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ABSTRACT
An efficient finite-difference, immersed-boundary,

Navier-Stokes solver is used to carry out a series of sim-
ulations of spinning dimpled spheres at three distinct flow
regimes: subcritical, critical and supercritical. Results exhibit
all the qualitative flow features that are unique in each regime,
namely the drag crisis and the alternation of the Magnus
effect.

INTRODUCTION
Golf ball aerodynamics are of particular importance not

only due to the quest for improved performance of golf balls
but also because of the fundamental phenomena associated
with the drag reduction due to dimples. Dimples are known to
lower the critical Reynolds number at which a sudden drop
in the drag is observed. Figure 1, for example, shows the
drag coefficient, CD, as a function of the Reynolds number,
Re = UD/ν , (where D is the diameter of the golf ball, U the
velocity and ν the kinematic viscosity of the air) for a golf ball
and for spheres with various degrees of roughness [Achen-
bach (1972); Bearman & Harvey (1976)]. It can be seen that
dimples are more effective in lowering the critical Reynolds
number compared to sand-roughened spheres with grain size
k equal to the dimple depth d. In addition, dimples have the
benefit of not increasing drag considerably in the supercriti-
cal region (the region after the minimum in CD is reached),
although that minimum value of CD is not as low as that of a
smooth sphere.

It is generally believed that dimples cause the laminar
boundary layers to transition to turbulence, energizing the
near wall flow and adding momentum, which helps over-
come the adverse pressure gradient and delay separation. Re-
cently Choi et al. (2006) carried out a series of experiments
on dimpled spheres to clarify the mechanism of drag reduc-
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Figure 1. Variation of CD vs Re for a smooth sphere Achen-
bach (1972), –; spheres with sand-grained roughness Achen-
bach (1972), −− (k1 = k/d = 1250×10−5, k2 = 500×10−5,
k3 = 150×10−5); golf ball Bearman & Harvey (1976), ·−.

tion caused by dimples. Using hot-wire anemometry they
measured the streamwise velocity within individual dimples
and showed that the boundary layer separates locally within
the dimples. They concluded that turbulence is generated by
a shear layer instability which causes momentum transfer of
high speed fluid towards the surface of the sphere. Further
support for this mechanism was provided by recent direct nu-
merical simulations (DNS) by Smith et al. (2010). In their
work, flow visualization identified the formation of thin shear
layers at the leading edge of the dimples, which become un-
stable and are effective in energizing the near-wall flow.

When a sphere or golf ball is spinning around an axis per-
pendicular to the flow, a significant lift force is also generated.
Robins (1805) showed in the 18th century that the spherical
shots fired from bent gun barrels experience a lift force. A
century later Magnus (1853) employed a spinning cylinder to
demonstrate the existence of lift and attributed this phenom-
ena on the Bernoulli’s principle. When a cylinder spins it im-
parts velocity on the side moving with the flow and removes
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velocity from the side moving against the flow. The higher
velocity on one side means lower pressure which creates a lift
force in the direction of the side spinning against to the side
spinning with the flow. This phenomena is commonly termed
the Magnus or Robbins effect. It wasn’t until the introduc-
tion of boundary-layer theory by Prandlt in 1904 that a better
explanation was given for the Magnus effect. It is now under-
stood that lift is generated by the asymmetric separation of the
boundary layer on opposite sides of a cylinder or a sphere.

Davies (1949) carried out experiments in which spinning
golf balls and smooth spheres were dropped inside a wind tun-
nel. He estimated the lift on the balls by measuring the drift
of the golf ball on the landing spot. The Reynolds number
was 88 × 103 and the dimensionless spin rate a = ωD/2U
varied up to 0.55, where ω is the rotational speed in rpm. The
interesting point in his observations was the existence of a
negative Magnus effect for the case of a smooth sphere and
a < 0.35, that is lift in the direction opposite to that predicted
by the Magnus effect. He attributed the negative Magnus ef-
fect on the possibility that the effective Reynolds number on
each side of the sphere is different creating a distinct pressure
distribution on each side that results in negative lift.

