES database. The typical LF modes are associated with a
cyclic contraction and expansion of the recirculation bubble,
taking the form of filling and emptying very close to the de-
scription of the mass-budget-based model proposed by Pipon-
niau et al. (2009). The bubble is found to be divided into
two zones, an upstream one associated with LF dynamics, and
a downstream one associated with high-frequency ’Kelvin-
Helmholtz-type’ (’KH-type’) vortices. When increasing the
Strouhal number, the spatial support of the DMD modes
moves continuously from the first part of the bubble to the
entire bubble and the downstream flow.

INTRODUCTION
Separated flows appear in many configurations of tech-

nological interest, both in the incompressible and supersonic
regimes. In both regimes, the separated zone is characterized
by the presence of a recirculation bubble and a shear-layer de-
velopping along the bubble. These configurations are often
the seat of self-sustained low-frequency (LF) dynamics. The
origin of this LF activity is not fully understood, but many
studies suggest that it is linked to the dynamics of the sepa-
rated boundary-layer (Robinet (2007)).

Recent studies, in the incompressible regime, have
shown that a boundary layer could generate a LF dynamics
resulting from the interaction of the instability waves develop-
ing in the shear-layer (Cherubini et al. (2010)). Indeed, global
instability analyses have shown that beyond some threshold in
physical characteristics of the separated zone (bubble aspect
ratio, backflow intensity) the flow becomes unstable. When
more than two shear-layer modes are unstable, LF vortex-
shedding appears. The LF activity is mainly localized in the

downstream part of the bubble.
In the supersonic regime, the separation zone can be gen-

erated by the impact of a shock-wave on a developping bound-
ary layer. If the pressure jump across the incident shock is suf-
ficiently large, the associated adverse pressure gradient leads
to the separation of the incoming boundary layer which forms
a separation bubble. The deflection of the flow away from the
wall generates compression waves which form the reflected
shock. At the top of the bubble, an expansion fan is produced,
followed by weak compression waves near reattachment. Fi-
nally, downstream of the interaction, the boundary layer is
subject to a relaxation zone. Beyond some threshold, notably
in the angle of impact of the incoming shock, this ’reflected
shock / separation bubble’ configuration is often the seat of
LF motions (Dolling (2001)).

The LF activity, often identified by the fore-and-aft mo-
tion of the reflected shock, but also associated with a ”breath-
ing” motion of the separation bubble, shows similarities with
the incompressible regime. It seems therefore legitimate to
search if a similar mechanism could govern the LF dynamics
for both regimes. In the compressible turbulent regime, two
scenarios have been recently proposed. The first one, pro-
posed by Piponniau et al. (2009), links the LF activity to the
shear-layer developping along the separation line. A simple
model, based on a mass-budget of the separated region, has
been developed. The vortices shed in the shear-layer fill the
bubble until a critical mass is reached. The mass-flow inside
the bubble is then ejected into the downstream flow. These
successive gain and loss of mass create a low-frequency cyclic
contraction and expansion of the bubble, which timescale is
estimated to be close to the LF motion of interest. The second
scenario, proposed by Touber & Sandham (2011), suggests
that the LF motion comes from a selective response of the re-
flected shock foot to a random forcing. Following the idea
of Plotkin (1975), they argue that the shock displacement is
obeing a first order stochastic Ordinary Differential Equation
with an associated timescale. The shock then simply ampli-
fies low-frequencies already present in the incoming flow and
is responsible alone for the LF activity in the separation re-
gion.
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A recent non-linear modal analysis has been proposed
by Schmid (2010) and Rowley et al. (2010). This method,
based on the ’dynamic mode decomposition’ (DMD), allows
the extraction of dynamically relevant flow features using only
time-resolved numerical data. We propose in this paper to ap-
ply this algorithm on an LES database of a shock-wave tur-
bulent boundary layer interaction (SWTBLI) on a flat plate.
The idea is to visualize the spatial structure associated with
the LF modes and to relate it with current knowledge on the
issue of flow unsteadiness. The numerical strategy adapted to
compressible flows is described and validated in the first sec-
tion. Then the LES database with the flow conditions is pre-
sented. The non-linear spectral analysis is then detailed and
discussed. The main conclusions are given in the last section.

