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ABSTRACT  
The physics of the linear forcing of isotropic turbulence, 

allows for some useful estimates of the characteristic length 

scales of the turbulence produced during the statistically 

stationary phase. With such estimates we could practically 

define uniquely the stationary statistics by means of the box-

size of the simulation, the linear forcing parameter and the 

viscosity of each case. We use such estimations in the 

Karman-Howarth equation and we solve it in terms of the 

second and third order structure functions using a generalized 

Oberlack-Peters closure scheme. The resulting forms and the 

respective spectra are in very good agreement with 

experimental and DNS data.  

 

 

INTRODUCTION 
Numerical simulations of isotropic turbulence play a key 

role in studying basic features of turbulent flows. The two 

most frequently studied types of isotropic turbulence are freely 

decaying, and forced statistically stationary turbulence. For 

studies in which one wishes stationarity for statistical 

sampling, forced turbulence is preferable over decaying 

turbulence. In 2003, a very interesting paper by Lundgren [1] 

proposed an alternative to the band-limited methods of forcing 

turbulence, using a linear forcing factor. Apart from its 

simplicity, the profound advantage of linear forcing is the 

possibility of applying this method in both physical and 

Fourier space. Problems that do not admit fully periodic 

boundary conditions, for instance simulating interactions of 

turbulence with combustion in which conditions upstream and 

downstream of the flame are inherently different, are often 

simulated using numerical codes formulated in physical space, 

such as finite differences. The application of band-limited 

forcing schemes requires knowledge of the wavenumbers and 

Fourier-transformed velocities, quantities that are not readily 

available in codes formulated in physical space. Rosales and 

Meneveau[2], in 2005, have shown that the application of 

linear forcing in both physical and spectral space renders 

practically equivalent results, reflecting the profound 

equivalence of the method in both spaces. Thus, the linear-

forcing method opens wide opportunities for application in 

both physical and spectral space. Furthermore, the 

resemblance of the forcing parameter to an applied shear 

promises the achievement of stationary spectra, where the 

structure of the large scale is more realistic. In this direction, 

Ludgren[1] showed that linear forcing produces statistics at 

scales between the integral scale and the inertial range (e.g. 

structure function curving) that resemble the curving observed 

from experimental data.  In 2009, Akylas et al.[3] continued the 

work of Rosales and Meneveau[2] investigating the statistical 

stationarity that is produced by applying the linear forcing 

method in spectral space and quantifying the characteristic 

scales of the statistically stationary turbulence produced. 

Furthermore, they presented some arguments on the prediction 

of the stationary spectra and their importance in initializing 

linearly forced direct numerical simulations (DNS).  
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In this work we investigate the linearly forcing method 

through the Karman-Howarth equation[1,4] in terms of the 

second and third order structure functions. More specifically, 

we solve numerically the stationary version using a 

generalized closure which is based on Oberlack and Peters[5] 

model, and investigate the behavior of the solutions. We give 

some theoretical predictions and we present numerical results 

for the third-order structure function and it is dependence on 

Reynolds number. The produced forms are in close agreement 

with experimental data from both homogeneous and non-

homogeneous turbulence. Furthermore, we calculate the 

stationary spectra and we compare them with past DNS of 

linearly forced turbulence. The model’s results are in excellent 

coincidence and provide a good basis for understanding and 

initializing linearly forced runs.  

 

STATIONARY ISOTROPIC TURBULENCE BY THE 
LINEAR FORCING METHOD 

Linear forcing is applied in the Navier-Stokes equations by 

including the linear term g =Au, proportional to the velocity. 

The time evolution of the energy spectrum becomes 

 

 ( )2( , ) ( , ) 2 ( , )
t k k
E k t T k t k A E k tν∂ = −∂ − −  (1) 

 

where Tk(k,t) is the function of the  spectral transfer of energy. 

Integrating (1) and taking the energy balance for the 

statistically stationary state we see that the dissipation rate, ε, 

is linked with the turbulent kinetic energy, K, through 

 

 
22 3
rms

AK Auε = =  (2) 

 

where urms is the RMS of the fluctuating velocity. Rosales and 

Meneveau[2] showed that, independently of the initial 

conditions, the application of the linear forcing drives the 

turbulence in a statistical steady state where the turbulent 

kinetic energy oscillates around an average value, satisfying 

equation (2). Furthermore, as expected in a statistical sense, 

this steady state was invariant between runs with a physical 

space based finite-difference code and runs using standard 

pseudospectral methods. The above relation (2) between the 

dissipation and the turbulent kinetic energy is an immediate 

physical consequence of the energy balance, where the energy 

injection rate equals the dissipation rate for stationarity. It also 

defines the characteristic eddy turnover time scale of the 

turbulence, during the statistically stationary phase,  
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which could be visualized as the characteristic time lag 

between energy injection and its eventual dissipation. In order 

to clarify this, we present, in figure 1, the evolutions of the 

energy injection rate and the dissipation rate for 30 turnover 

times (dimensional time 150 for this case). 

