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ABSTRACT
The difficulties in laboratory experiments in understand-

ing the vortex dynamics in the region between the grid and
that where isotropic turbulence is obtained suggest to perform
direct numerical simulations. In this paper flows with analyt-
ical inlet disturbances are compared with those obtained by
simulating flows past real grids. The results show that the tur-
bulent energy decay rate (q ≈ x−m

1 ) depends on the shape of
the grid. The analysis is focused on analytical disturbances
and in particular by considering−〈Q〉 = 〈si js ji〉− 〈ωiωi/2〉
and the terms in theU1 momentum equation written in rota-
tional form. The energy spectra compare well with those in
forced simulations, in addition it has been observed that, at
the sameRe number the multiple scale disturbances generate
flows atRλ higher than those with single scale disturbances.

INTRODUCTION
The complex flow physics of turbulent flows has been

studied in isotropic turbulence. In this flow the turbulent ki-
netic energyq = 〈u2

i 〉/2 decays in time ast−m. The〈〉 indi-
cates averages in the homogeneous directions. This flow, in
a laboratory, is generated by inserting in wind tunnels grids
whose solidity produce a flow with energy spectra peaked at a
wave number related to the mesh sizeM of the grid. The flow
is not isotropic in the region behind the grid, for the effect of
the flow structures generated on the solid surface of the grid,
and becomes isotropic downstream, within a distance function
of M. The flow reaches a statistical stationary steady state,
with q varying in the downstream directionx1 in a complex
way. Batchelor & Townsend (1948a, 1948b) in two papers
observed that the energy was decaying with a power lawx−m

1 ,
with m = 1 in the initial andm = 5/2 in the final period. The
dependence ofm on the shape of the grid has not fully under-
stood, however it can be presumed that the value ofm in the
initial period is related to the vortical structures generated by
the grid, and it is important to establish how far downstream
the initial conditions affect the turbulence. In a laboratory the
full comprehension of the link betweenm and the initial con-

ditions can not be achieved for the difficulty to measure the
vorticity field. Recent experiments by Lavoieet al.(2007) and
Seoud & Vassilicos (2007) were devoted to investigate the in-
fluence of the shape of the grid on the power law decay. In
a more recent paper, Ertuncet al.(2010) reporting laboratory
and numerical experiments, listed the experimental require-
ments to generate homogeneous flows.

The numerical simulation may help to understand the
flow physics, for the possibility to have any quantity and in
particular pressure and vorticity fields. In the past simulations
of isotropic decaying turbulence att = 0 assigned velocity
components with random phases and energy spectra peaked
at different wave number. These initial conditions, having
random phases, differ from those in the real experiments and
then the effects of the vortical structures can not be studied.
To help the experimentalist the simulations should mimic, as
much as possible, the conditions obtained in wind tunnels by
inserting grids after the contraction. Regular square grids are
often used, therefore Djenidi (2006) and Ertuncet al.(2010)
could use the lattice Boltzman method to reproduce the flow
past biplane grids. Djenidi (2006) was not interested to anal-
yse the effects of the grid solidity, which on the other hand
was investigated Ertuncet al.(2010).

By using multiscale grids Seoud & Vassilicos (2007) and
Hurst & Vassilicos (2007) produced flows with unusual tur-
bulence properties. Also for multiple scale configurations the
rate of energy dissipation (ε = 2νS, with S = 〈si js ji〉) dic-
tates the energy decay rate. Sinceε is linked to the vortical
structures generated by the grid its shape controls the distance
where the flow becomes isotropic. A careful analysis of the
flow structures in the anisotropic region by DNS with differ-
ent inlet conditions allows to understand how to obtain the
desired isotropic turbulence.

