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Institute of Fluid Mechanics

TU Dresden
01062 Dresden, Germany

Jochen.Froehlich@tu-dresden.de

ABSTRACT
The ascent of a single Argon bubble in a column of quies-

cent liquid metal is studied by means of direct numerical sim-
ulation using an immersed boundary method. An additional
magnetic field in the direction of gravity is shown to influ-
ence the bubble dynamics substantially. An increase in time-
averaged bubble Reynolds number is found for large bubbles
and a decrease for small bubbles when increasing the mag-
netic interaction parameter. The bubble Strouhal number as a
dimensionless frequency is reduced with magnetic field for all
bubbles considered. The zig-zag trajectory in the purely hy-
drodynamic case becomes more rectilinear and vortical struc-
tures in the bubble wake are considerably damped.

INTRODUCTION
The combination of multiphase and magneto-

hydrodynamic (MHD) flows povides a complex and
challenging field of large interest. Liquid metals, however,
are opaque so that experimental data are difficult to obtain.
Simulations are hence essential to support the measurements
and provide further insight and understanding.
There is a variety of industrial MHD applications where gas
bubbles play an important role, for instance metallurgical
processes. Within the continuous casting process, gas
bubbles are injected into the melt to clean the liquid metal
from contaminants and to stirr and homogenize the liquid
phase. Magnetic fields are used for this process to stirr and
to stabilize the flow regimes. The actual influence of the
magnetic field on the bubbles is still not fully understood.
A single bubble can be characterized by the Galilei number

G =
√

gd3
eq/ν and Eötvös number Eo = ∆ρ gd2

eq/σ . The
resulting bubble rise velocity up can then be used to deter-
mine the bubble Reynolds number Re = up deq/ν and Weber
number We = ρ f up

2 deq/σ , where g is gravity, deq the di-
ameter of a volume-equivalent sphere, ν kinematic viscosity

of the liquid, ∆ρ density difference between the phases, ρ f
density of the surrounding fluid and σ surface tension. For
gas bubbles in liquid metals high Re ≈ 3000− 5000 and
We≈ 3 are encountered resulting in an ellipsoidal whobbling
shape according to the regime map of Clift et al. (1978).
The strength of a magnetic field can be characterized by the
magnetic interaction parameter N = σe B2 deq/

(
ρ f ure f

)
with

σe being the electrical conductivity, B the magnetic field
strength and ure f =

√
gdeg the reference velocity for a rising

bubble.

COMPUTATIONAL METHOD
Simulations were conducted with the multiphase code

PRIME (Kempe & Fröhlich, 2010a,b) which is based on a
staggered grid arrangement in cartesian coordinates employ-
ing a second order finite volume method. The incompressible
Navier-Stokes equations including the Lorentz force

∇ ·u = 0 (1)

∂u
∂ t

+(u ·∇)u =− 1
ρ f

∇p+
1

Re
∇

2u+N (j×B)+ f (2)

are solved using a Runge-Kutta three-step method with im-
plicit treatment of the viscous terms. The Lorentz force is de-
termined solving a second Poisson equation for the magnetic
potential under the low magnetic Reynolds number assump-
tion.
Bubbles are represented by an Euler-Lagrangian approach,
specifically the immersed boundary method (IBM) of
Uhlmann (2005) with extension to non-spherical particles and
low particle densities (Kempe et al., 2009). The motion of
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each single bubble is determined solving its linear and angu-
lar momentum equation

mp
dup

dt
= ρ f

∮
Γ

τ ·n ds+Vp(ρp−ρ f )g (3)

d
(
Ipω p

)
dt

= ρ f

∮
Γ

r× (τ ·n)ds . (4)