Bearman & Harvey (1976) used large scale models of
golf balls with spherical and hexagonal dimples attached to
two thin wires. A motor was placed inside the hollow shells
of the ball to enable spinning at the desired rotational speeds.
The Reynolds number varied from 3.8×104-2.4×105 and a
from 0-2. They generally observed that as the spin rate in-
creases so do the lift and drag, although for the lowest Re and
for spin rates less than a ∼ 0.23 negative lift was observed.
They speculated that the generation of negative lift was due
to the fact that the boundary layer on the side spinning with
the flow remained laminar while the one on the side spinning
against the flow was tripped into a turbulent state. However,
no visual or quantitative information was provided to support
this conjecture.

More recently several other experimental studies have
been carried out on spinning golf balls in order to quantify
the effect of dimples and rotation on the drag and lift [i.e.
Stanczak et al. (1998); Aoyama (1998)]. The main prob-
lem with the experiments, however, is the inherent limitation
to measure quantities near and within the dimples when the
golf ball is spinning. Computational studies can bridge this
gap and provide detailed spatial and temporal information for
spinning golf balls. The recent large-eddy simulations (LES)
by Aoki et al. (2010) and DNS by Smith et al. (2010) are
characteristic examples. The present study extends the work
by Smith et al. (2010) to rotating golf balls. We will present
results at four Reynolds numbers covering the subcritical, crit-
ical and supercritical flow regimes at constant rotation rate, a.

METHODOLOGIES AND SETUP
The flow around a spinning golf ball is governed by

the Navier-Stokes equations for viscous incompressible flow.
In the present formulation the governing equations are dis-
cretized on a structured grid in cylindrical coordinates, and
the boundary conditions on the surface of the golf ball, which
is not aligned with the grid lines, are introduced using an
immersed-boundary method [see Yang & Balaras (2006)].
An exact, semi-implicit, projection method is used for the
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Figure 2. Typical grid resolution in a dimple.

time advancement. All terms are treated explicitly using the
Runge-Kutta 3rd order scheme, except for the viscous and
convective terms in the azimuthal direction which are treated
implicitly using the 2nd order Crank-Nicholson scheme [see
Aksevoll & Moin (1996)]. All spatial derivatives are dis-
cretized using second-order central-differences on a staggered
grid.

The code is parallelized using a classical domain decom-
position approach. The domain is evenly divided along the ax-
ial direction and communication between processors is done
using MPI library calls. Most tasks, like the computation of
the right hand side and the advancement of the velocity in the
predictor and corrector steps, can be performed independently
on each processor. To facilitate that, each subdomain contains
one layer of ghost cells to its left and right. The value of
any variable at the ghost cells is obtained by simple ’ejection’
from the neighboring subdomain, which is part of the cost of
communication between processors.

We considered four different Reynolds numbers, Re =
DU/ν , and one dimensionless rotation rate, α . Their val-
ues were chosen in a way that all three distinct flow regimes,
namely the subcritical (Re = 1.7×104 and a = 0.12568), crit-
ical (Re = 4.5 × 104 and a = 0.12568 and Re = 6.5 × 104

and a = 0.12568) and supercritical (Re = 1.7× 105 and a =
0.12568) are covered (see Table 1 for a summary of the com-
putations). The dimensional parameters for the supercritical
case correspond to the velocity and rotation rate of a golf ball
in flight after a typical stroke. The dimple diameter is approx-
imately d ∼ D/10, and the dimple depth, h = D/160. The de-
tails of the geometry can be found in Smith et al. (2010). The
Eulerian grid is stretched in the axial and radial directions to
resolve the key flow features. Figure 2 shows an example of
the computational grid near a dimple.

For all cases the domain extends 10D upstream and 30D
downstream of the golf ball (the center of the golf ball is lo-
cated at r/D = 0, z/D = 0). The number of grid points used
in each case is shown in Table 1. As the Reynolds number in-
creases the grid resolution around the golf ball and total grid
size increases too. For the supercritical case the resolution in
the radial and axial directions is the highest of all. In par-
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Case Re α U∞ ω Grid resolution CPU hrs/rot. Cd Cl