As before mentioned for the single-scale disturbances
the comprehension of the interaction among flow-structures of
different size in the region past and close to the grid is rather
difficult in experimental studies. In presence of multiscale-
scale grids the analysis is even more difficult and the DNS
could be of help. The numerical reproduction of the fractal-
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grids in the Seoud & Vassilicos 2007 experiments requires a
large number of grid points. Nagataet al.(2008) and Laizet
et al.(2008) made preliminary attempts to reproduce the ex-
periments, further studies are necessary, in particular because
the reproduction of the grid by the Immersed Boundary Tech-
nique could affect the results. In the present study an idea
of the effect of the inlet conditions has been obtained by as-
signing large scale velocity distributions and small random
noise disturbances. The simulations, without the interaction
between flow and grids are more efficient from the numeri-
cal side. A comparison with the realistic simulations allow to
draw some conclusions on the effect of the inlet conditions.

Numerical method
Basic finite difference

The basic numerics consists on a second order finite dif-
ference scheme with staggered velocities, which in the invis-
cid limits and for three periodic directions conserves the total
energy. The method is described in Orlandi (2000), where are
also shown the global conservation properties, for the inviscid
equations. In such conditions, a comparison with a scheme
forth order accurate and with the pseudospectral method was
performed by Duponcheelet al.(2008) showing that second
order accuracy is rather good, even if not better than the
other methods. Slight modifications are necessary to solve
the Navier-Stokes equations with two periodic directions and
inlet outlet boundary conditions. The inlet conditions are eas-
ily assigned by an analytical expression for the three velocity
components. At the outlet radiative conditions allow to the
flow to exit from the computational domain without produc-
ing any disturbance propagating upstream.

The numerics, shortly resumed, allow to solve the in-
compressible non-dimensional Navier-Stokes and continuity
equations given by

∂Ui

∂ t
=−

∂UiU j

∂x j
−

∂P
∂xi

+
1

Re
∂ 2Ui

∂x2
j

= RHSi ;
∂Ui

∂xi
= 0 ,

(1)
where the reference velocity is the uniformU0 at the inlet and
the reference length is such that the square computational sec-
tion, orthogonal tox1, has sides of lengthL2 = L3 = 2π.

Analytical inlet conditions
For the simulations without solid grids within the flow,

the non-dimensional inlet velocity are

Ul = δ1l +Al sin(Nx2)sin(Nx3)+AR(x2,x3) (2)

whereAl is the amplitude of the large scale disturbances set
equal to 0.25 only for l = 2 andl = 3 andAR = 0.01 is the
amplitude of small random disturbances. To investigate the
effects of the solidity of single scale grids three cases withN
equal to 2,4 and 8 have been considered, and are indicated
by IN . To have an idea of the modification of the streamwise
evolution by a multiscale gridN has been varied in different

sectors of the inlet section. In these circumstances the flows
are indicated byIM at low andIH at highRe numbers. For
theU1 component only a random disturbance is added to the
uniform stream. An uniform mesh in the three directions has
been used with resolution 2π/160. To evaluate the decay rate
correctly and to investigate whether the turbulence becomes
isotropic the computational domain should be long enough.
For N = 8 andL1 = 12π, L1/M = 48, a sufficiently long dis-
tance, comparable to that in laboratory experiments.

Real simulations
To reproduce numerically the effects of a grid it is nec-

essary to add to the basic numerical method the Immersed
Boundary Technique. The method here used was applied by
Leonardi & Orlandi (2004) to rough channels flows, the dif-
ference is that here a mean pressure gradient is not necessary;
the constant flow rate is obtained by adjusting the outlet con-
ditions. Even if, in principle, grids with holes of any shape
can be treated, here the study is restricted to rectangular holes.
The size of the void is equal tow, that of the solid equal tob
and the thickness of the grid is equal tok.

For these real simulations the inlet velocityU1 must be
assigned at a distanceLg ahead of the grid, therefore the outlet
boundary has been imposed atL1 = 24π. In these simulations
192 points inx2 andx3, have been used, accordingly the num-
ber of points inx1 are 1536. The flow past the grid becomes
turbulent or not depending on the solidity of the grid. It has
been found that for a grid composed by by 8×8 elements; for
small solidity (b = 4π/192) andw = 44π/192) the flow does
not become turbulent, while for large solidity (b = 16π/192
andw = 32π/192) isotropic turbulence is obtained at distance
x1/M > 10. The shape of the grid dictates the velocity distri-
bution at the exit of the grid. For the two grids here considered
one with a single scale and the other with multiple scales the
U1 and theU2 distributions are different from those assigned
by Eq.(2).

