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ABSTRACT 
This paper describes the results of a simulation of blood 

flow and myocardium motion in an average canine left 
ventricle (LV) with fluid-structure interaction.  The computed 
LV cavity pressure was in fair agreement with previous 
measurements over most of the cardiac cycle; however, during 
rapid filling, the calculated pressure was lower than the 
measured one, which led to non-physiological backflow.  
Trends of LV cavity volume changes were nearly 
physiological for three of the four phases of the cardiac cycle 
but the ejection fraction was lower than physiological.  This 
method predicts appreciable pressure variations in the LV 
cavity, in contrast to solid-only simulations which assume 
uniform cavity pressure.  The dependence of the results on 
various model parameters is briefly discussed along with 
suggestions for future work. 

 
 

INTRODUCTION 
Numerical simulations of the mechanics of the heart 

require the use of models for both the deformation of the solid 
wall and the flow of blood as well as a mechanism for 
coupling the two, namely fluid-structure interaction (FSI).  
Previous FSI simulations of the heart (Peskin and McQueen, 
1996; Watanabe et al., 2004; Krittian et al., 2010) have made 
many simplifying assumptions in their solid mechanics 
models and, although predicting realistic blood flow patterns, 
were of limited success in simulating accurately the stress-
strain behaviour of the wall. 

The objective of the present study was to perform FSI 
simulations of the mechanics of an average canine left 

ventricle (LV) over the full cardiac cycle.  In earlier phases of 
this project, we have developed a material model for the 
myocardium (Doyle et al., 2010) and generated a set of initial 
conditions which are suitable for cardiac cycle simulations 
(Doyle et al., 2011).  As part of the third phase of this study, 
this article reports results of these simulations over the cardiac 
cycle.   

 
METHODS 
Geometry and Mesh 

The solid and fluid geometries in this work are idealized 
and have been defined in their reference states to be 
representative of an average canine LV at diastasis, which is 
the middle phase of ventricular filling (diastole).  The solid 
geometry was defined as a truncated prolate ellipsoid (i.e., a 
solid generated by an ellipse that has been revolved around its 
major axis), as shown in Figure 1a, with dimensions a = 46.92 
mm, b = 27.84 mm, ta = 6.83 mm, tb = 12.42 mm, and h = 
60.14 mm.  The fluid geometry, shown in Figure 1b, consists 
of two parts; a lower part, for which the outer surface matches 
the inner surface of the solid geometry, and an upper part, 
consisting of two cylindrical tubes, which represent the LV 
inflow and outflow tracts, and a section of a sphere, which 
caps the truncated ellipsoid.  The dimensions of the upper part 
of the fluid geometry were DAV = 9.78 mm, DMV = 18.88 mm, 
L1 = 9.78 mm, L2 = 7.78 mm, w1 = 26.71 mm, α = 60°, β = 
75°, and θ = 135°. 

The solid geometry was meshed using ten-node tetrahedral 
elements, whereas the fluid was meshed using four-node 
tetrahedral elements, both on unstructured grids, as shown in 
Figure 2.  Simulations were performed for the finest solid 
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mesh for which solution convergence could be achieved.  
Although our previous solid-only simulations (Doyle et al., 
2011) demonstrated the need for solid mesh refinement, this 
was not possible at present because of solution divergence.  
For the fluid, results obtained using two different meshes were 
in good agreement; fluid mesh refinement seems also to be 
desirable, but this was not presently feasible, as it would 
increase substantially the computational time. 

 
 

Numerical Methods 
Simulations in this work were performed on the 

computing clusters of the High Performance Computing 
Virtual Laboratory (HPCVL) using the commercial finite 
element software ADINA v. 8.5.2 (ADINA R & D, Inc., 
Watertown, MA, USA). 

The myocardium, which is the thick middle layer of the 
heart wall and the only layer considered in this study, was 
modelled as undergoing large displacements for large strains 
and was simulated using the Total Lagrangian form of the 
appropriate governing equation, defined as 
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where U, U , and U are the nodal displacement, velocity and 
acceleration vectors, respectively, M is the mass matrix, C is 
the damping matrix, K is the stiffness matrix, R is the external 
load vector, F is the force vector equivalent to the element 
stresses, and t is time (ADINA R & D, Inc., 2008a).   

