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ABSTRACT
Direct Numerical Simulation (DNS) is used to investi-

gate the interaction of a turbulent wake, created by an im-
pulsively accelerating axisymmetric self-propelled body, be-
low a free surface. The manoeuvring body is represented
by the combination of an immersed boundary method and a
body force. The Reynolds number based on either the diame-
ter of the body or the jet forcing intensity is relatively high
(O(1000)), corresponding to the fully turbulent case. The
vertical growth of the coherent structure behind the body is
restricted by the upper and lower stress-free layers and the
wake signatures are observed to penetrate to the free surface.

INTRODUCTION
Turbulent wakes behind a bluff body have been inves-

tigated both experimentally and numerically by many re-
searchers in order to obtain better understanding of their dy-
namics. However, almost all of the studies have focused on
wakes behind towed or self-propelled objects moving at con-
stant velocity. When a body is towed, it imparts momentum,
equal to the drag of the body, to the wake. In contrast, for a
constant speed self-propelled body, the drag is cancelled by
the thrust, leading to a zero-momentum wake.

In practice, a submerged vehicle leaves behind it a finite-
momentum wake when it accelerates or changes direction, and
a momentumless wake only when it moves at constant speed
(Tennekes & Lumley, 1972). A manoeuvring-body wake is
of interest because it can introduce dynamics that are absent
from the constant-velocity case, especially when the wake is
influenced by stable stratification or by the presence of an ad-
jacent free surface. For example, dipole vortices produced by
the interaction of manoeuvring-body wakes with either sta-
ble background density stratification or a free surface can be
observed in geophysical flows (e.g. Ahlnäset al., 1987; Sous
et al., 2004; Voropayevet al., 2007). The practical importance
of the dipole vortices is that they are very large, compared to
the size of the body, and long-lived. Voropayevet al. (1999)
estimate that a coherent kilometre-scale vortical structure that
persists for the order of days can be observed behind a typical
submarine manoeuvre in the ocean. Moreover, due to the self-
propelling motion of the dipole vortex, it can transport mass,

momentum and other scalar properties such as heat and salt.

Generally, when momentum is imparted into a flow, it
leads to an isolated region which possesses a high concen-
tration of vorticity and a non-zero net linear momentum, of-
ten referred to as a turbulent blob. In an unbounded homo-
geneous fluid, the turbulent blob is fully three-dimensional.
While the blob is propagating away from its origin, its verti-
cal and horizontal sizes increase due to the entrainment pro-
cess of the surrounding fluid and the blob eventually trans-
forms into a toroidal vortical structure (Maxworthy, 1977). In
contrast, when the vertical growth of the blob is confined (e.g.
by buoyancy force or flow geometry), only its horizontal size
can expand due to the lateral entrainment, which leads to a
quasi-planar counter-rotating vortex.

The formation and evolution of vortex dipoles were
widely studied in a linearly stratified fluid (Voropayevet al.,
1991; Fĺor & Van Heijst, 1994; Fĺor et al., 1995) and have
recently been extended to the case of shallow water above a
solid surface, for which the vertical size of a turbulent blob
is suppressed by the flow geometry. It was found from the
experimental study of Souset al. (2004) that the condition
in which the momentum disturbance can coherently penetrate
upward and produce its signature at the free surface depends
on theconfinement number C= J1/2∆t f /h2, whereJ is the
forcing intensity,h is the depth of the fluid domain, and∆t f is
the forcing interval. The formation and evolution of the vor-
tex dipoles formed in shallow water are similar to those in a
stratified fluid except that three-dimensional small scale tur-
bulence appears at the dipole front. Souset al. (2004) stated
that the vertical motion at the frontal region might appear due
to the effect of bottom friction.

Voropayevet al.(2007) performed experiments in a two-
layer fluid, where unstratified water was placed above a layer
of salt water, in order to reduce the effect of the bottom sur-
face. Their flow geometry is similar to the real upper ocean
in which denser water rests underneath a nominally constant
density gradient (depth 50−100 m). They investigated the in-
tensity of the surface signature in terms of thecontrast num-
ber Cn= ω∗

z/〈ωz〉, defined as the ratio of the maximum ver-
tical vorticity ω∗

z of the dipole vortex to the root-mean-square
value of the background vertical vorticity〈ωz〉, and also de-
fined a relationship between the confinement number and the
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intensity of the surface signature.
The aim of this work is to investigate the evolution of the

impulsively submerged momentum disturbance in the small-
scale upper ocean, which is mimicked by stress-free top and
bottom layers. Two different types of momentum sources are
chosen: (1) an impulsive jet and (2) an accelerating motion of
a self-propelled body.