From these considerations our opinion is that the simula-
tions described in the next section allow to have informations
on the effects of the initial conditions on the generation of
isotropic turbulence by a solid grid.

Results
Analytical and realistic simulations

In this paper more emphasis is given to the simulations
with analytical disturbances at the inlet, however it is worth
presenting a comparison with the more realistic conditions to
evaluate their differences. The inset of Fig.1 shows the pro-
files of q in the two different type of simulations, for the an-
alytical disturbances small oscillations occur, whereas for the
realistic conditionsq is zero at the inlet. Ahead the grid,q
for single and multiple scale disturbances sharply increases,
with minor differences, which become large after the grid. In
the two cases there are large differences with a higher growth
for a longer distance for the multiple scale grid. To make a
comparison among the results it is necessary a normalisation
with the reference valueq0 = q(x10). For the analytical distur-
bances the natural choice forq0 is at x1 = 0, for the realistic
simulations the values ofx1 in correspondence to the maxi-
mum of q have been chosen. The obtained profiles in Fig.1
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Figure 1. Profiles ofq versusx1/M scaled withq0 = q(x10)

at different distancesx10, for analytical disturbancesx10 = 0,
for realistic grids: single scalex10 = 2.33 multiple scalex10 =

4.34: in the inset the profile ofq in the initial region versusx1,

show different power laws in the isotropic region, in particu-
lar for the single scale disturbances at large distances from the
grid, the slope is approximatelym = 2.5. This slope was mea-
sured by Batchelor & Townsend (1948b) in the final period of
decay when theRλ is small. They defined different regimes
accordingly to the parameter 22/Rλ , that in the final period
is greater than 1. On the other hand, Batchelor & Townsend
(1948a), in a different paper, studied the initial period of de-
cay with 22/Rλ < 1 measuring a power law decaym = 1. In
these circumstancesRλ is constant. Figure 1 shows that a
power lawm = 1 can always be found at a short distance, but
to have a meaning the slope should last for a substantial dis-
tance. Even ifm = 1 was not found for all the flows,m = 1.25
was achieved for the multiple scale disturbances, both by the
real and by the analytical disturbances. In no one of the flows
Rλ remains constant for a long distance even by increasing the
Reynolds number. It can be then postulated that to get a con-
stantRλ an opportune shape of the grid should be designed.
Perhaps the use of circular wires together with the large scale
motions always present in closed circle wind-tunnels could be
the reasons why Batchelor & Townsend (1948a) gotm = 1.
The present results with the multiple scale disturbances agree
with those measured by Lavoieet al.(2007) . The profiles in
Fig.1 suggest that the shape of the grid plays a fundamental
role that requires more specific simulations.

Due to large dependence of the inlet disturbances on the
statistics behaviour, in the next section, a more detailed anal-
ysis of different statistical quantities is presented for the flows
with analytical disturbances.

Analytical inlet conditions
Velocity statistics The analytical distributions in

Eq.(2) give〈u2
l 〉 = O(10−1) for l = 2 andl = 3 and〈u2

1〉 =

O(10−3) having also〈u2u3〉 6= 0, a condition far from the
isotropic one〈u2u3〉 = 0. The initial disturbance atx1 = 0 is
convected downstream and, at a certain time, reaches the out-
let section. Only at that time the fields can be saved to have a
greater number of samples, necessaries to get well converged
statistics. To understand the streamwise approach to isotropy
here some of the statistics are evaluated with one realisation.

