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ABSTRACT 

We carried out direct numerical simulation for turbulent 

flow over angled wavy walls. The walls are models of the 

folded areas of skin which appear on the abdominal parts of 

fast swimming dolphins. The angles between the streamwise 

direction and the ridgelines of the wavy walls were 90, 63.4 

and 45 degrees. The ratio of amplitude to wavelength in the 

streamwise direction of the wavy wall was 0.0064. The 

computational results show that the mean velocity in the 

transverse direction becomes predominant as the angle 

decreases. This is due to the occurrence of secondary flow 

along the ridgelines of the wavy walls. It is also found that the 

wall-shear stress tensor decreases with the decrease in the 

angle. This is because the contribution of the Reynolds-shear-

stress component '' wu  becomes more noticeable with the 

decrease in the angle. The local modification of coherent 

structure caused by the secondary flow along the ridgelines 

leads to the decrease in the Reynolds shear stress. 

 

 

INTRODUCTION 

The reduction of drag acting on a moving body in fluid 

has been focused on for many years in various research fields. 

The reduction of drag acting on swimming dolphins is not an 

exception. Several possible mechanisms have been discussed 

for this drag-reduction. These include (1) viscous damping by 

compliant skin, (2) an induced turbulent boundary layer and 

(3) boundary layer acceleration (Fish, 2006). Folds of skin are 

another possible mechanism. If a folded skin is regarded as a 

two-dimensional rigid wavy surface, the skin is not 

advantageous for drag reduction: the pressure drag increases 

noticeably with the ratio of amplitude to wavelength of the 

wavy surface (Henn and Sykes, 1999), while the friction drag 

decreases slightly with an increase in the ratio (Tuan et al., 

2006). Thus, the total drag increases noticeably with the ratio 

(Nakagawa and Hanratty 2003). 

The research group of present authors has focused on the 

differences between the two-dimensional rigid wavy 

sinusoidal surfaces and dolphin skins. One of the differences 

is the angle of the ridgelines of the folds. The ridgelines 

observed are not perpendicular to the body axis of the 

swimming dolphins, and thus to the main-flow direction 

(Zhang et al., 2007). In our previous experiments (Yoshitake 

et al., 2008, Ozaki et al., 2009), we measured the total drag 

and the friction drag for small angled wavy plates on the 

bottom of an open channel. In these experiments, the increase 

in the total drag was lower than expected. This is because the 
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recirculation flow, which occurs near the trough of the wavy 

surface, is intermittent. However, due to limitation of 

measurement, the effects of the angle on the friction drag and 

total drag have not yet been examined. 

In the present study, we carry out direct numerical 

simulation for turbulent flow over angled wavy surfaces to 

elucidate the effects of the angles of the ridgelines on the two 

kinds of drags and the local turbulence structure. 

 

 

COMPUTATIONAL METHOD 

Assumptions 

We made the following assumptions: 

(1) The wavy walls are stationary. However, the folded skins 

of dolphins may move due to the shear force. 

(2) The ridgelines of the wavy walls are parallel. 

(3) The surfaces of the wavy walls are smooth. The slightly 

rough texture of actual dolphin skins has not been taken 

into account. 

 

 

Computational domains 

We dealt with turbulent flow in a domain between an 

upper shear-free lid and a lower non-slip deformed wall as 

shown in Fig. 1. The method for the formation of the wavy 

wall is described later. The x-, y- and z-axes were positioned 

in the streamwise, vertical and transverse directions, 

respectively. The ξ- and η-axes were positioned along the wall 

and the wall-normal direction, respectively. The domain was 

converted to the computational domain, which was a 

rectangular box of 2πh × h × 2πh, by using an unsteady 

generalized curvilinear coordinate system to fit the deformed 

wall at any moment. 

 

 

Schemes and grid arrangement 

The Navier-Stokes equations were discretized with a 

staggered grid system. The grid spacing was identical both in 

the ξ- and z-directions. The spacing increased from the lower 

and upper walls in the η direction based on a hyperbolic 

tangent. The grid resolution was Δx+= 14.7, Δy+ = 0.394 - 4.75 

and Δz+ = 7.36 in the case of flat wall. (The grid resolution 

Δξ+ is slightly longer than Δx+, while Δη+ is slightly longer or 

shorter than Δy+ depending on the location.) The time 

increment was Δt+ = 0.02. The computational schemes were 

the same as those used by Koyama et al. (2007). The details 

are shown in Table 1. 

 

 

Boundary and initial conditions 

The periodic boundary condition was applied for velocity 

and pressure in the ξ- and z-directions. A non-slip boundary 

condition was adopted for the lower deformed wall, while a 

free-slip boundary condition was adopted for the upper 

imaginary wall. A database made up of fully developed flow 

over a flat wall was adopted as the initial velocity field. 