NUMERICAL APPROACH
The details of the code used to simulate the evolution of

a turbulent blob created by either an impulsive jet or an im-
pulsively accelerating axisymmetric self-propelled body are
described below.

We make use of the continuity and the incompressible
Navier-Stokes equations in a Cartesian coordinate systemxi ,
written in Cartesian tensor notation as

∂ui

∂xi
= 0, (1)

∂ui

∂ t
+u j

∂ui

∂x j
=−

1
ρ

∂ p
∂xi

+ν
∂ 2ui

∂x j ∂x j
+ fi , (2)

whereui represents the velocities,t denotes the time,p is
the pressure,ρ and ν are respectively the fluid density and
kinematic viscosity (which are taken to be constant during
the calculations), andfi is the external body forces which
is split into boundary forces due to the virtual body surface
B = (Bx,By,Bz) and thrustT = (Tx,0,0).

The Navier-Stokes equations are advanced in time with
the second-order explicit Adams-Bashforth scheme. A
second-order central finite-difference scheme is used to dis-
cretize the spatial derivatives on a staggered grid, where the
velocity components are defined at the cell faces while the
scalar quantity (pressure) is located in the cell centre (Archer
et al., 2008). The continuity equation is imposed via a stan-
dard pressure-correction method. The resulting Poison equa-
tion for the pressure is solved using a multigrid method.

In order to embed an axisymmetric body into a compu-
tational grid, an immersed boundary technique is employed.
The boundary forcesBi , which enforce the no-slip boundary
condition on the embedded body surface, are calculated di-
rectly at the Lagrangian (virtual surface) points via a propor-
tional controller with the proportional gain related to the time
step size∆t, in such a way that maximises gain while main-
taining stability. The boundary forces are then transformed
into the Eulerian (computational) points by using the three-
point discrete delta function proposed by Romaet al. (1999).

We emulate the body manoeuvre by imposing a thrust,
which is modelled as a jet from the body, at its rear. The
intensity of the thrust is estimated as

JT = u jets
(

u jet −U(t)
)

, (3)

whereu jet is the jet velocity,s is the area of the nozzle, and
U(t) is the velocity of the body. A three-dimensional Gaus-
sian function is used to distribute the intensity of the thrust to

the computational grids as

Tx =
JT

(

δ 2π
)3/2

exp

[

−
r2

δ 2

]

, (4)

wherer2 = (x−xo)
2+(y−yo)

2+(z−zo)
2, δ is the Gaussian

semi-width, andxo, yo, zo are the centre of the thrust. The ve-
locity of the body can be found via the balance of momentum
between a manoeuvring object of massM and the total force
acting on the fluid, with

(1+k)M
dU
dt

= ρ (JT −JD) , (5)

whereM = ρV, V is the volume of the body,k is the virtual
mass coefficient, andJD is the intensity of the drag, which
can be calculated from the volume integral of the streamwise
boundary forceBx. An explicit Euler method is used to update
U(t) at every time step.

In order to simulate the motion of a manoeuvring body,
inflow and outflow boundary conditions are employed in the
streamwise (x) direction. Additionally, we perform the cal-
culation in an unsteady moving reference frame in order to
maintain the location of the body within the computational
box. The uniform inflow velocity is thus set equal to the ve-
locity of the body and is updated every time step. The body
is placed midway between a thermocline and a free surface.
Hence stress-free boundary conditions are specified at the bot-
tom as an idealisation of the top of a region of a stratified fluid.
Periodic conditions are specified in the lateral (y) direction.

When the code is used to study the evolution of an im-
pulsive jet, the boundary forces are turned off and the inflow
velocity is set to zero.

RESULTS
In this section we present results from wakes created by

an external body force. First, a two-dimensional (2D) momen-
tumless wake is considered to validate the concept of a force
doublet. Second, the evolution of the momentum disturbance,
created by an impulsive jet, in an unbounded domain and near
a free surface is studied. Finally, early results from a turbulent
wake behind an impulsively accelerating self-propelled body
are presented.