The results are from linearly forced DNS of isotropic 

turbulence with a linear forcing parameter A = 0.0666 and 

viscosity ν = 0.001041 in a (2π)3 computational domain, as 

explained in [3,6]. The two different curves almost coincide 

when the evolution of the dissipation is shifted forward by the 

time increment given from equation (3), t = (3A)-1.  
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Figure 1. Evolution of the energy injection, 2AK (solid line), 

and dissipation, ε,  (dashed line) rates (up). When the dis-

sipation evolution is shifted by τ = (3A)-1,  the two curves 

almost coincide (down). 
 

The same picture can be drawn from the more strict 

investigation of the correlation between the two evolutions 

versus their time lag, shown in figure 2. It turns out that the 

correlation coefficient maximizes when the time difference 

equals one turnover time-scale.  It also implies that in order to 

retrieve stationary information one needs to average over 

several turnover times.   
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Figure 2. Correlation between the energy injection rate and 

dissipation rates  versus their time difference, for the case 

presented in figure 1. 
 

What it is not immediately evident is a second, very 

interesting, relation that links the values of ε and Κ or urms, 

averaged at the stationary phase, with the dimensions of the 

problem. More specifically, Rosales and Meneveau[2] showed 

that the energy containing length scale, L = (2K)3/2/ε, 

characterizing the large eddies, approaches a stationary value, 

proportional to the dimensions of the problem, l, 

 

 ( )3 / 2
2 /L K c l lε= = ⋅ ≈  (4) 

 

Rosales and Meneveau[2] and Akylas et al.[3]  used numerical 

results from several DNS runs, at different Reynolds numbers 
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(15<Reλ<200), and estimated the constant of the 

proportionality to be about 1. The constancy of this well-

defined stationary length scale L, is supported by the 

dimensional analysis of the linear forcing method. Apart from 

the physical interpretation of the linear forcing method, the 

accurate calculation of c is important because, in combination 

with equation (2), it defines uniquely the statistics of the 

application of the linear forcing during the stationary phase[3]. 

For instance, the turbulent kinetic energy approaches 2K=A2l2, 

and the averaged dissipation rate, ε = A3l2. Also, the values of 

the Reynolds numbers characterizing the produced stationary 

isotropic turbulence are uniquely defined using equations (2) 

and (4). 

 

CHARACTERISTIC SCALES AND SIMILARITY OF 
LINEARLY FORCED TURBULENCE 

The application of the linear forcing in isotropic turbulence 

imposes a profound time scale which is the reciprocal of the 

linear forcing parameter A (time-1). The other scales that 

characterize the application of the linear forcing are the 

dimension of the box, l (length), and the viscosity, ν (length2 

time-1). The only dimensionless parameter that can be formed 

combining these scales is then 

 

 
2

Re
A

Al

ν
=  (5) 

 

which corresponds to a kind of a Reynolds number of the 

linear forcing and defines the similarity of the problem. 

Therefore, cases referring to the same value of this parameter 

should show a similar behavior, approaching the same values 

of the dimensionless Reynolds number ReL = (2K)1/2L/ν, and 

consequently of Reλ = urmsλ/ν as well. Using the definition of L 

and the stationarity implication (2), we express  

 

 
2

Re
L

AL

ν
=  (6) 

 

and thus, taking the ratio ReL/ReA, we obtain 

 

 

2
Re

e
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A

L

R l

 
=  
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 (7) 

 

which implies that L should depend only on the box-size, 

through equation (4). At the same time, using the definition of 

the Taylor length scale λg = (10νK/ε)1/2, and taking the 

statistical balance of dissipation and energy injection from 

equation (2), we see that the Taylor length scale is 

independent of the box-size, l, depending only on the ratio 

ν/Α, through 
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1/ 25 5
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A

ν
λ λ  
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 (8) 

 

In contrast to the stationary value of L, which depends only on 

the dimensions of the box (equation 4), the stationary value of 

λ increases inversely to (A/ν)1/2 through equation (8). The 

physical interpretation of the Taylor λ scale has the sense of an 

intermediate scale between the clearly defined and well-

separated η = (v3/ε)1/4 and L scales (see also Pope[7]). 