From a qualitative point of view the increase ofN in
Eq.(2) is associated to disturbances at smaller scales which
decay faster inx1. The mean streamwise velocityU1 is con-
stant inx1 then, one is expecting that the propagation velocity
of the disturbances should not vary withN. On the other hand,
it has been observed that, the disturbances with smallN prop-
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Figure 2. a) Profiles ofq versusx1/M: I2, I4,

I8, thick IM at different times, thin IH .

agate faster, even without large differences on the time when
the disturbances reach the end of the domain. A global pic-
ture of the streamwise decrease of the energy disturbanceq
with x1, demonstrates that, for single scale disturbances, the
location where the turbulent energy begins to decay moves up-
stream with the increase ofN. For multiscale the decay rate is
different from that for single scale disturbances. To have the
idea of theq variations inx1 during the statistical steady state
stage, the profiles ofq for multiscale disturbances, at differ-
ent times (t = 60,100 andt = 140) overlap one to the other,
each one presenting streamwise oscillations typical of turbu-
lent flows.

In laboratory experiments the variations of the turbulent
quantities were given in function of a distance normalised
with the mesh sizeM of the grid, here given byM = 2π/N.
By plotting q versusx1/M the profiles of the single scale dis-
turbances, from a certain point, overlay each other (Fig.(2)).
The caseI8 shows, better than the others, variations ofm in
x1, emphasising the influence of the length of the computa-
tional box in the determination ofm. This was also found in
laboratory experiments, for instance Lavoieet al.(2007) mea-
sured in a range 30< x1/M < 100 greater than here. Then
the present values ofm are higher than them by Lavoie et
al.(2007) varying between 1.06 and 1.24. The present DNS
show that for 1< x1/M < 3 theq decay varies withN, and
that for 3< x1/M an equal value form is obtained. The dif-
ferences in the regions of large anisotropy depending on the
vortical structures can be understood by DNS.

The value ofM for the multiscale disturbances has been
evaluated asM = (2+4+8+16)/(8π). The decay in Fig.(2)
differs from that for the single scale disturbances, and it is
rather difficult to imagine the existence of a value ofM leading
to a superposition of the two set of curves in Fig.(2). The
results in Fig.1 reinforce this point, in fact an universal decay
rate for multiple scale disturbances doe not hold. Figure (2)
shows an initial decrease ofq, which is due to the influence
of the sectors withN = 16. The weak decay, in the isotropic
region (x1/M > 10), is due to the existence of the vortical
structures generated by the sectors withN = 2.

The achievement of isotropic turbulence can be establish
by looking at the turbulent stresses〈uiu j〉, which, with the
present inlet conditions have a correlation coefficientC32 =

〈u3u2〉/
√

〈u2
3〉〈u

2
2〉 = 1. This highC32 can not be achieved in

real numerical experiments, as those above presented. Then
these simulations withC32 = 1 are very useful to understand
the transition from anisotropic to isotropic turbulence. The
turbulent stress〈u3u2〉 can have positive or negative values, in
particular when it is small, therefore to analyse the sharp de-
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crease towards zero, it is preferable to plot the absolute value.
The Re independence has been verified for single and multi-
scale disturbances, but is shown, in Fig.(3), only for the mul-
tiscale disturbances. As for the normal stresses, the profiles of
|〈u3u2〉| versusx1/M indicate that isotropy is reached at a lo-
cationx1/M for the single scale disturbances (Fig.(3)). For the
multiscale disturbances, even if the trend is different, it can be
asserted that within a distance of fiveM isotropic turbulence
is reached. Plots of the ratioK = 〈u2

1〉/〈u
2
2〉 demonstrate that

a perfect isotropy is not achieved, and this can be related to
the influence of the large scales on〈u2

l 〉.