 

 
 

Figure 1. Computational domain. 

 

 

Table 1 Computational condition. 

 

Grid Collocated Grid

Grid number 64×64×128

Grid resolution

Δx
+ （= Δx uτ / ν） 14.7

Δy
+ （= Δy uτ / ν） 0.394-4.75

Δz
+ （= Δz uτ / ν） 7.36

Coupling Fractional Step Method

Algorithm (FFT&Residual Cutting Method)

Reynolds number

Reτ （= uτ h / ν ）

Time evolution 3rd-order accurate

scheme Runge-Kutta  scheme

Boundary condition

x,z-direction Periodic

y-direction Upper： slip　 Bottom： non-slip

Difference scheme 4th-order central difference

150

 
 

 

Computational conditions 

The Reynolds number was Re = huτ/ν = 150 where ν is the 

kinematic viscosity and uτ is the friction velocity at the initial 

state. Table 2 shows the conditions of the amplitude and 

angles. The amplitude of the wavy wall Amax was set equal to 

3ν/uτ. The flat wall is referred to as case 1. The angles 

between the x-axis and the ridgelines γ were 90 degrees, 

perpendicular to the main flow (case 2), 63.4 degrees (case 3) 

and 45 degrees (case 4). Figure 2 shows the wavy surface in 

case 3. 

 

 

Generation of angled wavy walls 

In the period of 0 < t < Twd for the preliminary 

computation, we increased the amplitude of the wavy walls by 

using the following equation: 

 

  ,
2

sinmax
wdT

t
AtA


                                   (1) 
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Table 2 Conditions of amplitude and angle. 

 

case1 case2 case3 case4

0 3 3 3

- 90 63.4 45

max
A


 

 

 

 
 

Figure 2. Computational mesh on the bottom wall(γ＝63.4°). 

 

 

where t is time and Twd is the period of deformation. Twd
+ was 

30. The local, instantaneous height of the wall yw can be 

expressed by the following equation: 

 

    }.tan({
4

cos,, 


 zx
L

tAtzxy
x

w
    (2) 

 

In this equation, the angles between the streamwise direction 

and the ridgelines of the wavy walls are given by the 

following equations in cases 3 and 4: 

 

,tan 4, caseIn ,
2

tan 3, caseIn 11

x

z

x

z

L

L

L
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where Lx and Lz are the dimensions of the computational 

domain in the x- and z-directions respectively. 

After Twd, the amplitude was unchanged at Amax. Thus, the 

local height of the wall is expressed as follows: 

 

  )}.tan({
4

cos,, max 


 zx
L

Atzxy
x

w
        (4) 

 

 

RESULTS AND DISCUSSION 

In order to make the discussion clear, we divided the wavy 

walls and the space above the wall into the following six sub 

surfaces and sub-spaces as shown in Fig. 3: valley, uphill1, 

uphill2, hilltop, downhill2 and downhill1. 

 

 
 

Figure 3. Classification of regions above wavy wall. 
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Figure 4. Mean velocity in the streamwise direction. 

 

 

Mean velocities 
Figure 4 indicates the mean velocity profiles in the 

streamwise direction. The mean velocity in the inner region in 

the case of angled wavy walls (cases 3 and 4) is almost the 

same as that in the other cases. 

Figure 5 shows the mean velocity in the transverse 

direction as a function of the wall-normal distance. The 

absolute values of mean velocity increase as the angle 

decreases. This is due to the secondary flow generated along 

the ridgelines. The absolute values reach their maxima at 9 

wall units from the surface. 

 

 

Turbulence intensities 

Figure 6 depicts the profiles of turbulence intensities. The 

peak value of turbulence intensity in the streamwise direction 

decreases with the decrease in the angle. In contrast with this, 

the values of turbulence intensity in the transverse direction in 

the buffer region increase with the decrease in the angle. The 

main flow is accelerated near the uphill region, while it is 

decelerated near the downhill region. This acceleration and 

deceleration cause an increase in the streamwise turbulence 

intensity. This change in the intensity is redistributed to the 

turbulence intensity in the transverse direction through not 

only the sustaining mechanism of turbulence but also the 

secondary flow. Thus, the modification of turbulence 

intensities is due to the secondary flow. 

 

x 

y 
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Figure 5. Mean velocity in the transverse direction. 
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Figure 6. Turbulence intensities. 
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Figure 7. Shear stress tensors. 

 

 

 

 

 
 

Figure 8. Wall shear stress and vortices (case3). 