Furthermore, setting 2νkc
2E(kc) = 2AE(kc) in equation (1), we 

determine the specific wave number kc, where the stationary 

time-averaged energy production rate equals the stationary 

time average of the dissipation rate and relates to λ through 
1/ 2 1( / )

c
k A ν λ−= = .For this specific value of the wave number, 

the time-averaged transfer rate <∂Tk(kc)/∂k> becomes zero, 

and the averaged energy transfer function <Tk(kc)> maximizes. 

As expected from equations (5) – (7), for a given box size 

(which uniquely defines the length scale L=l, through 

equation 4), the value of the turbulence Reynolds number is 

proportional to the ratio of the linear forcing divided by the 

viscosity, A/ν, and hence this ratio defines the dynamical 

similarity of all linearly forced simulations.  

 

MODELLING THE STRUCTURE FUNCTIONS OF 
LINEARLY FORCED TURBULENCE 

Following the steps presented in [8] the Karman Howarth 

equation for linearly forced turbulence under statistical 

stationarity reads [1] 

 

 
4 4 4 4

2 3 2

2 1

3 6
r r rAB r r B r r Bε ν− −− + = ∂ − ∂ ∂  (9) 

 

where where B2 and B3 are the second- and third-order 

longitudinal structure functions defined respectively by 

2

2 1 1
ˆ ˆ ˆ ˆ( ) [ v(x ) v(x )]B r l rl l rl= ⋅ + − ⋅ + , and

3 1
ˆ( ) [ v(xB r l= ⋅  

3

1
ˆ ˆ ˆ) v(x )]rl l rl+ − ⋅ + , r being the separation between two 

points in isotropic turbulent flow along the direction defined 

by l̂  .Using the stationarity condition, 2AKε = , and setting 

2 23 / 4b B K= (so the longitudinal autocorrelation velocity 

function 2

2
( ) ( ) / 1 ( )f r F r U b r= = − ) equation (9) becomes 
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AK
λ− −∂

− + = − ∂ ∂  (10) 

 

where, the Taylor λ -scale is given by 1/ 2( / )Aλ ν=  (note that 

1/ 25gλ λ=  and 1/ 210fλ λ= ). Furthermore, introducing the 

dimensionless parameter, /x r λ= , the Karman_Howarth 

equation (10) is written  

 

 
4
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2 21

8

x
x x

x B
b x x x b

AKλ
− −∂

− + = − ∂ ∂  (11) 

 

We will use the Oberlack and Peters[5] (from here and for the 

rest OP) model for B3, and we generalize it, in order to solve 

(11) and derive spectral information for the steady-state of 

linearly forced turbulence. The OP model links B3 to B2 

through 

 

 
3 / 2

3 2 2 2

6
( ) ( ) ( )

5
rB r C r B r B r

−= − ∂ . (12) 
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This is the simplest derivative model which relates the 

Kolmogorov’s[9] K41 laws for the second and third order 

structure functions in the inertial range: for 
2 / 3

2 2
( ) ( )B r C rε= the third order function 

becomes
3( ) 4 /5B r rε= − . Substituting the model equation 

(12) in the Karman-Howarth equation (9) we get an ordinary 

differential equation for
2( )B r .  It is then straightforward to 

show that for small values of r this equation provides the well 

known result 2 4

2
( ) /(15 ) ( )B r r O rε ν= + .  By equation (12) we 

get
3( )B r = ( ) ( )3 / 23 / 2 3 5

212 /5 /15 ( )C r O rε ν−− + . The velocity 

derivative skewness, which can be calculated by the formula 
3 2

3 2
0

lim ( ) ( )
r

S B r B r
→

= , then reads 

 

 
3 / 2

2

12

5
S C

−= − . (13) 

 

The OP model (4) can be generalized, using different 

exponents for 
2( )B r and its first derivative in equation (12), as 

follows 

 

 ( )3 / 2 (3 / 2 )

3 2 2 2

4 3
( ) ( ) ( )

5 2

a

aa a

rB r C r B r B r
− − 

= − ∂ 
 

 (14) 

 

Clearly the choice of a = 1 results to the OP original model. 

