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ABSTRACT
Topological aspects of the turbulent wake of a finite,

surface-mounted, square-cross-section cylinder ofh/d = 4
are addressed by decomposing the velocity field into a quasi-
periodic coherent part and deviations therefrom as unre-
solved incoherent fluctuations. The three-dimensional large
scale structure is educed through a reconstruction of phase-
averaged PIVx-y and x-z measurement planes using the si-
multaneously sampled surface pressure difference on either
side of the obstacle as a phase reference. A topological model
for the vortex structure is educed and an explanation for mean
streamwise wake vorticity is given in terms of the connec-
tions between initially vertical structures shed alternately from
either side of the obstacle, rather than ‘tip’ vortex structures
generated at the obstacle free-end as proposed in other stud-
ies. The coherent structure educed accounts for a significant
portion of the fluctuating energy in the wake. The turbulent
field is analyzed by finding Lagrangian straining structures
that form by induction of the vorticity field, and these struc-
tures are related to the energy transfer from the base phase-
averaged flow.

INTRODUCTION
Turbulent finite bluff body wakes contain a very signif-

icant amount of organization at the energetic large scales in
the form of quasi-periodic vortex shedding. The large scale
vortices are important as they govern the organized mixing of
passive tracers in the wake by induction processes. In the case
of pollutant dispersion in the wakes of buildings and stacks,
this is particularly important as the streamwise vorticity field
towards the free-end of these structures tends to induce flow
down toward the ground. The prediction and control of wake
transport processes requires an understanding of the coherent
vortex structures due to the fundamental role they play in mix-
ing and dispersion.

In the wake of finite surface-mounted cylinders the ex-
istence of mean streamwise vorticity has been observed for
some time (Etzold and Fiedler, 1976; Kawamura et al., 1984;
Mason and Morton, 1987). Recent studies have shown dra-
matic changes occuring in the mean streamwise vorticity dis-
tribution as the aspect ratio,h/d, is varied (h is the height and

d the width of the cylinder). Sumner et al. (2004) and Wang
and Zhou (2009), respectively, showed that a change occurs
betweenh/d = 3 and 5 for circular- and square-cross-section
cylinders. Above this critical value, a quadrupole mean
streamwise vorticity distribution occurs well downstream of
the recirculation zone (two sets of counter-rotating vortices at
the top and bottom of the wake) while a dipole distribution oc-
curs for aspect ratios below the critical value. Basic questions
about whether the mean streamwise vorticity is due to steady
(independently existing) streamwise structures originating at
the free-end of the obstacle as described in Etzold and Fiedler
(1976) or are a result of the unsteady large scale vortex struc-
tures have been expressed (Sumner et al., 2004) but still not
resolved. In a forthcoming article, Bourgeois et al. (2011)
have shown that the resulting mean vorticity field has little to
do with streamwise structures generated at the leading corners
of the obstacle, but rather is an artefact of the averaging of the
convecting and deforming coherent structures shed from the
obstacle. Differences in the topology of shed structures has
an impact on the turbulence field, and it is shown that the in-
terpretation of the streamwise vorticity being due to the three-
dimensional large scale structures better explains the turbu-
lence fluctuating field observed. Topological arguments about
the source of turbulence production being convective saddle-
points (Cantwell and Coles, 1983; Hussain, 1986) are general-
ized to three-dimensions using Lagrangian coherent structures
concepts.

A detailed experimental study of a finite square-cross-
section cylinder was conducted in order to directly educe the
three-dimensional large scale vortex structure and study the
interaction of the large scale structure on the turbulent field.
The large scale coherent field is calculated by phase averag-
ing (Hussain, 1983) and straining structures of the phase aver-
aged field are found using ridges of the finite time Lyapunov
exponent field (Haller, 2001; Shadden et al., 2005).