NUMERICAL METHODS AND FLOW PARAME-
TERS
Numerical discretization

The need to resolve the fine turbulent scales and to cap-
ture several periods of the low-frequency oscillation of the
reflected shock implies the use of low cost numerical algo-
rithms. The LES strategy used in this study combines a finite-
difference scheme with good spectral properties with the use
of a selective filtering without an additional eddy-viscosity
model. The high-order explicit filtering provides a smooth de-
filtering by removing the fluctuations at wavenumbers greater
than the finite-difference scheme resolvability, and provides
the necessary regularization at small scales. An important ad-
vantage of the LES strategy is that no additional effort is re-
quired, whereas more elaborate models can induce 20% to one
order of additional cost. The time integration is done using an
explicit low-storage optimized six-step Runge-Kutta scheme.

Nonreflecting characteristic boundary conditions are
used at the outflow and at the top boundary. The shock is
introduced at the inflow boundary using the inviscid Rankine-
Hugoniot jump conditions. The wall temperature is calculated
with the adiabatic condition. Periodicity is assumed in the
spanwise direction.

The Synthetic Eddy Method (SEM) in the form proposed
by Pamies et al. (2009) is used to generate realistic time de-
pendent inflow conditions for the LES simulations. The adap-
tation distance needed to recover a realistic wall turbulence,
estimated using notably the longitudinal evolution of the rms
velocities is found to be smaller than 10δ0 (where δ0 is the
inflow boundary layer thickness based on 99% of the external
velocity). Moreover, this methodology does not introduce any
periodicity in the flow, which is particularly important in this
study.

The centered finite-difference schemes used in this study
have no shock-capturing features, so that when encountering
flow with discontinuities, they may fail to describe the solu-
tion because of their inability to deal with the spurious oscil-
lations generated by the Gibbs phenomenon. This issue is cir-
cumvented here by employing the Adaptative Nonlinear Se-
lective Filtering (ANSF) where a signal processing operation
is applied after each time step in order to adjust the solution
near discontinuities. The amplitude of the filtering is adjusted
dynamically using the fluctuations of dilatation, and the orig-
inal method is coupled to a Ducros sensor to improve the se-
lectivity of the shock-capturing device.
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Figure 1. Van Driest transformed mean velocity profiles
(left), and rms profiles normalized by the friction velocity
(right) : ( ), ”coarse” LES; ( ), ”fine” LES; (◦),
DNS of Pirozzoli et al. (2004).

Validation of the numerical strategy
Undisturbed turbulent boundary layer The

Direct Numerical Simulation (DNS) of a turbulent boundary
layer of Pirozzoli et al. (2004) at free-stream Mach number
M∞ = 2.25 and Reynolds number Reθ = 4260 is reproduced
in order to validate the turbulent inflow boundary condition.
Two grids are tested : a ”coarse” one (∆+

x = 39, ∆+
ymin

= 2.9,
∆+

z = 18), and a ”fine” one (∆+
x = 33, ∆+

ymin
= 1.7, ∆+

z = 13).
Figure 1 shows van Driest transformed mean velocity

profiles in good agreement with the DNS, despite an underes-
timation of the friction velocity less than 10%, which is cus-
tomary using LES resolutions. The rms profiles are slighty
underestimated by the ”coarse” grid (in black) but are in very
good agreement with the DNS for the ”fine” grid (in red).

Shock interaction The SWTBLI case of Pirozzoli
& Grasso (2006) at free-stream Mach number M∞ = 2.25 and
Reynolds number Reθ = 3725 is reproduced in order to vali-
date the numerical strategy. The incidence angle of the shock
generator is 8◦.