With this generalization, the K41 scaling in the inertial range 

still holds, and also the skewenness modifies to  

 

 

 
( 1 ) 3 / 2

2

12
3

5

a
S C

− + −= − . (15) 

 

Without any implication at this moment, we note that 

for
2

2C = , the choice of the parameter a = 0.55 results to a 

value of S = −0.515. Using the general model (14) into (11) 

the general equation to be solved becomes 

 

( )
2 1

4 4
2

4 (3 / 2 )2
2 2 24 3 / 2

2

2 3
1

15 2

a

aa ax x
x x

x b x L
b x b b

x Cλ

−
−

+ −∂ ∂  
+ = − ∂ ∂ 

 
(16) 

 

where the energy containing length-scale 
3 / 2

(2 ) /L K ε= and 

(using the stationarity requirements of the linear forcing) the 

ratio / 3/5 Re .L λλ =  Rearranging, the eq. (16) we have  

 

3

2 22
2 2 2 2 2

2 2

4 4 3/ 2
1

a
a a

a

b a a b
b b D x b b b a

x x b b

−  ′ ′′+ −′′ ′ ′ + + + + + =
 ′ 

(17)

where the parameter ( ) ( )1/ 23 / 2

2(2 /15) 3/ 2 /
a

aD C L λ
−−= . The 

previous equation can be also written in terms of the 

autocorrelation function f (x) as 

 

 
( )

( ) 3/ 2

4 4 3/ 2

11

a

a a

xf
f a a af

f f D f
x x ff f

−

′−  ′ ′′+ −′′ ′ + + = − +
 − ′−  

  (18) 

 

The differential equation (18) governing ( )f x was solved 

using the Runge-Kutta (4,5) formula, as applied through the 

ODE45 MATLAB solver. Given that the ODE is singular at 

the starting point ( 0x = ), we perturb the initial value, and use 

instead the point x ε= , where  ε  is a small number. To 

calculate the values of f  and 'f  at the new initial point, we 

obtain a series solution for ( )f x  near 0x = , employing the 

initial conditions ( 0) 1f x = =  and '( 0) 0f x = = ; that is 
2 4

( ) 1 /10 + ( )f x x O x= − . The accuracy of the numerical 

solution was tested with the analytical solution of (18) for the 

case Reλ = 0, 

 

 ( ,Re 0)f x λ = = 3[-3 cos( )  3 sin( )]/x x x x+  (19) 

 

Even for large values of x , there is excellent agreement 

between numerical and analytical results and the error does 

not exceed 0.1% . In an analytical approach, for large values 

of r, we approximate 1 - f  ≈ 1, in (18) and thus we conclude 

with  

 

  
4 4 3

( ) ( )
2

a

a

f a af
f f D xf a f

x x f

 ′ ′′+′′ ′ ′ + + = − − − − +
′  

  (20) 

 

The last form predicts a diminishing behavior for large values 

of x that approaches a power low of the form 

 

 
( )( ) z a

a
f x B x−→ , (21) 

 

with 
1

( ) (1 )z a a
−= − and 1 1( ) (4 5 ) /(1 )a a

a
B a D a a− += − − for 

values of a in the range 0 ≤ a < 4/5. For values of the 

parameter a ≥ 4/5, no power low can be drawn. The above 

results can be verified accurately from the numerical solution 

of equation (18) for values of the parameter a up to 0.5 (not 

shown here). Above this value the accuracy of the asymptotic 

analysis seems to fail due to persisting oscillations. More 

specifically, for a = 0.57 there is a clear oscillatory behavior 

around the power low given by equation  (21). For a = 0.6 and 

a = 0.62 the oscillations increase and for a = 0.63 the model 

collapses due to the negative values of b2 and b2΄ that appear. 

This behavior could be related to the non-trivial large scales 

effects associated with the linear forcing. E.g. under the 

conditions one usually proves the invariance of the 

Loitsiansky’s integral [10,11] one would get that it grows 

exponentially with time. This behavior can be related, through 

the influence of the boundary conditions, to the existence and 

the properties of the stationary state observed in the DNS[13]. 

A detailed discussion on this fact will be given in the final 

version of this work after further investigation. 
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COMPARISONS WITH EXPERIMENTAL DATA AND 
DIRECT  NUMEICAL SIMULATIONS 

As it has been described above, equation (18) was solved 

numerically with MATLAB in order to calculate the B2 and B3 

structure functions.  In this section we present results for the 

third order structure function and for the resulting isotropic 

spectra of turbulence.  

In order to test the model’s predictions for B3, we have used 

three different types of air flows: a round jet (at Reynolds 

numbers 350 and 695), a grid turbulence (at Reynolds 

numbers 72 and 144) and in the return channel flow of the 

ONERA-Modane (at Reynolds number 2260). These 

experimental data are summarized in Gagne et al. (2004)[12]. 