EXPERIMENTAL SETUP
Measurements were conducted in an open-test-section

suction wind tunnel, shown schematically in Fig. 1. A base
turbulent boundary layer is generated using a sharp leading
edge flat plate. In the absence of the obstacle, the bound-
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ary layer thickness at the obstacle mounting location isδ/h
= 0.18. Free-stream test conditions wereU∞ = 15 m/s, cor-
responding to a Reynolds numberRe = U∞d/ν = 12,000,
and 0.8% turbulence intensity. A Strouhal number ofSt =
f d/U∞ = 0.100± 0.003 (f the vortex shedding frequency)
was found for theh/d = 4 square-cross-section cylinder.
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Figure 1. Schematic of experimental setup of the working
section of the wind tunnel (not to scale) with the nomenclature
and coordinate system definition shown.

A grid of several horizontal (x-y) and vertical (x-z) planes
with a spacing ofd/4 or less were measured using a LaVision
FlowMaster high-frame-rate particle image velocimetry (PIV)
system. These planar measurements are used to reconstruct
the phase averaged three dimensional flow. A pulse separation
of 50µs was used and frame rates of 500 to 1000Hz captured
4 to 8 data points per shedding cycle.

The experimental study of unsteady complex turbulent
flows suffers from a key difficulty: the flow field is inherently
three-dimensional but the large number of data points needed
to resolve the coherent structures of interest is impractical to
measure simultaneously. We first show that the most ener-
getic structures are quasi-periodic and then we take advantage
of the periodicity in order to reconstruct in three-dimensions
a synchronized phase averaged field. In order to have a con-
sistent phase reference to synchronize all measurements, the
fluctuating surface pressure atz/h = 0.25 on either side of
the cylinder is measured simultaneously and subsequently an-
alyzed to find the instantaneous phase of the shedding cycle
for each velocity field. The sampling rate for the reference
surface pressure is 10.24 kHz and is sychronized with the
PIV measurements using a TTL trigger. The shedding pe-
riod is discretized into twenty equal phase steps,φn = n∆φ ,
(∆φ = π/10) whereφ(t) ∈ [0,2π). A double decomposition
ensemble average (Hussain, 1983) conditional upon the phase
falling within the intervalφn −∆φ/2≤ φn < φn +∆φ/2 is un-
dertaken for each phase step.

PHASE AVERAGING FOR COHERENT STRUC-
TURE EDUCTION

The primary energetic eddies in the finite body wake
are large scale and are shed from the body quasi-periodically.
This can be verified, in a spatially integrated sense, by com-
puting the proper orthogonal decomposition (POD) of the un-
steady field (Lumley, 1967; Holmes et al., 1996) for a given

horizontal PIV plane (note that thev′ fluctuations are largest
in the wake, and so a horizontal plane is an appropriate choice
to study the most energetic structures),

u(x, t)≃ u(x)+
N

∑
k=1

a(k)(t)u(k)(x) (1)

whereu(x) is the time averaged flow,a(k)(t) are the modal
Fourier coefficients, andu(k)(x) are the spatial eigenmodes of
the fluctuations. Due to the optimality of the decomposition
in terms of energy, the best two-mode (N = 2) approximation
of the unsteady field is given by the first two POD modes.
For these modes, the coefficientsa(1)(t) anda(2)(t) are nearly
periodic and form a sine-cosine pair (Fig. 2). The fact that the
most energetic structures contributing to the fluctuations are
quasi-periodic allows us to synchronize phase averaged planar
fields using a consistent reference phase of the shedding event
associated with each measured PIV vector field.
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Figure 2. Coefficientsa(1)(t) and a(2)(t) of the POD de-
composition of 1000 PIV measurements in the planez/h =

0.3125. The circle defined by the mean amplitude is shown.

The phase of the fluctuating pressure difference on either
side of the obstacle atz/h = 0.25 is used as a consistent refer-
ence phase. Figure 3 shows the fluctuating pressure difference
and the phase that was determined by interpolation over peak-
to-peak intervals in the signal. As the frequency of interest
is the vortex shedding frequency, the high-frequency content
of the signal was removed using a truncated Fourier series re-
construction with 2000 modes from a 100,000 point sample.
This resolves up to approximately 200 Hz, nearly twice the
shedding frequency of 120Hz.