The computational domain has a size of Lx×Ly×Lz =
20δ0× 11δ0× 3δ0. It is discretized with a grid consisting of
400×200×154 points. The grid points are uniformly spaced
in the streamwise and spanwise direction, and are clustered in
the wall-normal direction according to a geometric progres-
sion of 2%. Evaluated upstream of the interaction, the reso-
lution in term of wall units is ∆+

x = 35, ∆+
y = 1.7, ∆+

z = 14.
The time step is 0.0023δ0/U∞. After an initial transient of
1200δ0/U∞, the time span of the computation is 800δ0/U∞.

Figure 2 shows the longitudinal evolution of the friction
coefficient (left) and the wall-pressure (right) in a coordinate
system centered on the reattachment point xreat and normal-
ized by the separation length Lsep (defined as the distance be-
tween the mean separation point and the mean reattachment
point). The friction coefficient is in very good agreement with
the DNS. The wall-pressure jump is surprisingly sharper in
the LES simulation even the downstream flow conditions are
well recovered. It is worth noticing that an other LES has been
performed recently on the same configuration, and similar dis-
crepansies with the DNS of Pirozzoli & Grasso (2006) have
been observed (Petrache et al. (2010)).

Figure 3 shows mean velocity profiles at various stream-
wise stations. The profiles reasonably match the DNS except
in the upstream part of the boundary layer just after the recir-
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Figure 2. Longitudinal evolution of the friction coefficient
(left) and of the wall-pressure jump (right) : ( ), LES;
(◦), DNS of Pirozzoli & Grasso (2006).
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Figure 3. Mean velocity profiles at streamwise stations (x−
xreat)/Lsep =−2,−1,−0.5, 1.5, 6. : ( ), LES; (◦), DNS
of Pirozzoli & Grasso (2006).

culation bubble.

FLOW ANALYSIS
Linear spectral analysis

The shock angle chosen in the previous section leads to a
weakly separated boundary layer. Therefore, an other LES
simulation of SWTBLI has been performed with the same
flow conditions and numerical discretization but with an in-
cidence angle of the shock generator of 9◦. This generates a
stronger interaction and therefore a larger separation bubble.

The calculation has been advanced in time until statis-
tical steadiness is achieved. Then, samples of wall-pressure
field have been collected at time intervals of 0.121δ0/U∞.
The time span of the simulation guaranties a frequency res-
olution of the order of 0.000275U∞/δ0 which corresponds to
a Strouhal number based on Lsep of 0.0009 (St = f Lsep/U∞).

At this point, we introduce the following nondimensional
coordinate system, centered on the separation point and norm-
ralized by Lsep : x = (x−Xsep)/Lsep, and y = y/Lsep.

Figure 4 shows the longitudinal evolution of the pre-
multiplied wall-pressure spectra as a function of the Strouhal
number. Most of the low-frequency energy content is local-
ized near the separation point (black dashed line). This be-
haviour is different from incompressible results, where the
LF activity is concentrated near the reattachment point (as-
sociated with LF vortex-shedding). The shift observed down-
stream of the reflected shock foot is associated with the thick-
ening of the boundary layer and the generation of ’KH-type’
structures by the shear-layer.

Figure 5 shows the pre-multiplied wall-pressure spectra
as a function of the Strouhal number at a position located near

Figure 4. Longitudinal evolution of the logarithm of the pre-
multiplied wall-pressure spectra as a function of the Strouhal
number. The spectra are normalized so that their integral over
frequency is unity for each station.
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Figure 5. Pre-multiplied pressure wall-spectra as a function
of the Strouhal number at a position near the separation point.

the separation point. The LF activity is associated with a bump
in terms of Strouhal numbers instead of a single peak. This
bump is centered near St = 0.006 (black straight line). A sec-
ondary LF peak is also visible around St = 0.02 (black dashed
line). A ratio Lsep/δ0 of 4.05 is obtained in this simulation.
This result is very close to the experimental value of 4.2 ob-
tained by Piponniau et al. (2009). However δ0 is six times
smaller in our simulation. That explains why the Strouhal
number St = f Lsep/U∞ associated with the LF bump is almost
six times smaller than the value of 0.03 obtained by Piponniau
et al. (2009) for the same incident shock angle.

