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ABSTRACT
We describe the development of a simple forcing-

response analysis of the Navier-Stokes equations that predicts
important structural and scaling features of wall turbulence.
In particular, we propose an economical explanation for the
meandering appearance of very large scale motions observed
in turbulent pipe flow, and likewise demonstrate that hairpin
vortices are predicted, using a simple linear superposition of
modes derived from the model. The computationally cheap
approach explains and predicts vortical structures and veloc-
ity statistics of turbulent flows that have previously been iden-
tified only in experiments or by direct numerical simulation.
This new capability has clear implications for modeling, sim-
ulation and control of a ubiquitous class of wall flows.

INTRODUCTION
In flows of the most widely-ranging practical interest,

namely flows over surfaces or wall turbulence, the turbulence
problem is greatly complicated by inhomogeneity in the wall-
normal direction caused by the no-slip and no-penetration
boundary conditions at the wall.

Turbulent fluctuations of velocity and pressure have
characteristics of chaotic motion, and a common feature of
wall turbulence is the presence of persistent, coherent vor-
tical structures which inhabit distinct regions of the flow
(Theodorsen, 1952; Schoppa & Hussain, 2002) and have been
generally believed to be dominated by nonlinear dynamics.
These observations of distinct classes of coherent structure in
parallel with the measurement of turbulent velocity statistics
over the last sixty or more years have led to a dichotomy in
the understanding of the formation, development and scaling
of even the simplest, canonical turbulent wall flows, such as
flow through straight channels and pipes, or flow over a flat
plate in the absence of a pressure gradient.

In this paper, we demonstrate that the formation of such

coherent structures is a natural consequence of the velocity
field that arises as a near-singular response of the linearised
equations of motion to the wave-like forcing arising due to
nonlinear interactions with other wave-like motions. The
framework provides predictive information both about how
the wall-normal distribution of turbulent energy of the veloc-
ity field shows self-similarity across Reynolds numbers, and
also describes the wall-normal coherence of structures within
the flow. The predictions of the scaling and distribution of
second-order velocity statistics, and of structural characteris-
tics are provided using an essentially linear model. The anal-
ysis uses only the Navier-Stokes equations and an assumed
mean velocity profile.

There have been many observations of a common struc-
tural pattern described as a hairpin vortex (a vortical loop with
legs originating close to the wall, a body inclined in the down-
stream direction and a sense of rotation consistent with the
vorticity associated with the mean shear) in both experiment
and simulation (Head & Bandyopadhyay, 1981; Adrian et al.,
2000; Adrian, 2007; Wu & Moin, 2008), while the attached
eddy hypothesis formulated by Townsend (1956) and Perry &
Chong (1982) in the mid-20th century has sought to use phe-
nomenological arguments to determine the velocity field as-
sociated with hierarchies of these structures. Nonlinear mech-
anisms for the formation and growth of packets of hairpins
in otherwise quiescent flow have also been proposed by Zhou
et al. (1996), while there remains controversy as to whether
they are simply a remnant of the transition to turbulence, or
even whether whole hairpins, rather than a statistical vortical
imprint, even exist.

With alternative models lacking, statistical descriptions
have remained the simplest method to obtain comprehensive
descriptions of the turbulent field. Under the assumptions
of stationarity and ergodicity, simple spectral representations
provide information on important scales in the flow. While in-
formation at streamwise and spanwise wavenumber and tem-
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poral frequency (k,n,ω , respectively) is required to fully de-
scribe the flow, usually one-dimensional (integrated) spectra
are reported due to the intensive nature of obtaining and stor-
ing information in three dimensions. The streamwise spec-
tra reveal the presence of the widest range of scales, from the
Kolmogorov scales (Kolmogorov, 1941, 1962) responsible for
small-scale dissipation of energy up to so-called very large
scale motions (VLSMs) of the order of ten times the length
scale imposed by the flow geometry (typically the pipe ra-
dius, or the boundary layer thickness). Monty et al. (2007)
inferred that the VLSMs reach lengths of the order of thirty
radii when spanwise meander of the coherent region is taken
into account.

A recent focus of research has been on the origin and
development of large and small scales, and how their compet-
ing influences lead to trends with increasing Reynolds num-
ber. While the origin of the VLSMs has remained elusive,
there has been recent progress in predicting velocity statistics
by considering the nature of their spectral interaction with the
energetic near-wall region (Mathis et al., 2009; Marusic et al.,
2010). A truly complete interpretation of a turbulent flow field
requires assimilation of both the velocity statistics and vorti-
cal structures; observational progress has been made by con-
sidering the generation of one by the other, posing a classic
“chicken and egg” conundrum. In the absence of low-order
or simple predictive models for turbulent flows, the only cur-
rent recourse for the fluid mechanician who wishes to quantify
the state of turbulence lies in expensive simulations or exper-
iments.