Flow structures and streamwise stress
The streamwise momentum equation averaged in the two nor-
mal directions implies a balance between〈p〉 and 〈u2

1〉. In
addition, by averaging the Poisson equation for pressure -
∇2p = si js ji −ωiωi/2 = −Q, we get

−
∂ 2〈p〉

∂x2
1

= −〈Q〉 = 〈si js ji〉−〈ωiωi/2〉 = S−O =
∂ 2〈u2

1〉

∂x2
1

(3)

From this equation it can be asserted that∂ 2〈u2
1〉

∂x2
1

controls

the topology of the turbulent structures. To know which type
of structures prevails we recall that points withQ > 0 are as-
sociated with tube-like, whereas points withQ < 0 are associ-
ated with sheet-like vortical structures (Tsinober 2009 Chap-
ter 6). This statement has a physical meaning only whensi j
andωi are derived by velocity fields solution of the Navier-
Stokes equations. It is important also to remind thatsi j andωi
are the quantities entering in the vorticity transport equations.
In isotropic turbulence〈Q〉= 0 although the number of points
with si js ji > ωiωi/2 is greater than those withsi js ji < ωiωi/2.
This occurrence produces a negative skewed probability den-
sity function of∇2p, implying that the most extreme events
are associated to sheet-like structures (Ashurst et al. 1987).

In the anisotropic part of the present flows∂ 2〈u2
1〉

∂x2
1

accounts

for the disequilibrium betweenS andO; this term can, then,
be regarded as a measure of the number of sheet-like struc-
tures, which being inherently unsteady, roll-up leading to the
transition from anisotropic to isotropic turbulence. Figure (2)
shows that, atx1/M ≈ 3.5, for all theN, 〈u2

1〉 ≈ (x1/M)−m,

hence ∂ 2〈u2
1〉

∂x2
1

≈ (x1/M)−m−2 asserting that the tendency to-

wards isotropic turbulence is rapid. For the flows at different
N, the plots of〈Q〉 versusx1 show a prevalence of sheet-like
structures. For the multiscale disturbances the disequilibrium
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Figure 4. Profiles of〈Q〉 scaled with respect toN2 versus
x1/M , here〈Q〉 at the highRe has been divided by 3 the
ratio of the high and the low Reynolds numbers; I2,

I4, I8, tick IM , thin IH .

increases with the Reynolds number, but by multiplying〈Q〉
for the Re numbers ratio there is a better similarity. These
plots indicate that, by increasingN, the sheet-like structures
form closer to the inlet and that these prevail for a longer dis-
tance for multiple scale disturbances. The〈Q〉, normalised
with N2 and plotted in Fig.(4) versusx1/M, in agreement
with the previous observations, shows that isotropic turbu-
lence forms at the samex1/M and that the structures disequi-
librium increases by reducingN. This is reasonable because
low N generate larger structures which are more unstable.

Lamb vector For a better understanding in the
anisotropic and in the isotropic regions the streamwise mean

momentum equation, whered〈u
2
1〉

dx1
balancesd〈p〉

dx1
, has been

considered. For the flowsI2 andI8 the terms scaled withN,
and plotted versusx1/M, indicate a similar behaviour near the
inlet and some difference in the anisotropic region. To have
more informations is worth to write the momentum equation
in rotational form, whereq enters, and then it is possible to
distinguish the different contributions to theq variations in
the anisotropic and in the isotropic regions. The momentum
equations in this formulation are

∂Ui

∂ t
− εi jkU jωk = −

∂φ
∂xi

+
1

Re
∂ 2Ui

∂x2
j

(4)

with φ = p+U2
i /2. By averaging the equation in thex2 andx3

directions the equation for the streamwise component〈U1〉 =
1 is

∂q
∂x1

−〈u2ω3〉+ 〈u3ω2〉 = −
∂ 〈p〉
∂x1

=
∂ 〈u2

1〉

∂x1
(5)

It is, then, possible to distinguish the contribution of the dif-
ferent terms to the streamwise variations ofq or 〈u2

1〉. The
right hand side of this equation indicates that the pressure gra-
dient drives the growth of〈u2