case 1 1.7×104 0.12568 5.8m/s 350rpm 296×102×1002 1800 0.454 0.0460

case 2 4.5×104 0.12568 15.0m/s 920rpm 442×502×1502 47000 0.362 -0.0411

case 2 6.5×104 0.12568 22.0m/s 1340rpm 442×502×1502 68000 0.249 0.120

case 3 1.7×105 0.12568 58.0m/s 3500rpm 1000×502×3002 260000 0.212 0.0215

Table 1. Summary of the simulations

ticular, at r/D = 0.35 and z/D = ±0.35 ∆r ∼ ∆z = 5.0e− 4
respectively. Since the dimples at those locations are oriented
at 45◦ from either radial or axial coordinate directions, the
resolution requirements are the highest. With this arrange-
ment there are approximately 8-9 grid cells inside the dimple
and across the laminar boundary layer at those locations. As
one moves towards the top of the golf ball (r/D = 0.5 and
z/D = 0.0), where the dimples are aligned with the axial co-
ordinate and the radial grid determines the wall normal resolu-
tion the number of points inside the dimple cavity is increased
to 10-12. A uniform grid of 502 points is used in the azimuthal
direction. The resulting grid has 760× 502× 3002 in the ra-
dial, azimuthal and axial directions respectively. For the two
cases in the critical flow regime at lower Re the grid resolu-
tion in the radial and axial directions was relaxed since the
boundary layer is thicker but the number of points in the az-
imuthal direction was kept the same. The corresponding grid
sizes together with typical CPU hours required to complete
one rotation in each case can be found in Table 1.

RESULTS
Various time averaged quantities have been computed.

Usually for flows with a clear periodic condition, such as
the period of rotation of the golf ball, phase-averaging could
be employed. However in order to converge phase-averaged
statistics one would need to consider many rotations, which
would make the computations prohibitively expensive even
for the smallest grids. In addition, the spin rates considered
in this study are small and the flow can be considered quasi-
steady.

Table 1 lists the mean force coefficients for all cases. As
the Reynolds number increases from Re = 1.7 × 104 (sub-
critical) to Re = 4.5× 104 (critical) the drag coefficient, Cd ,
decreases by 37%, from 0.45 to 0.36. A further drop of
Cd to 0.25 is observed as the Reynolds number increases to
Re = 6.5× 104 still in the critical regime. Finally in the su-
percritical flow regime the mean drag coefficient attains its
lowest value of Cd = 0.21. Comparison of Cd values with
those of spinning and stationary golf balls from various ex-
perimental studies are shown in Figure 3a. It should be noted
that the dimples in these studies are circular but the exact dim-
ple patterns and dimple depth are different from the geometry
used in the present study. Our geometry contains approxi-
mately 300 dimples with depth h/D = 6.3× 10−3. The golf
ball used by Bearman & Harvey (1976) has around 250 dim-
ples with larger dimple depth (h/D = 9× 10−3), while that

used by Choi et al. (2006) has 392 dimples which are more
shallow (h/D = 4×10−4). Due to these important differences
we don’t expect good quantitative agreement between our re-
sults and those in the literature. The plots in figure 3a show
that for a stationary golf ball the effect of increasing the dim-
ple depth is to accelerate the drag crisis but with a higher drag
at the end of the critical (minimum Cd) and in the supercritical
flow regimes. When spin is added (α = 0.1) the drag increases
particularly in the critical flow regime, while in the supercrit-
ical flow regime it doesn’t change significantly. Despite the
differences in the dimple patterns, the present results for CD
are within the range reported in the literature.

The mean lift coefficient, Cl , listed in Table 1 is consider-
ably affected by rotation and exhibits a different dependence
on Reynolds number compared to Cd . While Cl is positive for
three cases in the subcritical, critical and supercritical flow
regimes in accordance with the Magnus-Robbins effect it be-
comes negative at Re = 4.5×104. A similar observation was
made by Bearman & Harvey (1976), where they reported neg-
ative Cl around the same set of Re and α parameters. A direct
comparison between their experiments and our computations
is shown in Figure 3b. Cl in the experiments is negative around
Re= 3.8×104, and it becomes positive around Re= 5.0×104

and reaches a maximum at Re= 6.0×104. In the supercritical
regime Cl remains positive but decreases as a function of Re.
The CL values from our DNS are close to the experimental
ones and certainly exhibit the same trend including the exis-
tence of negative lift at Re = 4.5× 104. Bearman & Harvey
(1976) speculated that this behavior was due to the state of
the boundary layers on the upper and lower sides of the dim-
pled sphere: the boundary layer on the side of the golf ball
spinning with the flow remained laminar, while the other side
underwent transition and remained attached longer. However,
there wasn’t any flow visualization or any other measurement
to highlight the state of the flow near the surface of the golf
ball.