The analysis procedes by decomposing the velocity field
into a base flow which is periodic and any deviations there-
from are considered incoherent turbulent fluctuations.

u(x, t) = 〈u〉(x,φ(t))+u′′(x, t) (2)

Unlike the Reynolds decomposition whereu(x) is taken
as the base flow andu′(x, t) the fluctuations, now the base flow
which provides energy to the turbulent fluctuations,u′′(x, t),
is the phase averaged field,〈u〉(x,φ(t)), and the energy ex-
change occurs through the turbulence production term,Pk′′ =
〈

u′′i u′′j

〉

∂ 〈ui〉/∂x j. We also define the Reynolds decom-

position of the phase averaged field,〈u〉(x,φ(t)) = u(x) +
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Figure 3. Determination of phase from the pressure differ-
ence ayz/h = 0.25 on either side face of the obstacle.

ũ(x,φ(t)) where the total Reynolds averaged fluctuations are
therefore a combination of the coherent and incoherent con-
tributions,u′(x, t) = ũ(x,φ(t))+u′′(x, t).

STRAINING COHERENT STRUCTURES
Turbulence production mechanisms transferring energy

between the coherent and incoherent fields are commonly at-
tributed to vortex stretching. As such, the process is inherently
related to relative Lagrangian motion between fluid particles
convected by the flow, in this instance the phase averaged
velocity field, 〈u〉. Lagrangian coherent structures concepts,
therefore, can be used to help distinguish regions of impor-
tance for the turbulence transport and production processes in
the unsteady phase averaged field. In two-dimensional flows,
high production has been ascribed to stretching of incoher-
ent vortices in the neighbourhood of convective frame saddle-
points tangent to the unstable manifold by Cantwell and Coles
(1983) for the circular cylinder wake and by Hussain (1986)
for the mixing layer. Convective frame saddle-point argu-
ments neglect unsteadiness, instead assuming a frozen trans-
lating velocity field. Lagrangian coherent straining structures
are able to properly account for the true unsteady relative mo-
tion of particles being advected, providing a more accurate
means of determining high-production regions.

The phase averaged vortex structure induces attracting
and repelling manifolds. In time-invariant fields, these mani-
folds would correspond to unstable and stable manifolds, re-
spectively. Stretching of vortices in the incoherent fluctuat-
ing field by the manifolds leads to amplification of vorticity,
and transfer of energy from large to small scales. Ridges of
the finite time Lyapunov exponent (FTLE) field,σT

t0 — which
measures how much particles separate from one another over
a given finite time interval — provide a means to determine
these manifolds (Haller, 2001; Shadden et al., 2005), where

σT
t0 (x) =

1
|T |

ln
√

λmax(∆) (3)

λmax(∆) is the maximum eigenvalue of the Cauchy-
Green deformation tensor,∆, computed for the timet0 over
an integration timeT for the flow mapφ t0+T

t0 . The Cauchy-
Green deformation tensor is defined as

∆ =
dφ t0+T

t0 (x)

dx

∗
dφ t0+T

t0 (x)

dx
(4)

In order to evaluate the FTLE numerically, a grid of parti-
cles is advected using a fourth-order Runge-Kutta method us-
ing spatial trilinear interpolation of the flow data. Gradients of
the flow map are obtained by second-order finite differencing
for the evaluation of the Cauchy-Green deformation tensor.