2D Zero-momentum wakes
We validated the concept of a force doublet (drag of

the body plus thrust) by performing a 2D simulation of zero-
momentum wakes. The results are compared with both an an-
alytical solution (Afanasyev, 2004) and experimental results
of Afanasyev & Korabel (2006), who used an electromagnetic
force to create zero-momentum wakes in a stratified fluid. For
the validation, we used a Gaussian function to distribute the
thrust and drag forces. The drag is applied slightly in front
of the thrust. Moreover, the thrust and drag forces are de-
fined to be of equal magnitude to generate a momentumless
wake. The 2D domain size was 240×80 (in units of 2δ ) with
3072×1024 grid points in streamwise and vertical directions
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respectively. Figure 1a displays the distribution of the stream-
wise velocity along the axis of the flow forΠa = J̃/aU2

∞ = 1
andΠν = J̃/νU∞ = 50, whereJ̃ is the 2D forcing intensity
(force per unit area),a is the forcing area and is equal to
the Gaussian semi-width, andU∞ is the free-stream veloc-
ity, compared with an analytical solution (Afanasyev, 2004).
Away from the expected near-field deviation (due to compar-
ing finite versus singular dipoles) the agreement is satisfac-
tory. For a quantitative comparison with the laboratory experi-
ment (Afanasyev & Korabel, 2006), the shedding frequencyfs
was measured by performing a Fourier transform of the mean
value of vorticity atx/2δ = 12.5. The nondimensional fre-
quency, Strouhal numberSt= fsJ̃/U3

∞, versusΠa is displayed
in figure 1b, showing that the numerical results are in good
agreement with the experimental data (Afanasyev & Korabel,
2006). The vorticity distribution forΠa = 11 andΠν = 230
is illustrated in figure 2. The vortex street in this simulation is
visually similar to the mushroom-like vortex sheet observed
in Afanasyev & Korabel’s (2006) experiment.
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Figure 1. (a) Distribution of the streamwise velocity along
the axis of 2D zero-momentum wake:Πa = 1 andΠν = 50.
(b) Strouhal number versusΠa.
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Figure 2. Contours of vorticity of 2D momentumless wake:
Πa = 11.0 andΠν = 230. Vorticity varies from−0.2 | ωz |max

to 0.2 | ωz |max.

Table 1. Jet run parameters

Case
Domain size (in

units of 2δ )
Nx×Ny×Nz

Unbounded
domain

−206 x6 100,
−166 y6 16,
−166 z6 16

960×256×256

Free surface
−206 x6 100,
−326 y6 32,
−26 z6 2

960×512×32

Jet
We investigated the evolution and formation of a turbu-

lent blob generated by an impulsive jet as a benchmark test
case. The jet acts over a short time interval∆t f with a forc-
ing intensityJT . The simulations are carried out for a jet
Reynolds number of 2000 based on the forcing intensity; i.e.

Rej = J1/2
T /ν . The jet intensity is distributed to the computa-

tional grid via the 3D Gaussian function. To study the effect
of a free surface, we consider two distinct canonical flows: a
jet in an unbounded domain and a jet adjacent to a free sur-
face. The number of grid cells and the domain size for both
cases are documented in table 1. For the case of a jet interact-
ing with a free surface, the forcing interval and the height of
the computational domain were selected to correspond to the
confinement numberC of 2, at which the vortex dipole has
been observed at the free surface (Voropayevet al., 2007).

The transient evolution of the unbounded jet and the jet
adjacent to a free surface is investigated using the second in-
variant of the velocity gradient tensor II (for details see Jeong
& Hussain, 1995) and is shown in figure 3 and figure 4, re-
spectively. The evolution of the momentum disturbance gen-
erated by an impulsive jet will be described below.

After the relatively strong jet
(

Rej ≫ 1
)

is imparted into
the fluid, it generates a turbulent jet with an azimuthal vortic-
ity in the frontal region. The frontal region propagates away
from its origin with propagation speedUD, which is two times
less than the local fluid velocity behind the front (Stern &
Voropayev, 1984). Thus the turbulent jet enters into the vor-
ticity front. At this stage, the ambient fluid entrains into the
frontal region resulting in increasing the mass flux. Since the
vertical growth of the turbulent blob is not restricted, the verti-
cal and horizontal sizes of the blob increases while decreasing
the propagation speed to conserve momentum. With time the
turbulent blob transforms into a toroidal vortex (figure 3c).

When the vertical growth of the turbulent blob is sup-
pressed by the stress-free layers, the frontal region can only
expand horizontally due to the lateral entrainment (figure 4).
A quasi-two-dimensional counter-rotating vortical structure is
eventually formed at the late time.

The volume-integrated kinetic energyK of both cases is
displayed in figure 5. The kinetic energy of the jet in an un-
bounded domain decreases faster than the jet suppressed by
a free surface. This suggests that the toroidal vortex decays
more rapidly than the vortex dipole.