Low-pass filtering is applied to the pressure fluctuations
field with a cutoff Strouhal number of 0.02. The correspond-
ing filtered field is shown on Fig.6. The incident and reflected
shock are indicated by the black dashed lines, and the sonic
line by the pink dashed line. The figure suggests that above
the sonic line, the LF activity is concentrated on two distinct
zones : the reflected shock and the expansion fan.

Non-linear spectral analysis
To analyze the nonlinear dynamics, a new method is used

based on spectral analysis of the Koopman operator. The
Koopman operator is a linear operator defined for any non-
linear system, but it is not based on linearization: indeed, it
captures all of the dynamics of the full nonlinear system. The
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Figure 6. Low-pass filtered pressure fluctuations field with
cutoff Strouhal number 0.02.

Koopman operator describes the evolution of observables on
the phase space. The governing equations are regarded as the
dynamical system as follows:

uk+1 = F(uk)

where u is state vector, k is the time increment and F is the
Navier-Stokes operator. To analyse the flow dynamics only
from time-resolved snapshots amounts to computing the fol-
lowing eigenproblem K φ j(u) = λ jφ j(u) where φ j and λ j are
the eigenfunctions and eigenvalues of the Koopman operator
K respectively. This operator has the following properties:
For all observable physical quantities q, the Koopman oper-
ator acting on q(uk) as K q(uk) = q(F(uk)) = q(uk+1) or
K kq(u0) = q(uk). q(uk) may be expanded in terms of these
eigenfunctions, as

q(uk) =
∞

∑
j=1

φ j(uk)vj =
∞

∑
j=1

K k
φ j(u0)vj =

∞

∑
j=1

λ
k
j φ j(u0)vj

where the eigenfunctions φ j and the corresponding vectors
vj as the Koopman eigenfunctions and Koopman modes of
the map F, corresponding to the observable q. Approximate
Koopman eigenvalues λ j and eigenvectors vj are computed
from a sequence of flow-fields {u0,u1, ...,um−1} with a given
number of snapshots m and time interval ∆t. The correspond-
ing frequencies are given by ω j = ℑ

[
log(λ j)

]
/∆t. The fol-

lowing scalar product is used to project the dynamics on a
lower-dimensional space :

∫∫ [
ρu′i

2

2
+

p′2

2γP
+

(γ−1)Ps′2

γr2

]
dxdy

where s is the thermodynamic entropy, and r = cp − cv is
the gas constant. The computation of Koopman modes from
snapshots is realized by the DMD algorithm which is pre-
cisely described by Schmid (2010). Due to memory limita-
tions, the DMD method is applied only to two-dimensional
snapshots of the fluctuations flow variables in a first time.
The snapshots are taken in the sub-domain x ∈ [−0.4,1.5],
y ∈ [0.,0.6] in the nondimensional coordinate system defined
in the previous section. The domain is large enough to in-
clude the incoming boundary layer, the recirculation bubble,
and the dowstream flow. 3850 snapshots spaced at intervals of
∆tU∞/Lsep = 0.0949 are collected, for a maximum resolvable
Strouhal number of 10.5 and a minimum resolvable Strouhal
number of 0.0027.
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Figure 7. Top : Spectrum of the approximate Koopman
eigenvalues λ j. Bottom : Magnitude of the Koopman modes
as a function of the Strouhal number.

Figure 7 (top) shows the spectrum of the approximate
Koopman eigenvalues λ j. Almost all eigenvalues lie on the
unit circle, indicating that the dynamics is statistically station-
ary.

The magnitude of the Koopman modes, defined by the
global energy norm ‖vj‖, are shown on Fig.7 (bottom) as a
function of the Strouhal number (in a logarithmic scale). The
turbulent nature of the flow generates a continuous field of
peaks ranging from high to low frequencies. The modes asso-
ciated with the LF dynamics are however clearly visible. The
modes associated with the colored peaks are considered in this
section.