In the following we examine the response of the lin-
earised flow to harmonic forcing. In this picture, the observed
behaviour is explained by even small forcing on the system
leading to energetic flowfield response (Bamieh & Dahleh,
2001; Jovanovic & Bamieh, 2005). The idea of linear pro-
cesses as important in turbulent flow dates back at least to
Malkus (1956). The device of identifying the nonlinear inter-
action between Fourier modes in the Navier-Stokes equations
(NSE) as a forcing actually acting on the a linear system per-
mits the extension of such methods to fully developed turbu-
lent flows (McKeon & Sharma, 2010), allowing the successful
prediction of observed features of turbulent flow.

A FORCING-RESPONSE MODEL
We consider turbulent flow through a long straight pipe

with a cylindrical cross-section. Laminar flow in this geom-
etry is stable to infinitesimal disturbances, and the transition
to turbulence is still not completely understood (Hof et al.,
2010), but the pipe offers the analytical benefits of statistical
homogeneity in the streamwise direction and a simple con-
straint on the azimuthal wavenumber. Turbulent flow through
pipes is important for applications like the transport of flu-
ids such as oil and natural gas, and also in numerous natural
and biomedical applications, and is also highly relevant to the
study of other canonical flows.

We defined Reynolds number as the ratio between the
pipe radius R and the viscous length scale defined by ν/uτ ,
where ν is the kinematic viscosity of the fluid and uτ is a
velocity scale associated with the skin friction acting on the
wall, τ , and the fluid density, thus R+ = Ruτ/ν .

McKeon & Sharma (2010) recently formulated a travel-

ing wave framework by which to analyze the dominant veloc-
ity mode shapes at particular wavenumber-frequency combi-
nations. The fully turbulent velocity vecotr field, v, can be
represented in a divergence-free basis as a superposition of
Fourier modes at various spatial wavenumbers and temporal
frequencies with wall-normal variation (waves),

v(y,x,θ , t) = ∑
n

∫
∞

−∞

∫
∞

−∞

vknω (y)ei(ωt−kx−nθ)dkdω (1)

where y is the wall-normal distance, k and n are the wavenum-
bers in the streamwise (x) and azimuthal (θ ) directions, all
normalized with the pipe radius, and ω is the temporal fre-
quency with respect to time t.

These helical waves represent the transmission of fluc-
tuating energy relative to the mean flow. We treat the steady
component (the mean flow) separately,

ṽ = v−v000 (2)

Under this decomposition, the Navier-Stokes equations can
be written in an input-output formulation, where the charac-
teristics of the linear operator Lknω (y) describe the velocity
field’s response to an unmodelled harmonic forcing f, itself
arising from the nonlinear interactions between the velocity
field at other wavenumber-frequency combinations,

fknω = (ṽ ·∇ṽ)knω (3)

The equations expressed in this form are

vknω (y) = (iω−Lknω (y))−1 fknω (y) (4)

and the operator (iω−Lknω (y))−1 relating the forcing to the
velocity field response is called the resolvent.

The analysis up to this point is very similar to the de-
velopment of the linearized, fourth-order Orr-Sommerfeld-
Squire operator of linear stability theory, with the exceptions
that the (k,n,ω) = (0,0,0) mode is identified as the turbu-
lent mean velocity rather than the laminar solution, and the
nonlinear forcing terms are explicitly retained in the present
analysis. As such, concepts relevant to the study of neutrally-
stable disturbances in inviscid, linearized laminar flow can be
extended to the turbulent case, with the understanding that in
the latter case the waves are lightly damped and would asymp-
totically decay in the absence of forcing f.

The resolvent has a nearly-singular, essentially inviscid
response at the critical layer, where the local mean velocity U
is equal to the streamwise convective velocity of the wave.

Given the very selective response of the flow, we may
hypothesise that the velocity field is dominated by the largest
possible response to forcing, at any given wavenumber and
frequency set. Mathematically, we may find and order
these orthogonal response modes by a Schmidt decomposition
(Young, 1988) of the resolvent into two sets of unitary orthog-
onal basis functions, which provides, for a given forcing mag-
nitude, the largest possible velocity field response, the second
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largest and so on.1 In practice, we find that the velocity field
given by the first of these response modes is associated with
a response typically one to many orders of magnitude larger
than that of the second mode. The velocity field observed in a
real flow will therefore be well described by the first response
mode if the forcing contains a non-negligible component of
the correct shape. This assumption of selective response is
congruent with an assumption that the resolvent may be ap-
proximated by a low rank operator (which has been postulated
in various forms by many previous researchers). The Schmidt
decomposition of the resolvent is

(iωI−Lknω (y))−1 =
∞

∑
j=1

ψ jknω (y)σ jknω φ jknω (y) (5)

with

∫
y

φlknω (y)φmknω (y)dy = δlm∫
y

ψlknω (y)ψmknω (y)dy = δlm

σ j ≥ σ j+1 ≥ 0

Under the further assumption of forcing that is small
relative to the magnitude of the response modes, a standard
asymptotic analysis (Drazin & Reid, 2004) can be used to de-
scribe the scaling of the two regions where viscous effects are
required: firstly at the critical layer (to regularize the singular-
ity of the inviscid problem) and at the wall (to meet the wall
boundary condition). We call a response mode in which vis-
cous modification at the wall dominates, a wall or attached
mode, and we call a response mode where viscous modifica-
tion at the critical layer dominates a critical mode.