The surface integrals in (3), (4) are obtained from the momen-
tum equation of the underlying fluid and the resulting volume
integrals are determined efficiently using the signed-distance
level set function of the particle surface for the cut cell vol-
umes (Kempe et al., 2009). To describe the motion of a non-
spherical (e.g. ellipsoidal) object, one has to account for its
inertial tensor, whereas for a sphere the moments of inertia are
solely described by a single scalar. The inertial tensor needs
to be transformed according to the orientation of the particle
Ip = f (φi, t) in each step of the time integration scheme when
solving in the laboratory coordinate system.
Coupling between the phases is realized by means of surface
markers, so that arbitrary shapes can be considered. Here,
positioning of forcing points is performed by surface triangu-
lation with a commercial grid generator. At the bubble surface
a no-slip boundary condition is applied, motivated by the fact
that in liquid metals an oxyde layer occurs at the interface be-
tween gas and liquid.
In the present work, the bubble shape is approximated as
an oblate ellipsoid of aspect ratio X = a/b with semi-axes
a = c > b (Figure 1).
During the ascent, the shape of the ellipsoidal particle is mod-
ified in time according to a correlation for its aspect ratio X
based on the instantaneous bubble Weber number. To this end,
the data in Loth (2008) were fitted by

X−1(t) = 1−0.75tanh(0.155582We(t)). (5)

With this approach the bubble volume is conserved exactly.
The method allows to directly model the bubble shape. This
is a useful feature since bubble shapes in contaminated sys-
tems (as gas - liquid metal) are not fully understood to date.

In this study, the electrical conductivity for both phases is
modelled to be the same for technical reasons. This is ade-
quate as the focus lies on the influence of a magnetic field on
the bubble wake.

GRID STUDY
The influence of the discretization has been studied in a

cubical box of extend L = 6.0deq with n3 gridpoints. The ini-
tial acceleration of a single bubble with a Galilei number of
G = 2825 and an Eötvös number of Eo = 2.5 is considered
which is examined in more detail in a larger computational
domain below. The reference grid has a resolution of n = 512,
this corresponds to deq/∆x = 85.3 gridpoints over the equiv-
alent diameter of the bubble. The timestep is refined as well
based on a constant CFL number as well.

Figure 1. Ellipsoidal bubble undergoing a shape oscillation.
The dotted lines indicate the states with maximum and min-
imum aspect ratio observed in the simulation with N = 0 re-
ported below.

To quantify the discretization error, the particle Reynolds
number is compared at t ′ = 1.0 with the value on the finest
grid chosen as reference. The grid chosen for the simulations
in the large box of n = 256 yields an error of about 3% com-
pared to the finest grid. A convergence order of about 1.7 has
been determined based on the fit in Figure 3. The timescale of
the acceleration of the particle is longer on a coarser grid. A
coarse resolution leads to higher terminal Reynolds numbers
(see Figure 2).

Figure 2. Bubble Reynolds number over time as a function
of grid spacing, N = 0.

Figure 3. Relative error in Re at t ′ = 1.0, for the simulation
in Figure 2.
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RESULTS
In Zhang et al. (2005) an experiment was conducted re-

leasing a single argon bubble at the bottom of a container filled
with liquid metal (GaInSn), and its position during the rise
was measured by ultrasound Doppler velocimetry. The phys-
ical parameters of that experiment are G = 2825, Eo = 2.5
obtained with deq = 4.6 mm. Measurements were conducted
without a magnetic field as well as with a field oriented in
vertical direction, i.e. parallel to gravity. This was found to
influence the bubble dynamics.

Single bubble without magnetic field
The simulation was performed in a box of L =

(6.0, 30.0, 6.0)deq with periodic boundary conditions in
all three directions. The spatial resolution is n =
(256, 1280, 256), i.e. 83.9 Mio grid points, nL = 9093 La-
grangian forcing points were positioned on the bubble surface,
the time step is ∆t ′ = 2.5 · 10−3 in dimensionless units using
tre f =

√
deq/g. With the present method, only a moderate

runtime of 60× 61.5 CPU hours on an SGI Altix 4700 is re-
quired for one crossing of the above box requiring about 30
dimensionless units in time.
After an initial acceleration the bubble rise velocity starts to
oscillate (Figure 4). The time-averaged Reynolds number af-
ter the initial transient is called the terminal Reynolds number
Ret . A quantitative comparison with the experiment of Zhang