DISCUSSION
Figure 4 shows the instantaneous spanwise vorticity plot-

ted at two azimuthal planes passing through the upper and
lower side of the golf ball for a subcritical (Re = 1.7× 104)
and a critical (Re = 6.5×104) case. In the former the bound-
ary layers on the upper and lower sides of the golf ball separate
and form detached shear layers, which then become unstable
and shed vortices in the wake. In the latter, the flow separates
locally within the dimples and local shear layers are formed
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Figure 3. Mean values of a) CD and b) CL. Symbols are –,
Choi et al. (2006) (h/d=4e-3, no spin); –, Bearman & Har-
vey (1976) (h/d=9e-3, no spin); –, Bearman & Harvey (1976)
(h/d=9e-3, spin α = 0.1); •, present DNS results (h/d=6.3e-3,
spin α = 0.12568).

above the dimples energizing the flow and eventually delay-
ing the mean flow separation. These phenomena are similar
to ones observed in stationary golf balls and have been dis-
cussed in detail in an earlier paper by Smith et al. (2010). The
main difference in the rotating cases is that separation occurs
at different angles at the upper and lower parts of the golf ball,
and it is directly affected by the local structure of the bound-
ary layers. For the case of Re = 6.5× 104, for example, the
boundary layer on the upper side stays attached longer and
local separation and transition of the shear layer starts at ap-
proximately one dimple after θ = 90◦. On the lower side,
however, local separation and transition starts earlier at one
dimple before θ = 90◦. The exact point where instabilities
are triggered will vary during one rotation depending on the
dimple pattern and the way dimples are aligned with the flow
but in general transition occurs earlier on the lower side. This
can be attributed to the difference in the local Reynolds num-
ber between the parts of the golf ball spinning with and against

Figure 4. Contours of instantaneous spanwise vorticity at se-
lected azimuthal planes highlighting the relative separation
of the boundary layers on the upper and lower sides. The
golf ball spins in the clockwise direction with α = 0.125.
Re = 1.7×104 (top), and Re = 6.5×104 (bottom).

the flow, which is higher in the latter case and therefore more
prone to instabilities.

In addition, rotation has a profound effect in the wake
structure at the back of the golf ball. At the higher Reynolds
number, for example, in Figure 4 the vortical structures that
are shed from the shear layer on the upper side are seen to
follow the golf ball more around the back than the vortical
structures on the lower side. To better understand why this
happens let us consider a smooth sphere spinning in the clock-
wise direction in a quiescent flow. Due to viscous diffusion a
clockwise rotating flow will be created around the sphere. The
flow is axisymmetric around the axis of rotation so the tangen-
tial pressure gradient is zero while a radial pressure gradient
exists pushing towards the center of the sphere exists. In the
case of a golf ball a similar secondary flow is expected to be
created by the spin. Structures that form on the upper side
near the top of the golf ball are therefore convected by the sec-
ondary rotating flow around the back and towards the surface
of the golf ball while structures that form on the lower side
near the top of the golf ball are convected towards the front of
the ball. The effect of the convection by the secondary flow
is conveniently illustrated by comparing the mean spanwise
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Figure 5. Contours of instantaneous spanwise vorticity at
a plane passing through a) the upper side of the golf ball
spinning with the flow for the case with Re = 6.5× 104 and
α = 0.125 and b) the lower side the golf ball spinning against
the flow (inverted for comparison purposes) for the case with
Re = 4.5×104 and α = 0.125.

vorticity between Re = 4.5× 104 and Re = 6.5× 104 shown
in figure 5. For the Re = 4.5× 104 case the local Re on the
lower side of the golf ball is approximately 5.1× 104 while
for the Re = 6.5×104 case the local Reynolds number on the
upper side of the golf ball is approximately Re = 5.7× 104.
Since the local Reynolds numbers are very close to each other
one would expect the flow dynamics and mean vorticity to be
very similar too if the effects of convection by the spin were
not important. However the mean vorticity on the part of the
golf ball spinning with the flow curls more around the back of
the golf ball than on the part spinning against the flow. There-
fore convection by the secondary rotating flow is important
for the set of parameters chosen in the present study.