The myocardium was modelled as a transversely isotropic 
material with properties that differed in the directions parallel 
and perpendicular to the muscle fibres.  This material model 
was defined by a strain energy density function W, consisting 
of two parts, passive Wp and active Wa.  The passive part 
modelled the stress-strain behaviour of the myocardium when 
the muscle fibres were relaxed, and the active part provided 
additional stresses to model the contraction of the muscle 
fibres.  The sum of the two parts models the total stress state, 
defined as    
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In Eqs. (3) to (5), Ci and Di are passive and active material 
parameter values, respectively, κs is the bulk modulus, which 
governs the material compressibility, and Ji are reduced 
invariants of Green’s strain tensor E. 

The contraction and relaxation of the muscle fibres during 
the cardiac cycle were modelled by the gradual application 
and removal of the active stresses, which was modelled by 
varying Di using the following equation 

       max,ii FDD 
 
  (6) 

where F is a forcing function which varies from 0 when the 
muscle fibres are fully relaxed to 1 when the muscle fibres are 
fully contracted and Di,max are the values of Di for F = 1.  F is 
defined by sigmoid functions during the four phases of the 
cardiac cycle and is shown in Figure 3 as a function of the 
dimensionless time τ, which is time normalized by the period. 

  As shown in Figure 1a, the myocardium has been 
subdivided into six layers, each with its own muscle fibre 
orientation; fibres are inclined with respect to the local 
circumferential direction by angles in the range from -60° to 
+60° from the outer layer to the inner layer.  

Blood was assumed to be a slightly compressible 
Newtonian fluid and its flow in the LV was assumed to be 
laminar.  The choice of a slightly compressible fluid instead of 
an incompressible one was made to ensure convergence at 
instances when both inflow and outflow valves are closed and 
the geometry is deforming.  Simulations were performed using 
the following arbitrary-Lagrangian-Eulerian (ALE) forms of 
the continuity and momentum equations for slightly 
compressible fluids, which account for the velocity of the 
moving mesh 
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In these equations, p is pressure, v is the velocity vector, w is 
the mesh velocity vector, ρm is the density of the compressible 
fluid, σf is the stress tensor, and f B is the body force per unit 
volume (ADINA R & D, Inc., 2008b). 

Flow in the system was driven by the deformation of the 
myocardium coupled with the application of left atrial (LA) 
and aortic (Ao) pressure boundary conditions; these pressures, 
shown in Figure 4, were defined based on previous 
measurements (Sabbah and Stein, 1981), and were applied to 
the distal ends of the LV inflow and outflow tracts, 
respectively.  Flow direction was controlled by instantly 
opening and closing planar inflow (mitral) and outflow 
(aortic) valves located near the proximal ends of the inflow 
and outflow tracts.    The opening and closing of these valves 
was controlled by time functions, which were applied to match 
the timing of the pressure boundary conditions. 

Initial conditions for both the fluid and the solid models 
were required to start the cardiac cycle simulations.  We chose 
to start the simulations at end diastole, because at this instant 
both valves are closed and the muscle fibres are fully relaxed.  
To generate an initial end-diastolic state with non-zero stresses 
in the myocardium, we inflated our initial reference geometry, 
defined at diastasis, by a static pressure load to an end-
diastolic pressure (Doyle et al., 2011).  Because the muscle 
fibres are fully relaxed during the period between diastasis and 
end diastole, only the passive part of the myocardium material 
model was required during this inflation. Simulations were 
started from end diastole and proceeded through the four 
phases of the cardiac cycle, namely isovolumetric contraction 
(IVC), ejection, isovolumetric relaxation (IVR), and filling. 
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RESULTS 
Simulations were performed for two periods of the cardiac 

cycle.  Plots of the temporal variations of the LV pressure pLV 
and the LV cavity volume Vf over these two periods are 
presented in Figures 4a and b, respectively, and the variations 
of pLV versus Vf are presented in Figure 5.  The temporal 
variations of pLV show good agreement with previous 
measurements over the majority of the cardiac cycle.  
However, during rapid filling, when 0.385 ≤ τ ≤ 0.650, the 
calculated pLV exceeded the measured value as well as pLA, 
which caused non-physiological backflow in this region.  
Spikes in pLV, particularly visible in period 2, correspond to 
times for which a valve closed and are attributed to the 
assumption of instantly opening and closing planar valves 
made in the present simulations.   FSI modelling of natural 
heart valves would have probably alleviated these problems, 
but, besides the technical challenges that this would pose, it 
would have added considerably to the computational time 
required for the simulations. 