Figure 4. Bubble Reynolds number over time and compar-
ison to experimental data of Zhang et al. (2005) for N = 0,
t ′ = t/tre f

et al. (2005) is given in Table 1. Excellent agreement is ob-
tained for the time-averaged value of Re, i.e. the terminal rise
velocity. An underprediction of the amplitude of the oscil-
lation is observed, measured by the standard deviation σRe.
Good agreement on the other hand is found in the dominant
frequency of the oscillation f ′Re. A zig-zag trajectory with
lateral drift (Figure 5) and an oscillation in bubble inclination
(Figure 6) were found. These data could not be measured in
the experiment. The amplitude of the zig-zag of ca. 1.15deq
and the maximum inclination angle |φz|max ≈ 36◦ of the bub-
ble agree well with data from the literature for other gas-liquid
systems. From the literature, the lateral distance between two
extreme points in a zig-zag trajectory is reported as approxi-

Table 1. Results for single bubble without magnetic field
compared to experimental data of Zhang et al. (2005). 〈Re〉
is the temporally averaged Reynolds number, σRe the corre-
sponding standard deviation and fre f =

√
g/deq.

Ret σRe f ′Re = f / fre f

Simulation 2871 245 0.276

Zhang et al. (2005) 2879 369 0.280

mately 1.0−1.3deq and the maximum inclination to be about
27− 30◦ (Gaudlitz & Adams, 2007; Lunde & Perkins, 1998;
Brücker, 1999; Mougin & Magnaudet, 2006). The inclination
angle in the present simulation is slightly higher, possibly due
to the higher Reynolds number.
After the initial transient the aspect ratio of the ellipsoid os-
cillates in the interval X ∈ (1.35, 1.57) as shown in Figure 1.

Figure 5. Zig-zag trajectory for N = 0. History of lateral
bubble center coordinates x and z, non-dimensionalized with
deq.

Figure 6. Bubble orientation over time described by the an-
gles of orientation for N = 0.

A smaller bubble was studied in a second series
of numerical experiments. The physical parameters are
G = 1488, Eo = 1.05 which corresponds to a deq = 3.0
mm Argon bubble in GaInSn. The shape of the latter
bubble remains almost spherical due to the dominant role
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of surface tension. A time-averaged Reynolds number
of Ret = 1822 was determined from the simulation data.
The rise velocity again oscillates and a zig-zag path is
oberserved. The charateristic frequency is calculated from a
Fourier spectrum of Re(t) being f ′ = 0.222 which is in good
agreement with Lindt (1972). No experiments in liquid metal
could be conducted for this small bubble for technical reasons.

Single bubble with magnetic field
In further simulations a longitudinal magnetic field in the

direction of gravity was applied with N = 0.5 and N = 1.0.
When increasing the magnetic interaction parameter N the
bubble motion is affected as follows:

• The time-averaged bubble Reynolds number Ret in-
creases for large bubbles (high Eo).

• The time-averaged bubble Reynolds number Ret de-
creases for small bubbles (low Eo).

• The Strouhal number St decreases for all bubbles.
• The amplitude of oscillation in Re(t) decreases.
• The amplitude of oscillation in lateral coordinates x(t),

z(t) decreases, i.e. the trajectory is more rectilinear.
• The amplitude of oscillation in tilting angles φi(t) de-

creases.
• The plane integral of absolute value of the vertical vor-

ticity component 〈|ωy|〉xz =
∫∫
|ωy|dxdz decreases.

The Strouhal number as a dimensionless frequency is based
on the oscillation of Re(t) as in the experiments.
All these findings are in agreement with conclusions from the
experiments by Zhang et al. (2005). In these experiments, the
analysis of vortex structures is difficult, though. In contrast,
the present simulations provide full access to all velocity and
pressure data for the continuous liquid metal phase as well as
precious data concerning the bubble trajectory.
A maximum in Re(t) is reached at the extreme points of the
bubble path x(t). The bubble is oriented with its small semi-
axis parallel to the gravity vector, i.e. the inclination angle
φz is approximately zero. Maximum tilting of the bubble is
achieved closely after a local minimum in Re(t) and approxi-
mately half way between the maximum extends of the zig-zag
trajectory. At this point, the lateral velocity is largest. The de-
scribed events are highlighted as dots in Figures 8, 9, 10 and
for these instants data are analyzed further.
Substantial damping of the vortical structures in the bubble
wake due to the magnetic field is observed. Especially small
structures vanish while the larger vortex filaments are aligned
with the magnetic field. A qualitative assessment of the vor-
tical structures is given in Figure 7. The iso-contours corre-
spond to positive and negative values of the vorticity compo-
nent in direction of gravity. The snapshots are taken at ex-
treme points of the zig-zag trajectory.