Forward time integration of particles yields repelling
manifolds in the FTLE field while backward time integration
yields attracting manifolds (Fig. 4). Both types of manifolds
determine the general tendencies of the phase averaged flow
to stretch incoherent vorticity. Fluctuating vortex lines trans-
verse to repelling surfaces are stretched normal to the surface,
while fluctuating vortex lines parallel to attracting surfaces
get stretched tangent to the surface. In either case vorticity is
amplified and fluctuating energy transferred to smaller scales.
The attracting and repelling manifolds also provide trapping
regions for turbulent fluid because there is negligible mass
flux across ridges of the FTLE field (Shadden et al., 2005). Al-
though turbulent transport by the fluctuations still provides a
diffusion-type mechanism for turbulence quantities across the
Lagrangian manifolds, they do provide a convective transport
barrier, yielding important insights into the mixing induced by
the large scale structures.

Repelling surfaces: Attracting surfaces:

Figure 4. Attracting and repelling surfaces and their stretch-
ing effect on material lines connecting adjacent fluid particles.

RESULTS
The phase averaged velocity and Reynolds stress fields

were reconstructed in 3D by trilinear interpolation of the PIV
data. The results show that initially, the side-face separated
shear layers roll-up along the height of the obstacle (see the
vorticity plots in Fig. 5 and the identified vortex structures
in Fig. 6), forming tubular vortices that subsequently deform
three-dimensionally as they convect downstream.

The phase averaged vortex structure can be identified us-
ing standard Galilean invariant methods since all components
of the deformation tensor,∂ 〈ui〉/∂x j, are known from the
three-dimensional reconstruction. Figure 6 shows the vortex
structure identified by theλ2-criterion (Jeong and Hussain,
1995) for the first phase instant,φ1 = π/10. After formation,
the top portion of the rolled-up vortex deforms and is bent
backwards by the induction of the free-end separated vortic-
ity. The shed structure once fully formed shows a near ver-
tical orientation in the principal core (terminology as per the
sketches in Fig. 6) near the ground plate, and a branching out-
wards horizontally where the vortex structures interact with
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Figure 5. Positive time (grey lines) and negative time FTLE
contours (black lines) shown withω3d/U∞ (colour contours)
at φ1 whereωi = εi jk∂ 〈uk〉/∂x j.

the boundary layer vorticity. Downstream of the formation
region, highly inclined (nearly streamwise) connector strands
cross from the top of the principal core of one structure to the
bottom of the subsequently shed principal core on the oppo-
site side of the wake, resulting in a highly three-dimensional
vorticity and induced strain field.

Figure 6. Isosurface of the phase averagedλ2 = −0.02
coloured by the vorticity magnitude,‖ω‖ at φ1.

The time averaged wake is found to be typical of lower
aspect ratio wakes in terms of streamwise vortex structure
(Sumner et al., 2004; Wang and Zhou, 2009). Theλ2-criterion
can be again applied to identify the mean vortex structure as in
Fig. 7 (with an isosurfaceλ2 =−0.02), showing an arch vor-
tex with counter-rotating legs recirculating flow in the base re-
gion of the obstacle, and a nearly horizontal hairpin structure
whose streamwise extensions induce downwash alongy/d=0
at the top of the wake. Although unclear from previous stud-
ies, the phase averaged field demonstrates that mean stream-
wise vortex structures arise due to the time averaging of the
streamwise connector strands of the half-loop shed vortices.
Only one sense of streamwise vorticity is felt at the top of
the wake on either side ofy/d = 0 resulting upon averaging
in a counter-rotating vortex pair due to the connection of the
top of the principal core across the wake to the bottom of the
opposing successively shed structure.