The subcritical case at Re = 4.5 × 104 is of particular
interest due to fact that net negative lift is generated. Fig-
ure 6 shows contours of the instantaneous spanwise vorticity
at two azimuthal planes passing through the upper and lower
sides of the golf ball. On the upper side the boundary layer
separates near the top of the golf ball forming a shear layer
that is seen to undergo a Kelvin-Helmholtz type instability.
A clear pair of vortices can be identified with a braid region
between them. The vortices appear to break down quickly as
they travel downstream. The behavior of the flow on the up-
per side is very similar to that at the subcritical regime. The
main difference as Re increases from 1.7× 104 to 4.5× 104

is that the location of the shear layer instability has moved
closer to although not yet at the surface of the golf ball. At the
lower side of the golf ball the shear layer becomes unstable
just above an individual dimple around θ = 100◦. The vor-
tices shed from the shear layer remain near the surface of the
golf ball and over a few dimples as they travel downstream.

A more accurate picture of the flow dynamics on both
sides of the golf ball near the separation point can be obtained
by looking at the profiles of the time-averaged tangential ve-

Figure 6. Contours of instantaneous spanwise vorticity at a
plane passing through a) the upper side and b) the lower side
of the golf ball. The solid black lines represent azimuthal arc
lines starting at θ = 90◦ and plotted every 5◦ for reference.
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Figure 7. Profiles of time averaged : (top) tangential velocity
relative to tangential spin velocity ω ·R; (bottom) turbulent
kinetic energy, at various locations for Re = 4.5 × 104 and
α = 0.126. Colors represent: –; lower side, –; upper side.

locity and turbulent kinetic energy k shown in figure 7. First
of all the relative free stream velocity and therefore the local
Reynolds number is higher on the lower side than on the upper
one which explains why the shear layer on the side spinning
against the flow becomes unstable earlier. In particular, peaks
in k above r/D = 0.5 start to form as early as θ ∼ 85◦ while
similar peaks on the upper side are not seen until θ ∼ 95◦.
It is important to note that on the upper side the shear layer
instability occurs after the flow separates while on the lower
side the shear layer becomes unstable first which energizes the
near wall flow and delays separation of the mean flow.

The time-averaged pressure coefficient Cp plotted in fig-
ure 8 shows that the main contribution to the drag comes from
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Figure 8. Time-averaged pressure coefficient Cp versus an-
gle θ from the front of the golf ball for Re = 4.5× 104 and
α = 0.125. Cp is plotted at a constant radius of 0.504D from
the center of the golf ball. Colors represent: –; lower side, –;
upper side.

the point of minimum Cp around θ = 80◦ and until the very
back of the golf ball. In particular the fact that vortical struc-
tures are shed and remain closer to the surface of the golf ball
on the lower side creates a lower pressure region near the wall
which delays the recovery of Cp with respect to the upper side
where vortical structures are shed farther away from the sur-
face of the golf ball.

CONCLUSIONS
Direct numerical simulations of a spinning golf ball have

been performed for a range of Reynolds number covering
the subcritical, critical and supercritical flow regimes. The
code used is a finite-difference incompressible Navier-Stokes
solver that can account for a moving body through the use of
an embedded boundary formulation. The code is efficiently
parallelized using a domain decomposition strategy enabling
computations with up to 1.1 billion grid points.

The results for drag and lift are in good agreement with
various experimental studies with similar golf balls. In par-
ticular the drag drops as Re increases from the subcritical
to the critical regime, and from the critical to the supercrit-
ical regime. The lift also exhibits the same qualitative fea-
tures observed in experiments, namely it is positive at Re =
1.7×104, Re = 6.5×104 and Re = 1.7×105 and negative at
Re = 4.5× 104. It was found that spin has two principal ef-
fects, first convection of the instantaneous flow structures and
mean flow in a clockwise direction and second an increase

of the local Re on the side spinning against the flow rela-
tive to that spinning with the flow. The second is especially
important in the Re = 4.5× 104 where the upper side of the
golf ball exhibits features of the subcritical regime while the
lower side exhibits features of the critical regime. In partic-
ular, on the upper side the boundary layer first separates and
the shear layer that forms becomes unstable shedding vortices
farther away from the wall while on the lower side the flow
locally separates over the dimples forming thin shear layers
that undergo instabilities and shed vortices which energy the
near wall flow and delay separation. The resulting pressure
distribution is smaller on the lower side around the region of
separation giving rise to negative lift. Although previous ex-
perimental work suggested the difference in local Re on ei-
ther side of the golf ball as the reason for negative lift this is
the first published work that provides an in depth quantitative
analysis of the mechanisms responsible for this phenomenon.
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