STATISTICAL PREDICTIONS
In contrast to calculating statistics at a single wall-normal

location (y) at a given Fourier wavenumber, the response
modes provide a basis that predicts the wall-normal ampli-
tude and phase variation of the velocity field. To date, we
have examined the structure of the response modes up to a
Reynolds number of R+ = 2×104, of the same order of mag-
nitude as conditions in, for example, a transcontinental natural
gas pipeline (McKeon, 2010). Here we present key results at
R+ = 2× 103, a condition that is achievable in both experi-
ment and state-of-the-art simulation.

Figure 1 shows the streamwise velocity component aris-
ing from a combination of the left and right going helical ve-
locity response modes with a wavenumber-frequency combi-
nation representative of the dominant motion near the wall,
namely streamwise and spanwise wavelengths of a thousand
and one hundred viscous units, respectively, and a convection
velocity of ten times the friction velocity, (λ+

x ,λ+
z ,U+

x ) =
(1000,100,10). The distinctive pattern of rolling motions

1The calculations are performed using a modified version of the
approach of Meseguer & Trefethen (2003) and the experimental mean
velocity data of McKeon et al. (2004).

Figure 1. Shape of the first singular mode representa-
tive of the dominant near wall motions, (λ+

x ,λ+
z ,U+

x ) =
(1000,100,10). Color denotes isosurfaces of streamwise ve-
locity (streaks), where red and blue correspond to high and
low velocity respectively relative to the mean flow (heading
into the page), and the arrows show the sense of the in-plane
velocity field.
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Figure 2. Variation of VLSM energy peak with Reynolds
number: (×) model prediction at (k,n,ω) = (1,10, 2

3UCL),
(- -) theoretical prediction of y+ = 0.8(R+)2/3, (•) Superpipe
data (McKeon, 2008). Note that probe resolution may impact
the experimental result at the highest Reynolds number.

aligned in the streamwise direction and strong, alternating in-
clined streaks of fast and slow streamwise velocity u shown in
Figure 1 is entirely consistent with visual and quantitative ob-
servations of the near-wall region in canonical flows (Schoppa
& Hussain, 2002). In McKeon & Sharma (2010), we showed
that the wall-normal location of the peak intensity of u associ-
ated with this mode is independent of Reynolds number. This
scaling result is borne out by experimental measurements over
a range of Reynolds numbers.

Our framework can also be used predictively to describe
the Reynolds number dependence of the location of peak
VLSM energy, y+

pk, and to understand the origin of VLSMs.
A mode that is both attached to the wall and critical has a
special significance. In pipe flow, for parameters representa-
tive of a VLSM, (k,n) = (1,10) approximately, this condition
occurs when the convective velocity is two-thirds of the cen-
terline velocity, independent of Reynolds number, leading to
the prediction

y+
pk = 0.8(R+)2/3 (6)
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The agreement between this theoretically derived expression
and the experimental results of Morrison et al. (2004) reported
by McKeon (2008) is remarkably good, as shown in Figure 2
from McKeon & Sharma (2010). This prediction differs from
the (R+)1/2 law appropriate for a boundary layer.

STRUCTURAL PREDICTIONS
Having described important statistical aspects of pipe

flow, we now turn our attention to structural considerations.
A simple superposition of first response modes at different
wavenumber-frequency combinations also sheds light on the
controversy surrounding the true length of the VLSM mo-
tions. Even the addition of the velocity fields corresponding
to only two additional pairs of response modes with similar
amplitudes to the VLSM mode described above quickly leads
to the observation of apparently meandering structures with
length far greater than six radii, as shown in Figure 3. The
visual similarity is striking to experimental data shown in the
lowest panel of the figure (from Monty et al. (2007)). The
meandering phenomenon is an artefact of the many response
modes that are present in a real flow combining with the ener-
getic content of the VLSM itself, effectively decorrelating the
VLSM mode.