1〉. This stress is absent atx1 = 0,
and had to grow to become comparable to the other stresses.
The equal magnitude of the stresses is the first requirement
to fulfil to have isotropic turbulence. The pressure gradient
is given by the external force necessary to maintain a con-
stant flow rate, and consequently a constant total energy. The
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Figure 5. Profiles of the terms in the equation for the mean

streamwise momentum equationd〈u2
1〉

dx1
decomposed in

dq
dx1

and the streamwise component of the Lamb vector
λ for I8 tick lines and solid circle, forI2 thin lines and open
circle

components of the Lamb vectorλ = v×ω are related to the
rate of energy transfer from large to small scales. Figure 5
shows a large increase of〈u2

1〉 at the entrance which reduces
becoming negligible atx1/M ≈ 0.3. Figure 5 shows thatq
does not largely vary in the first region, and from Eq.(5) it
follows that the increase of〈u2

1〉 is due to the contribution of
the Lamb vector. From a control point of view this observa-
tion, suggests that a delay of the transition to isotropic turbu-
lence can be achieved by applying an external force aligning
the velocity and the vorticity vectors. This mechanism has
been studied by Orlandi (1997) in rotating pipes where the
rotation increases the helicity densityh = v ·ω, which from
the identity|v×ω|2 + |v ·ω|2 = |v|2|ω|2 reduces the transfer
from large to small scales. Several studies have demonstrated
that by adding solid body rotation to isotropic turbulence the
decay rate decreases (Davidson 2010). The Eq.(4) helps to
understand why the energy decay rate reduces by increasing
the rotation rate. Numerical experiments on the effect of solid
body rotation for the flowI8 are currently performed and the
results will be presented in a different paper.

The strong anisotropic region ends atx1/M ≈ 0.3, in
the successive region the three normal stresses are constant,
but 〈u2

1〉 is greater than the other two. To reach the isotropic
state〈u2

1〉 should decrease with a rate depending onN. Fig-

ure (5) shows that the decrease is equally due to∂q
∂x1

and to
−〈u2ω3〉+ 〈u3ω2〉.

Velocity spectra In laboratory experiments the
velocity spectra are evaluated by a single wire probe and the
time signal is processed by using the Taylor hypothesis. The
same procedure is feasible in the numerical simulations at the
expenses of a large CPU necessary to have a long time sig-
nal oscillating around the statistical steady state mean value.
In the numerical simulations, the spectra can also be evalu-
ated in the two homogeneous directions (x2 andx3). Having
the true longitudinal and transverse spectra and those from
the time signals it could be interesting to verify the validity
of the Taylor hypothesis. This comparison is presented else-
where; here the interest is to compare the longitudinal and
the transverse one-dimensional spectra with those obtained in
forced isotropic turbulence. The longitudinal and transverse
spectra can be evaluated by using different velocity compo-
nents which should produce the same results. To demonstrate
that this is indeed verified has been considered theIH flow,
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Figure 6. Profiles of dimensionless one-dimensional lon-
gitudinal spectra in Kolmogorov variables: atx1/M = 10;

I2, I4, I8, tick IM , thin IH , solid
circle forced isotropic turbulence atRλ = 100 Jimenezet al.
(1993).

which produces wider spectra thanIM . It has been verified
that the longitudinal spectraE22(k2) and E33(k3) are equal
at a distancex1/M = 10. Instead these plots, at a distance
x1/M = 2, show a small anisotropy persistence at large scales.
As it should be expected, the isotropy is achieved, before at
small and later on at large scales, this is demonstrated by the
transverse spectra, where, at the large scales, some anisotropy
is still present atx1/M = 10.