Figure 9 illustrates the penetration of a momentum dis-
turbance caused by an impulsive jet, visible at the free sur-
face. Initially the concentrated momentum disturbance is ob-
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Figure 3. Top view of vortical structure of unbounded jet
with level II∆t2

f =−0.008: (a)t/∆t f = 2.5, (b) t/∆t f = 12.5,
(c) t/∆t f = 62.5.

served without the formation of a vortex dipole (figure 9a).
At this stage the intensity of the vertical vorticity at the free
surfaceω∗

z reaches its maximum (figure 6). With time the
blob propagates away from its origin while increasing its hori-
zontal size and decreasing its propagation speed, transforming
into a quasi-planar dipole. During the process of dipole for-
mation, the intensity of the vertical vorticity reduces ast−1.
The temporal evolution of the dipole propagation velocityUD
and the dipole radiusR are showed in figures 7 and 8, re-
spectively. It is found that the dipole speed decreases with
time asUD ∼ t−2/3, whilst its size increases asR∼ t1/3. The
power laws of the dipole in this simulation are same as those in
the previous measurements in a linearly stratified fluid (Voro-
payevet al., 1991) and in a shallow layer (Souset al., 2004;
Voropayevet al., 2007).

Manoeuvring-body wake
We selected a sphere with diameterD as a manoeuvring

body. The Reynolds number based on the diameter and the
terminal velocity of the sphere isReD =UD/ν = 1170. The
simulation was performed in the domain size of−25D 6 x6
75D, −10D 6 y 6 10D and−1.25D 6 z6 1.25D, with the
number of grid cells 1280×256×32.

At t = 0, the body accelerates from rest. At this stage,
the thrust is greater than the drag leading to a momentum flux
F transported to the fluid. After some time the body reaches
its terminal speed and then moves with this constant speed.
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Figure 4. Top view of vortical structure of jet interacting
with free surface with level II∆t2

f = −0.008: (a)t/∆t f = 2.5,
(b) t/∆t f = 12.5, (c) t/∆t f = 62.5.
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Figure 9. Contours of vorticity at free surface showing the
penetration of the momentum source created by an impulsive
jet: (a)t/∆t f = 2.5, (b)t/∆t f = 12.5, (c)t/∆t f = 75. Vorticity
varies from−0.2 | ωz |max to 0.2 | ωz |max.
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Figure 10. Histories of momentum flux, thrust, drag and
speed of the body.

Histories of the momentum flux, the thrust, the drag and the
velocity of the body are displayed in figure 10.

The second invariant of the velocity gradient tensor is
used to visualise the vortical structure of the manoeuvring-
body wake, as displayed in figure 11. It is found that a large-
scale vortical structure, resulted from the acceleration of the
body, appears in the late wake. The horizontal size of this vor-
tical structure increases with time, due to lateral entrainment,
whilst the vertical growth is restricted by the top and bottom
free-slip walls. When the body is moving at constant speed,
a momentumless wake is observed in the near field region.
The zero-momentum wake decays very quickly without the
formation of any coherent vortical structures.

Figure 12 shows the evolution of the vortical structure at
the free surface. At early time, the momentum disturbance
penetrates upward and produces its signature at the free sur-
face. With time the horizontal eddy shows a gradual growth
in size while it is propagating away from the body. It can be
seen that the evolution of the momentum disturbance, created
by an accelerating self-propelled body, at the beginning stage
is similar to that generated by an impulsive jet (as shown in
figure 9). Unfortunately, we could not observe a vortex dipole
at the far wake presumably because the length of the computa-
tional domain in the streamwise direction is not long enough
to capture the entire process of dipole formation. It can be
seen from figure 4 that the jet-induced dipole is formed after
about 60 jet duration times and the duration of acceleration for
this case is around 15D/U (figure 10). Thus the time of eddy
formation is of order 60×15D/U = 900D/U , corresponding
to a domain length of approximately 1000D – i.e. roughly 13
times the current size.

SUMMARY
The formation and evolution of the momentum distur-

bance produced by both an impulsive jet and accelerating self-
propelled body have been examined using DNS. It is found
that when the momentum source is suppressed by the stress-
free top and bottom layers, a quasi-planar counter-rotating
structure is formed. The vortex dipole persists for a longer
time compared to a typical toroidal vortex. Moreover, the
characteristics of the dipole vortices induced by the presence
of vertical confinement are similar to those in a stratified fluid.
Future work will investigate how the impulsively submerged
momentum disturbances are affected by and interact with a
lower stratified layer.
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Vorticity varies from -1.5 to 1.5.
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