The shape of a LF mode (blue peak on Fig.7 (bottom),
St = 0.006) is shown on Fig.8 for equally spaced phase inter-
vals of a quarter of period. The mean field is also added. The
sonic line is indicated by a black dashed line.

The LF mode clearly exhibits a global breathing motion
of the recirculation bubble. More precisely, the mass of fluid
amount in the bubble starts to increase in the upstream part
of the interaction zone (from the separation point to the inci-
dent shock impact on the boundary layer), probably entrained
by the mixing layer. The mass amount is then shedded into
the downstream flow, decreasing the size of the bubble. Then,
the bubble size starts to increase again from the shear-layer.
This behaviour is obtained by a modal decomposition, and
therefore cannot be associated directly to a physical structure
present in the flow. However, this cyclic contraction and ex-
pansion of the bubble corresponds to a physical dynamics that
is observed in experiments and numerical simulations.

The shape of a typical high-frequency mode (cyan peak
on Fig.7 (bottom), St = 0.45) is shown on Fig.9. Most of the
high-frequency activity is localized along the sonic line and
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Figure 8. Contours of u′ for a LF mode close to St = 0.006;
(blue peak on Fig.7 (bottom)).

Figure 9. Contours of u′ for a high-frequency mode close to
St = 0.45; (cyan peak on Fig.7 (bottom)).

does not affect the size of the recirculation bubble, suggesting
that high and low frequency dynamics are decoupled.

Figure 10 to Figure 14 show the shape of DMD modes
for increasing the Strouhal numbers St = 0.006, 0.0075, 0.02,
0.14, and 0.45. It appears clearly that the spatial support asso-
ciated with a typical LF mode is concentrated in the upstream
part of the recirculation bubble. When increasing the Strouhal
number, the support progressively fills the rest of the bubble
and the downstream flow. Moreover, it is rapidly located along
the sonic line, turning continuously into ’KH-type’ vortices of
increasing frequencies (Fig.12 and Fig.13).

CONCLUSIONS
For one of the first time (Pirozzoli et al. (2010)), a re-

cent ’non-standard’ modal decomposition method based on
the DMD algorithm has been applied to the unsteady SWT-
BLI case. Three main observations can be made from this
analysis :

1. The spatial support of a typical LF mode is concentrated

Figure 10. Contours of u′ for a mode close to St = 0.006;
(blue peak on Fig.7 (bottom)).

Figure 11. Contours of u′ for a mode close to St = 0.0075;
(red peak on Fig.7 (bottom)).

in the first part of the recirculation bubble, mainly along
the shear-layer. This observation is in good agreement
with the scenario proposed by Touber & Sandham (2011)
where the LF dynamics is localized near the reflected
shock foot. It clearly shows that the bubble is divided
into two zones, an upstream one associated with LF dy-
namics, and a downstream one associated with higher-
frequency ’KH-type’ vortex shedding.

2. The temporal reconstruction of the LF modes reveals
a cyclic filling and emptying of the bubble that is
very close to the mass-budget-based model proposed by
Piponniau et al. (2009).

3. Finally, when increasing the Stouhal number, the spatial
support of the DMD modes fills the rest of the bubble and
the downstream flow. It’s however interesting to note that
this evolution is continuous and progressive.

A next step would be to apply the DMD on three-
dimensional snapshots, because the separation zone, and the
KH generated by the shear-layer, could be three-dimensional
(Robinet (2007)).
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Figure 12. Contours of u′ for a mode close to St = 0.02;
(pink peak on Fig.7 (bottom)).

Figure 13. Contours of u′ for a mode close to St = 0.14;
(green peak on Fig.7 (bottom)).

Figure 14. Contours of u′ for a mode close to St = 0.45;
(cyan peak on Fig.7 (bottom)).
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