The phase averaged field is better able to localize and
explain the transport and energy transfer occuring between
the deterministic large scale coherent vortices and the smaller
scale randomly occuring vortices. The decomposition of the
velocity field results in a split of the total Reynolds stress
and turbulent kinetic energy fields into coherent and inco-
herent components. That is, for the phase averaged field,
〈

u′iu
′
j

〉

= ũiũ j +
〈

u′′i u′′j

〉

and for the time averaged field,

Figure 7. Isosurface of the time averaged fieldλ2 = −0.02
coloured by the vorticity magnitude,‖Ω‖.

u′iu
′
j = ũiũ j + u′′i u′′j where the first and second terms are the

coherent and incoherent contributions, respectively. The co-
herent fluctuating field is resolved and can be explained in
terms of induction by the vorticity field and the resulting mean
flow. The incoherent field, however, is unresolved, but the en-
ergy transfer from the coherent to the incoherent field occurs
through the production term,Pk′′ , which is a non-linear inter-
action of the two fields. As Cantwell and Coles (1983) and
Hussain (1986) have done for 2D flows, we seek the corre-
spondence between the incoherent turbulence production and
the topology of the strain field induced by the coherent vor-
tices to better understand energy transfer in the 3D wake.

To do so, the Lagrangian straining structures in the wake
are sought by calculating the FTLE field with time parameters
(non-dimensionalized byd/U∞) t0 = φ1/2πSt andT = ±10.
The only repelling surfaces found for the〈u〉 field are in the
formation region (Fig. 8, left). Attracting surfaces are much
more abundant in the wake (Fig. 8, right)

Attracting surfacesRepelling surfaces

Figure 8. Positive time (left,σT
t0 = 0.150) and negative time

(right, σT
t0 = 0.185) FTLE iso-surfaces.

Iso-surfaces of the highest values of production do in fact
correspond to the attracting surfaces, as shown in Fig. 9. The
planes shown arez/h = 0.25 which cuts through the verti-
cal principal core and the planez/h = 0.50 which is the un-
derside of a streamwise connector strand crossingy = 0 to
the principal core atx/d = 7 andy/d = −2. The topology
of the stretching surface induced by the vortices leads to in-
creased straining due to the presence of the streamwise con-
nector strands in the finite three-dimensional wake and leads
to increased production at regions slightly below the stream-
wise portion of the strand at the top of the wake (Fig. 9,
right). Note that in the calculation, all terms are accounted

for in Pk′′ except 〈v′′w′′〉
(

∂ 〈v〉
∂ z +

∂ 〈w〉
∂y

)

since 〈v′′w′′〉 was
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not measured. The Cauchy-Schwarz inequality,|〈v′′w′′〉| ≤
(〈

v′′2
〉〈

w′′2
〉)1/2

, bounds this contribution, and it is estimated
that the resulting production will not differ by more than 5%
by including this term.
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Figure 9. Positive time (grey lines) and negative time FTLE
contours (black lines) shown with the production,Pk′′ (colour
contours) atφ1.

Before describing the coherent/incoherent split of the
Reynolds stresses, the resolved coherent fluctuations— ˜u, ṽ,
andw̃ are discussed (Fig. 10). In a uniform time-averaged ve-
locity field, fluctuations are simply related to the induction of
instantaneously passing vortices. In a non-uniform flow such
as the wake, the induction of vortex structures is partly ac-
counted for by the mean field, so the fluctuating field around
a vortex structure is not obvious from the vorticity field alone.
For the coherent vortex structures educed, large ˜u fluctuations
occur on the outer edges of the wake. The mean velocity at
these locations is not as high as the induced velocity by the
passing vortices, and so positive extrema of ˜u arise in the pres-
ence of a passing vortex while negative extrema arise in the
absence of a vortex. The amplitude of the extrema of ˜u de-
crease with streamwise location as the vortex strength decays.
In the centre of the wake, fluctuation amplitudes of ˜u are very
small despite passing structures of opposite sign. Here, the
backflow induced by Biot-Savart induction is approximately
constant no matter the phase of the cycle, and thus the induc-
tion becomes part of the mean. The ˜v fluctuation, on the other
hand, is high on the up- and downstream sides of each co-
herent vortex, and is highest alongy = 0 directly in between
the vortices of either sign ofω3 where the sign of the induced
ṽ changes with the passage of each differently signed vortex.
Thew̃ fluctuation behaves as an almost purely inductive effect
since outside the formation region, the mean vertical velocity
is quite small. The induced velocity results in maxima and
minima ofw̃ on the exterior and interior sides, respectively, of
the connector strands.