In Figure 4b, small changes in Vf were visible during IVC, 
which is a phase in the cardiac cycle during which the muscle 
fibres are contracting, both valves are closed, and no blood 
should enter or exit the LV cavity.  In the present study, these 
volume changes were attributed to the use of the slightly 
compressible model for blood, as required to ensure model 
convergence during the isovolumetric phases.  During 
ejection, blood exited the LV cavity as shown by the decrease 
in Vf during this phase.  The change in Vf during ejection can 
be characterized by the ejection fraction, defined as 
EF = (Vf,ED – Vf,ES)/Vf,ED, where the subscripts ED and ES 
denote end diastole and end systole, respectively.  In the 
present study, we found EF = 0.081 for period 1 and 0.084 for 
period 2, which are lower than the physiological value of 
approximately 0.44 for a canine LV (Bovendeerd et al., 1996; 
Kerckhoffs et al., 2007).  As with IVC, small changes in Vf 

were visible during IVR.  Lastly, during rapid filling, Vf 
increased dramatically, exceeding its end-diastolic value, 
before non-physiological backflow caused Vf to decrease.  
During the latter part of filling, Vf increased and decreased 
during both periods, but reached end-diastolic values that were 
approximately 98% of the starting value for period 1 and 
approximately 99% of the starting value for period 2.  From 
this, we can conclude that the non-physiological backflow did 
not affect significantly the near-conservation of the LV cavity 
volume for each period. 

In Figure 5, the trends of pLV versus Vf for the first three 
phases of the cardiac cycle were consistent with physiological 
expectations, whereas backflow prevented the filling trends 
from meeting expectations.  For period 2, the overall trends 
were comparable to period 1, with differences primarily due to 
differences in Vf during the isovolumetric phases. 

Figures 6 and 7 show pressure contour plots and velocity 
vectors in the y-z centreplane for the two periods at end 
systole and end diastole, respectively.  Pressures in the LV 
cavity at end systole are large compared to the pressures at 
end diastole.  Pressure variations near the LV outflow tract at 
end systole can be attributed to the sudden closing of the 

aortic valve, as discussed previously.  Within the LV cavity, 
for period 1, pLV increased from 14.4 kPa at the apex to 15.6 
kPa at the centre of the basal plane (top plane in the 
deformable part of the fluid geometry); for period 2, pLV 
increased from 11.6 kPa at the apex to 20.0 kPa at the basal 
plane.  The variations of pressure within the LV cavity show 
the importance of performing FSI simulations of the 
mechanics of the LV rather than solid-only simulations with 
assumed uniform pressure boundary conditions from the fluid.  
At end diastole, non-uniform pressures are visible in the 
contours in Figure 7, although the magnitudes of these 
pressure variations are smaller than at end systole. 

Velocity vectors at end systole differ from period 1 to 
period 2, with much larger velocities visible for period 2, 
particularly near the apex, which is deforming downwards.  At 
end diastole, the velocity vectors were found to be larger for 
period 1 than for period 2. 

Average Reynolds numbers were calculated for systole 
and diastole as (Krittian et al., 2010) Re = ρfvD/μ, where v is 
the characteristic velocity and D is the characteristic diameter; 

D = DAV,     2260 AVejectejectf DVv  .,  for systole, 

D = DMV,     2260 MVfillfillf DVv  .,  for diastole. 

Using these definitions, for periods 1 and 2, respectively, Re = 
1749 and 2941 for systole and Re = 193 and 359 for diastole.  
The calculated Reynolds numbers would most likely increase 
with increasing ejection fraction.  It happens that, for period 2, 
the systolic Re is comparable to the value of 3431 calculated 
by Krittian et al. (2010) for a human LV, although one should 
keep in mind that quantitative comparisons are not appropriate 
between species because of different pulsation rates and LV 
sizes.  For diastole, Krittian et al. (2010) found Re = 2288, 
which is much larger than the values calculated in the present 
study, although this is also subjected to the same reservations. 