 

 

 
 

Figure 9. Wall shear stress and vortices (case4). 
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(a) x/h = 1.57 

 

 

 
 

(b) x/h = 3.14 

 

 

 
 

(c) x/h = 4.71 

 

 

 
 

(d) x/h = 6.14 

 

Figure 10. Cross sections of vortices and velocity fluctuations 

(case3). 

 

 

Shear stress tensors in flow 

Figure 7 indicates the profiles of the averaged shear stress 

tensor defined by the following equations: 

 

Viscous shear stress: 
























y

w

y

u
T   

Reynolds shear stress: '''''' wuvuuuR   , 

 

where μ and ρ are the viscosity and density. The term 

''uu  was excluded because this term shows the normal 

stress. It is found from the figure that the shear stress tensors 

in the cases of the angled wavy walls are lower than those in 

the other cases (cases 1 and 2). This is because the 

contribution of the '' wu  component is not negligible due 

to the secondary flow. 

 
 

(a) x/h = 1.57 

 

 

 
 

(b) x/h = 3.14 

 

 

 
 

(c) x/h = 4.71 

 

 

 
 

(d) x/h = 6.14 

 

Figure 11. Cross sections of vortices and velocity fluctuations 

(case4). 

 

 

Pressure drag 

We examined the values of spatiotemporal average of 

pressure drag acting on the wavy walls. The pressure drag Dpx 

acting on surface element dS is expressed by the following 

equation: 

 

),cos(cos
1

 







 Sx dSp

S
Dp                      (5) 

where S is the whole surface of the wavy wall. The non-

dimensional values of the pressure drag Dpx
+ was 1.61×10−6 in 

case 2, 2.07×10−6 in case 3 and 2.75 × 10−6 in case 4. The 

dependency of the drag on the angle is consistent with the 

dependencies mentioned above. However, the pressure drag is 

much lower than the friction drag because the ratio of the 

amplitude to wavelength in the present computation is low. 
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Modification of coherent structure 

Figure 8 demonstrates the color contours of wall shear 

stress and hairpin vortices near the surface in case 3. The 

identification of vortices is the same as that demonstrated by 

Jeong and Hussain (1995) and Jeong et al. (1997). The red 

area indicates higher values of the streamwise component for 

the wall shear stress tensor, while the blue area indicates lower 

values of the streamwise component for the wall shear stress 

tensor. The grey areas show the hairpin vortices. The solid 

lines and broken lines indicate the ridgelines and the lines 

connecting the lowest point, respectively. It is found that wall 

shear stress is locally low near the valleys of the wavy wall, 

while it is locally high near the hilltops. In case 4, as shown in 

Fig. 9, the areas of high wall-shear stress become smaller and 

the areas of low wall-shear stress also become smaller than 

those in case 3. Consequently, the contour map in case 4 is 

similar to that in case 1. 

To understand the localization of high or low wall shear 

regions, we examined the flow in the four cross-sectional 

planes indicated by vertical bold lines in Figs. 8 and 9. Figure 

10 illustrates the flow in these four planes in case 3. In this 

figure, the red area indicates the regions of high-speed streaks, 

while the blue area indicates the regions of low-speed streaks. 

The grey areas show the cross-sections of hairpin vortices. In 

case 3, the hairpin vortices are located far from the valley and 

close to the hilltop. These vortices are the reason for the 

change in the Reynolds shear stress shown in Fig. 7. On the 

other hand, in Fig. 10(a), the low-speed streaks are seen close 

to the uphill region (i.e. ascending wall) (See the areas inside 

the ovals). This is due to the fact that the secondary flow 

interferes with the high-speed streaks coming closer to the 

wall. On the other hand, in case 4, the low-speed streaks are 

found even close to the hilltop as shown in Fig. 11. This is 

different from the streaks in the other cases with the wavy 

wall. This is due to the fact that the hairpin vortices are 

attenuated by the secondary flow. 

 

 

CONCLUSIONS 

We have carried out direct numerical simulation for 

turbulent flow over angled wavy walls. Three different angles 

between the streamwise direction and the ridgelines of the 

wavy walls were dealt with. The main conclusions obtained 

are as follows: 

(1) The mean velocity in the transverse direction becomes 

predominant as the angle decreases. This is due to the 

occurrence of secondary flow along the ridgelines of the 

wavy walls. 

(2) The wall-shear stress tensor decreases with the decrease 

in the angle. This is because the contribution of the 

Reynolds shear stress component  '' wu  becomes 

more noticeable as the angle decreases. 

(3) The local modification of hairpin vortices and streaks 

caused by the secondary flow along the ridgelines leads 

to the decrease in the Reynolds shear stress 
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