The coherent, ˜uiũ j, and incoherent,
〈

u′′i u′′j

〉

, components

of three of the phase averaged total Reynolds stress, are shown
in Figs. 11 and 12 (other Reynolds stresses are not shown due
to space limitations). There is a strong dominance of the re-
solved ˜v2 (peaks of ˜v2 are typically about 5 to 20 times higher
than

〈

v′′2
〉

) andũṽ (peaks are about 5 times larger) over the re-
spective incoherent components. To a lesser extent, the same
is true of ũw̃ as well (peaks are about 3 times larger). As
with ṽ, theṽ2 stress is high at locations between two opposite
signed vortices. The correlation between the ˜u andṽ compo-
nents gives rise to patches of one sign of ˜uṽ only on either side
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Figure 10. λ2 = −0.05 (black lines) shown with ˜ui/U∞
(colour contours) atφ1.

of the wake that corresponds to the same sign as the vorticity
in the separated shear layer. There is not a particularly good
correlation between ˜u andw̃ (ũw̃ is about an order of magni-
tude lower than the other components), and thus the ˜uw̃ is of
less importance than the other Reynolds stresses.

Since the total separated vorticity is not contained within
the large-scale structures, subsequent instability and roll-up
of smaller-scale structures occurs, which is enhanced by the
straining field of the phase-averaged flow. This gives rise to
additional small scale structures of the same rotational sense
as the large on either side of the wake, as can be seen in the
contours of〈u′′v′′〉 (Fig. 12). One can expect the fluctuat-
ing fields around the small scale structures to be similar to
those around the large, but upon averaging, the distributions
are smeared out since the time scales of the primary vortex
shedding instability and those of the small scale instabilities
are uncorrelated. The incoherent stresses in Fig. 12 are con-
sistent with only a small flux (associated with diffusive turbu-
lent transport) across ridges of the FTLE field, and thus the
majority of the turbulent kinetic energy gets trapped by the
manifolds. Turbulent energy is gathered by the large scale
structure into vortex cores, as is apparent for the localized
high levels of ˜v2 in the trapping regions of the vortices (Fig.
12). As mentioned previously, in the FTLE ridge just below
the regions of highest streamwise vorticity, very high coher-
ent strain rates are found, corresponding to peaks of produc-
tion of incoherent turbulence (Fig. 9). This production term
is primarily due to the〈u′′v′′〉 term which is high along the
attractive manifold ridges of the FTLE.

CONCLUDING REMARKS
This study resolves the phase-averaged topology of the

shed vortices in the wake of a finite wall-mounted body. The
phase-averaged decomposition splits Reynolds stresses and
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Figure 11. λ2 = −0.05 (black lines) shown with ˜uiũ j/U2
∞

(colour contours) atφ1.

turbulent kinetic energy into a coherent component arising
from induced velocities by the large-scale vortices and an in-
coherent component that remains an integrated effect of un-
correlated small-scale vortices. This description allows the
incoherent turbulent field to be described in terms of the
phase-averaged base flow environment in which it is found.
The shed structure consists of alternating and deformed half-
loop streamwise-interconnected structures which branch out-
ward at the surface of the plate, interacting with the outer
boundary layer vorticity. Topological concepts of induced
straining in the vicinity of the unstable manifold of convec-
tive saddle-points between vortices have been generalized to
three-dimensions using Lagrangian coherent structures con-
cepts. In a similar manner to the unstable manifolds of con-
vective saddles in 2D wakes, the attractive manifolds of the
finite wake enveloping the coherent structures are found to be
responsible for the majority of incoherent turbulence produc-
tion and thereby have a large impact on the turbulent fluctua-
tions and Reynolds stresses in their neighbourhood.
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