The respective present model’s results have been calculated 

for the case of the parameter  a = 1 which corresponds to the 

original OP model. The value of C2 was not kept constant but 

decreases slowly from 2.6 at the lowest Reynolds case to 2.1 

for the highest. As it is shown in figure 3 there is remarkable 

agreement between the model and the experiments although in 

the case of the jets the shape near the maxima is different. 

However the overall comparison is good and highlights the 

physical mechanism of the linearly forcing, which is more 

natural than a bounded forcing scheme [1]. Different values of 

the parameter a may result in an even better picture but this is 

a subject for future research.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10 100 1000

r/λg

- 
B

3
(r

)/
εr

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10 100 1000

Grid 72

Grid 144

Jet 350

Jet 695

Modane 2260

 
Figure 3. Comparison of the B3 structure functions calculated 

by the present model (lines) with experimental data (symbols) 

from:  a round jet at Reynolds numbers 350 and 695, a grid 

turbulence at  Reynolds numbers 72 and 144 and in the return 

channel flow of the ONERA-Modane. 

 
 In order to compare the results of the model against existing 

DNS data of linearly forced turbulence [2,3], we integrate the 

calculated autocorrelation function  f(r) and calculate the one-

dimensional energy spectra as   

 

 11

0

( ) / 4 / 3 ( )cos( )E k K f x k x dxλ λ π λ
∞

= ∫  (22) 

  

where x = r/λ, and K is the turbulent kinetic energy. 

Furthermore, we differentiate the result of (22) through   

 

 

2 2

11 11

2

( ) ( ) ( ) ( )

2 2 ( )

E k k E k k E k

K k k

λ λ λ λ λ
λ λ λ

∂ ∂
= − +

∂ ∂
 (23) 

and obtain the stationary turbulent kinetic energy spectra of 

linearly forced turbulence. This step is important, since it may 

help to predict the forms of the stationary spectra to be used in 

initializing linearly forced direct numerical simulations. Also 

it provides with a basis for a more accurate testing of the 

model’s results, against data that refer to the same physical 

mechanism.  
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Figure 4.  Comparison of  the dimensionless  turbulent  kinetic  

energy  spectra  published  in [2] (grey lines)  with the respe-

ctive results from the present  model (symbols), for Reynolds  

numbers: 240 (crosses), 173 (circles) and 25 (squares).   

 

On this basis, in figure 4, we compare the dimensionless, 

turbulent kinetic energy spectra E(k)/(εν5)1/4, published  by 

Rosales and Meneveau [2] with the respective results from the 

present  model, for a variety of Reynolds  numbers. The model 

results are for values of the parameters  a = 1 and C2 = 2.2. 

From the comparison it turns out that the model describes 

perfectly the stationary spectral forms and performs well 

within all the wave-number range.     
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Figure 5.  Comparison of  the dimensionless  turbulent   

kinetic  energy  spectra published  in [3] (symbols) with the 

respective results from the present  model  (lines), for  

Reynolds  numbers: 100 (open circles, spaced-line) and 25 

(solid circles, line).   

 

Also, in figure 5, we present the dimensionless, turbulent 

kinetic energy spectra E(k)/(kλ), published  by Akylas et al. [3] 
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and we compare them with the respective results from the 

present  model, for Reynolds  number 25 and 100. Once again 

the model’s predictions are in perfect agreement with the 

DNS. This picture gives the hope that the modeled spectra can 

be used in initializing linearly forced direct numerical 

simulations in a future step of this work. 
 

CONCLUSIONS 
The physics of the linear forcing of isotropic turbulence, 

allows for some useful estimates of the characteristic length 

scales of the turbulence produced during the statistically 

stationary phase. With such estimates we could practically 

define uniquely the stationary statistics by means of the box-

size of the simulation, the linear forcing parameter and the 

viscosity of each case. In this work we investigated the 

linearly forcing method through the Karman-Howarth 

equation [1,4] in terms of the second and third order structure 

functions. We solved the stationary version of the equation 

using a generalized closure which is based on Oberlack and 

Peters[5] model. The produced forms are in close agreement 

with experimental data from both homogeneous and non-

homogeneous turbulence. Furthermore, the produced 

stationary spectra of the turbulent kinetic energy are in 

excellent coincidence with past DNS of linearly forced 

turbulence. This picture gives the hope that the modeled 

spectra can be used in initializing linearly forced direct 

numerical simulations in a future step of this work. The 

method used still needs further investigation, regarding the 

role of the exponent (parameter a) in the generalized OP 

model and the values of the parameter C2, but it provides a 

good basis for understanding and possibly initializing linearly 

forced runs.  
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