A quantification of the damping effect in the bubble wake
is provided in Figure 11. The absolute value of the vortic-
ity component ωy is integrated in xz-planes and plotted over
the vertical distance from the bubble center. The instants in
time correspond to similar points in the bubble trajectory in-
dicated as dots in Figures 8 - 10. It can be seen that with
increasing magnetic interaction the bubble wake contains less
vertical vorticity and the values of the extrema in the plot are

Figure 7. Instantaneous iso-contures of the vertical vorticity
component ωy as a function of the magnitude of the magnetic
field, N = 0, 0.5, 1.0 (top to bottom), G = 2825, Eo = 2.5.
Left and right picture provide complementary views of the
same structure at two angles differing by 90◦.

substantially reduced. Figures 12 and 13 provide analogous
data for the other two vorticity components. The plots show
global maximum values of 〈|ωx|〉xz and 〈|ωz|〉xz at the front of
the bubble in all cases and considerable damping of vorticity
in the wake in the presence of a magnetic field. A compari-
son with experimental data by Zhang et al. (2005) is given in
Figure 14 and 15. Here, the simulations labelled with ’coarse’
have been conducted using an isotropic grid of step size 1.5
times the one of the companion grid, i.e. nx = 192.
The results are in good agreement showing an increase in ter-
minal Reynolds number for large bubbles and a decrease in
Ret for small bubbles with increasing magnetic interaction pa-
rameter. This is due to the adverse effects of the magnetic
field increasing the drag of an object as shown by Maxwor-
thy (1968), but supressing lateral dynamics in the trajectory.
Also the absolute changes in Ret agree well with the obser-
vations in the experiments. Nevertheless, the measurements
reveal a different threshold Eo for the reversion of the trend
(Ret increases or decreases with N) at slightly larger Eötvös
numbers.
A decrease of the bubble Strouhal number St is found for all
bubble sizes and interaction parameters. In the simulation, the
relative change in St is less pronounced for small bubbles than
for large bubbles. An overprediction of the reduction in St in
the simulation is recognized at large magnetic interaction pa-
rameters.
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Figure 8. History of bubble Reynolds number for the three
cases N = 0, 0.5, 1.0 and G = 2825, Eo = 2.5.

Figure 9. Zig-zag trajectory, history of lateral bubble cen-
ter coordinates x non-dimensionalized with deq, for the three
cases N = 0, 0.5, 1.0 and G = 2825, Eo = 2.5.

Figure 10. History of inclination angle φz, for the three cases
N = 0, 0.5, 1.0 and G = 2825, Eo = 2.5.

Figure 11. Plane integral of absolute vertical vorticity com-
ponent 〈|ωy|〉xz for the third event indicated in Figures 8 - 10,
for the three cases N = 0, 0.5, 1.0 with G = 2825, Eo = 2.5.

Figure 12. As Figure 11 but for 〈|ωx|〉xz.

Figure 13. As Figure 11 but for 〈|ωz|〉xz.
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Figure 14. Relative change in terminal Reynolds number:
Present simulations compared to experimental data by Zhang
et al. (2005).

Figure 15. Relative change in Strouhal number: Present
simulations compared to experimental data by Zhang et al.
(2005).

CONCLUSIONS AND OUTLOOK
The ascent of a single bubble in liquid metal has been

successfully simulated. All observations from the correspond-
ing experiments of Zhang et al. (2005) were retrieved and
could be elucidated by additional data from the simulations.
A detailed view has been given on the vortical structures in
the wake of the bubble under the influence of a longitudinal
magnetic field.
Further simulations will be conducted with variable bubble
shape based on spherical harmonic functions allowing more
complex bubble forms. With this approach, the bubble shape

is calculated directly from the fluid loads of the surround-
ing liquid metal enabling the simulation of bubble chains and
swarms in liquid metal.
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