 
 

DISCUSSION 
In this section, we discuss the successes and limitations of 

the present study along with future directions and challenges 
in the modelling of the mechanics of the LV with FSI effects. 

Simulations in the present study were performed using an 
average canine LV geometry, rather than a specimen-specific 
one due to the difficulty in obtaining all necessary model 
inputs for a single specimen and the variability in the values of 
these inputs from one specimen to the next.  The 
determination of average valve diameters was subject to 
considerable uncertainty. Considering that the computed 
ejection fraction was lower than the physiological range, it 
seems that the present choices of the LV outflow and inflow 
tract diameters may be, respectively, too low and too high.  
This conjecture is further supported by the fact that the ratio of 
systolic to diastolic Re in the present study was approximately 
9 for period 1 and 8 for period 2, in both cases much higher 
than the value 1.5 for the human LV (Krittian et al., 2010).  
Increasing DAV and decreasing DMV may serve to decrease the 
systolic Reynolds number and increase the diastolic one, 
which would in turn decrease the ratio of the two.  In 
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summary, adjustments in LV inflow and outflow tract 
diameters may be appropriate for future studies.  Additionally, 
the assumption of rigid inflow and outflow tracts could also be 
revisited subject to the availability of measurements of the 
muscle fibre angles, wall thicknesses, and material properties 
in this region. 

The non-physiological backflow into the LV cavity during 
filling may be attributed to insufficient muscle fibre relaxation 
during rapid filling, crudeness of the boundary conditions, 
and/or absence of a model for the valve dynamics.  During 
rapid filling, the completion of the muscle fibre relaxation 
causes a decrease in pLV even though fluid is entering the LV.  
For the current study, the forcing function F(τ) controls the 
relaxation of the muscle fibres; unfortunately, none of the 
many assumed forms of this function was successful in 
producing sufficient fibre relaxation during rapid filling to 
prevent backflow. Perhaps other, yet unspecified, forms of 
F(τ) might alleviate this problem. In the present study, 
pressure boundary conditions were used to drive the flow at 
the inlet and outlet of the LV model.  An alternative approach 
would have been to couple the finite element model with 
electric circuit models to represent the circulatory system 
upstream and downstream of the LV.  This approach has been 
followed by other researchers, and could be implemented in 
extensions of the present study, albeit by adding appreciable 
complexity to the numerical model.  As previously discussed, 
spikes in pLV were visible when the valves were abruptly 
closed.  Modelling the dynamics of valve motion, especially 
when coupled with a deformable LV geometry and FSI 
effects, remains a challenging problem.  In fact, only recently 
(Wenk et al., 2010) has a solid-only model been developed 
consisting of LV deformation coupled with the motion of the 
mitral valve.  Much work is still required to extend this model 
to include aortic valve motion and FSI effects. 

 
 

CONCLUSIONS 
Complete numerical simulations of the mechanics of the 

canine LV have been successfully performed for two periods 
of the cardiac cycle.  Calculated LV cavity pressures showed 
good agreement with previous measurements for most of the 
cycle, but differed during rapid filling, when non-
physiological backflow occurred.  Trends in LV cavity 
volume variation were consistent with expectations for IVC, 
ejection, and IVR, but the calculated ejection fraction was 
smaller than physiological values.  Pressure variations 
throughout the LV cavity at end systole and end diastole show 
the importance of including FSI effects rather than performing 
solid-only simulations with a prescribed uniform pressure 
boundary condition from the fluid.  Lastly, the dependence of 
the results upon several model inputs was discussed along 
with suggestions for model improvements in future studies. 
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Figure 1. Solid (a) and fluid (b) geometries with key dimensions and geometric landmarks. 
 
 

 
 

Figure 2. Solid (a) and fluid (b) meshes. 
 
 

 
 

Figure 3. Forcing function. 

 
 
Figure 4. a) Temporal variation of pressures and b) temporal variations of LV cavity volume.  In this and subsequent figures, circles 

denote the opening or closing of a valve and the start of a phase of the cardiac cycle. 
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Figure 5. Variation of LV pressure as a function of LV cavity volume. 
 
 

 
 

Figure 6. LV cavity pressure contours and velocity vector 
maps in the y-z centreplane at end systole for two periods. 

 
 

 

 
 

Figure 7. LV cavity pressure contours and velocity vector 
maps in the y-z centreplane at end diastole for two periods. 