The comparison with the spectra in forced isotropic tur-
bulence necessitates the spectra in Kolmogorov variables.
The rate of dissipationε has been calculated by the one-
dimensional spectra (ε = 15ν

∫

k2
l Elldkl), the Kolmogorov

scale isη = (ε/ν3)1/4, the non-dimensional wave number is
k∗l = kη , and the one-dimensional dimensionless spectra are
E∗

ll = Ell(ε/ν5)−1/4. The sharp energy peaks in the spec-
tra atx1/M = 2 (not reported), separated by a wave number
proportional toN, indicate the effect of the inlet disturbance.
This implies that the energy inserted at the wave number of
the disturbance has not been transferred into the whole range
of wave numbers. Therefore the smallest dissipating Kol-
mogorov scales, are not formed, as emphasised by the devi-
ations, from the correct exponential range. On the other hand,
further downstream, atx1/M = 10, Fig. (6) indicates a col-
lapse of all the spectra in the exponential range with those ob-
tained by the Jimenezet al.(1993) pseudospectral simulations.
The outcome of this figure is that for theIH flow isotropic tur-
bulence at a reasonable highRλ was generated. Instead, at the
same Reynolds number, single scale disturbances were pro-
ducing turbulent flows at lowRλ . From the numerical side the
spectra confirm that the flow is well resolved and that these
numerical experiments generate flows similar to those by grids
in wind tunnels.

Conclusions
The simulations described in this paper were devoted

to have a better understanding of the effects of the type of
the grid on the flows paste grids. It has been demonstrated
that grids with a single scale mesh generate flows having a
turbulent energy decaying with a power lawm = 2.5. This
high value is typical of turbulence at smallRλ (Batchelor &
Townsend (1948b), where the energy spectra are dominated
by the exponential range. To have insights on the effect of the
grid solidity, simulations with analytical inlet disturbances,
having two large normal stresses and the third null, were per-
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formed. These inlet conditions far from the isotropy, lead to a
better understanding on the approach to isotropy. A good scal-
ing of the normal stresses with the size of the disturbance was
found, and it was, also, observed that this scaling does not old
for the statistics of the vorticity in the whole downstream di-
rection. The terms of the streamwise momentum equations in-
dicate large scale effects close to the inlet, due to the pressure
difference necessary to maintain a constant flow rate. Further
downstream the effect of the energy transfer from the large to
the small scales is predominant, which has been analysed by
the momentum equation in rotational form. The appearance
of the Lamb vector suggests an eventual control of the power
law decay rate, through the alignment of the velocity and the
vorticity vectors, which can be obtained by solid body rota-
tion. The reduction of the decay rate has been observed in
preliminary simulations, which were not discussed, and will
be presented elsewhere.

The comparison between simulations with single and
multiple scale disturbances demonstrated the possibility to re-
ducem, but a long region withm = 1 was not found. Batche-
lor & Townsend (1948a), in their early experiments, obtained
m = 1, characterised by a constantRλ , which is of inter-
est in practical applications. The present simulations, indeed
produced higherRλ , corroborating the results in experiments
with fractal grid (Seoud & Vassilicos 2007) and suggesting
the necessity of more numerical simulations. The different
behaviour of single and multiple scale disturbances, and, in
particular, the difficulty to getm = 1 with single scale distur-
bances, suggests the presence of multiple scale disturbances
in laboratory experiments with regular grids. These could be
due to fabric imperfections on the grid, and to large scale flow
disturbances in the wind tunnels.

In this study the multiple scale disturbances were also
created by a real simulation and it was observed that the val-
ues ofm differ from that obtained by analytical distributions,
this is a further evidence that the shape of the grid plays an
important role on the decay of isotropic turbulence.

The comparison of the spectra, in Kolmogorov units,
with those obtained by pseudospectral simulations of forced
turbulence shows thatRλ is comparable. The present flows
are generated as in the experiments and by knowing not only
the velocity but also the pressure and the vorticity fields can
be of help to the experimentalists. For instance, at a desired
location, the time variations of the variables can be stored,
and by using the Taylor hypothesis the longitudinal and trans-
verse spectra can be evaluated and compared with those in
the homogeneous directions. The spectra evaluation by ar-
rays of probes is expensive in laboratory experiments, then
the present simulations can be of help to investigate the va-
lidity of the Taylor hypothesis. In the recent years vorticity
probes have been used, (Wallace & Vukoslavcevic 2010 ) but
rarely their configuration has been reproduced in numerical
simulations to investigate the limitations of the probes. The
flows here studied are candidate to this purpose.
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