The three-dimensional velocity field associated with the
attached near-wall mode shown in Figure 1 gives an intuitive
hint as to the locations of coherent vorticity associated with
this type of mode. We identify structure through measures
which distinguish between the shear and rotational compo-
nents of vorticity, namely the symmetric and anti-symmetric
components of the velocity gradient tensor, ∇v. While any
of the commonly used measures (Chakraborty et al., 2005)
give very similar results, we highlight isosurfaces of swirling
strength2 for a wall mode with (k,n,ω) = (4.5,±10,1.67) in
Figure 4 (upper panel). The surfaces are colored by the mag-
nitude of the azimuthal vorticity, with blue corresponding to
prograde vortices, with the same sense of rotation as the tra-
ditional hairpin, and red to retrograde vortices, with the oppo-
site sense of rotation. The latter have been reported in the lit-
erature to occur relatively infrequently (Natrajan et al., 2007;
Carlier & Stanislas, 2005). Our model predicts an equal dis-
tribution of prograde and retrograde vortices associated with
each wall mode. However, in the presence of a mean ve-
locity profile with decreasing shear in the wall-normal direc-
tion, the retrograde vortices are suppressed while the pro-
grade ones are reinforced, leading to a distribution of vor-
tices that is consistent with experimental observations, Fig-
ure 4 (lower panel). In this figure, the mean shear is suffi-
ciently strong to completely suppress the retrograde vortices
below the swirl threshold selected for plotting. We empha-
size that the swirl field regenerated from the full range of
modes projected out, for example, from a direct numerical
simulation would reproduce the full swirl field: we explore
here a decomposition of the swirl field around the mean shear,
which precludes consideration of the contribution of hairpin
heads to the mean shear itself, as explored by other authors
such as Adrian et al. (2000). There are two points to note
here, firstly, this is a simple manifestation of the mean shear

2λci, or the imaginary part of the complex conjugate eigenvalue
pair associated with the velocity gradient tensor

Figure 4. Isosurfaces of constant swirling strength for the
(k,n,ω) = (4.5,±10,1.67) velocity response mode (three
wavelengths are shown in the streamwise and two in the span-
wise directions) at R+ = 1800, color-coded with the sense of
the azimuthal rotation. Blue and red denote pro- and retro-
grade swirl (or rotation in and counter to the sense of the
classical hairpin vortex), respectively. Upper panel: under
a Galilean transformation (i.e. constant convection velocity
subtracted throughout the field of view) there are even num-
bers of prograde and retrograde vortices. Lower panel: with
the mean velocity profile added, the retrograde vortices disap-
pear and the prograde ones are strengthened.

being the only net source of azimuthal vorticity, and sec-
ondly, swirling strength is not a distributive operation. In
other words, swirl(a+b) 6= swirl(a)+swirl(b). Thus the phe-
nomenon is a direct consequence of the diagnostics commonly
used to identify structure.

It is clear that a very complex velocity field can be ob-
tained simply by superposing modes with different (k,n,ω)
(and therefore different convective velocities) and amplitudes,
and with associated local velocity gradients. Critically, be-
cause swirling strength is not distributive, the swirl field can-
not be simply determined from a superposition of the swirling
strength associated with the individual response modes.

Aspects of the vortical structure and velocity statistics
associated with turbulent flows are typically explained only
in phenomenological terms and have been identified only in
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Figure 3. An explanation of apparent “meandering” of the VLSMs. The top panel contains isosurfaces of the streamwise velocity
at y/R = 0.15 for the summation of left- and right-going VLSM modes and the middle panel shows how even longer coherence, of
the order of the panel length, can be obtained by superposing the velocity response mode pair fields from two additional (shorter)
modes with (k,n,ω) = (4.7,±12,0.2) and (6.2,±15,0.6) with amplitude 75% of the VLSM modes. The bottom panel shows the
experimental results of Monty et al. (2007).

experiments or computationally costly direct numerical simu-
lation. The linearity of the processes driving wall turbulence
permits superposition of the response modes. This linearity is
revealed by formulating the NSE as a forcing-response prob-
lem. We have studied pipe flow in the current work, but the
same approach can be applied to both internal and external
flows with simple modifications. The results shown in this
paper were generated in seconds using a standard laptop com-
puter, and the approach extends to higher Reynolds numbers.
The only limitation is the numerical precision required to deal
with the near-singular response to the most amplified forcing.

The results offer some reconciliation of the statistical and
structural interpretations of such flows by working from the
NSE and an assumed mean profile. The understanding of the
different types of mode and where they occur in the flow has
significant implications for the prediction of Reynolds num-
ber trends and the modeling of turbulent activity at reduced
computational cost. While the forcing is currently unstruc-
tured, such that we do not determine the appropriate ampli-
tudes at individual modes, the possibility to “close the loop”
and formulate a reduced order model of turbulent pipe flow is
compelling: under a self-consistent combination of modes the
assumed mean velocity profile will be generated, such that a
self-sustaining system can be designed. The potential to de-
sign rigorous control techniques for such a system with the
objective of enforcing favorable turbulence characteristics is a
natural, and plausible, next step.
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