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ABSTRACT
An experimental investigation of freely decaying ho-

mogeneous, quasi-isotropic turbulence generated by a low-
blockage space-filling fractal square grid is presented. We find
good agreement with previous work by Mazellier & Vassilicos
[“Turbulence without the Richardson-Kolmogorov cascade”,
Phys. Fluids 22, 075101 (2010)] but also extend the length
of the assessed decay region and consolidate the results by
repeating the experiments with a second probe of increased
spatial resolution. It is confirmed that this moderately high
Reynolds number turbulence (150 < Reλ < 400) does not fol-
low the classical high Reynolds number scaling of the dissipa-
tion rate ε ∼ u′3/L which is in fact equivalent to a proportion-
ality between the Taylor-based Reynolds number Reλ and the
ratio of integral scale L to Taylor micro-scale λ . Instead we
observe a constant ratio L/λ whilst Reλ decays during free
turbulence decay. Alternative reasons for this non-classical
behaviour are discussed, including various ways in which the
turbulence may fall into a self-preserving, single-length-scale
state. It is also shown that the measured 3D energy spectra
can be reasonably collapsed using a single length-scale over
the entire decay region even though the Reynolds number is
high enough for conventional decaying turbulence to display
spectra with two-scale (inner and outer) Kolmogorov scaling.

Introduction
The energy dissipation rate can be scaled with the large

scale variables u′ & L (the r.m.s. velocity fluctuation and the
integral scale respectively) to give the dimensionless dissipa-
tion rate (Taylor, 1935):

Cε (Reλ ,Re0,∗)≡
εL
u′3

(1)
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where Cε is in general dependent on the local Reynolds num-
ber Reλ (local as in particular to given stream-wise posi-
tion aft of the grid in a wind-tunnel experiment) and on the
initial conditions via their characteristic Reynolds number
Re0 and other topological details (represented by the aster-
isk). Nonetheless Cε is expected to loose its Reynolds num-
ber dependence (Reλ & Re0) for sufficiently high Reynolds
numbers, possibly retaining only information about the large
scale flow topology (Mazellier & Vassilicos, 2008). Here we
have chosen the Taylor micro-scale based Reynolds number
Reλ = u′λ/ν as the local Reynolds number (but the integral-
scale based Reynolds number would be equally appropriate)
and a grid Reynolds number Re0 = U∞t0/ν to be the initial
conditions Reynolds number (t0 was arbitrarily chosen to be
the thickness of the largest bar of the grid).

The functional form of Cε plays a fundamental role in de-
termining the energy decay rate of the turbulent flow since it
relates the energy dissipation ε with the kinetic energy (u′2/2)
and the ’eddy turn-over time’ (L/u′). Together with an esti-
mate of the growth of the integral scale (or the ’eddy turn-over
time’), obtained for example from the conservation of invari-
ants, the energy decay rate is completely determined, usually
as a power law:

u′2 = A(x− x0)
−n (2)

For example, assuming Cε is constant and that either Loit-
syanky or the Saffman invariants are finite and conserved dur-
ing decay it follows that the power law decay exponents must
be n = 10/7 and n = 6/5 respectively. Assuming, on the other
hand, that Cε ∼ Re−1

λ
during decay (as in self-preserving de-

caying turbulence where L/λ remains constant whilst Reλ de-
cays thus yielding Cε ∼Re−1

λ
) the conservation of the same in-

variants yields n = 5/2 & n = 3/2 respectively. It is therefore
clear that it’s not possible to study the problem of the energy
decay rate of freely decaying turbulence and its dependence
on initial conditions without understanding the behaviour of
Cε during decay and its dependence on initial conditions.
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Note that, although Cε ∼ Re−1
λ

is the functional form
found in the ’final period of decay’ where the non-linear en-
ergy transfer is negligible and consequently only direct dis-
sipation via viscous diffusion at all scales is possible (ε ∼
νu′2/L2 (Tennekes & Lumley, 1972)), this should not be con-
founded with, for example, self-preserving solutions of the
Kàrmàn-Howarth equation (Kármán & Howarth, 1938) valid
for high Reynolds number turbulence with non-negligible
non-linear energy transfer (see e.g. Sedov, 1959; George,
1992; Mazellier & Vassilicos, 2010). The present experiments
are just such an example of moderate to high Reynolds num-
ber turbulence (up to Reλ ≈ 400) with Cε ∼ Re−1

λ
.

Self-similar decay of homogeneous turbulence
Self-similar solutions of the spectral transfer equation

(Lin, 1947):

∂E(k, t)
∂ t

= T (k, t)−2νk2E(k, t) (3)

can be sought in terms of a single determining length-scale
`(t) which is dynamically relevant at all scales of the flow (as
opposed to two length-scales dynamically relevant for large
and small scales separately). This can be expressed by the
ansatz:

{
E(k, t) = F(t,Re0,?) f (k `(t),Re0,?)

T (k, t) = G(t,Re0,?)g(k `(t),Re0,?)
(4)

which implies that the shapes of the dimensionless functions
f & g remain unchanged while the turbulence decays, but
nonetheless the shape of the spectra depend in principle on
the initial conditions, denoted by ’?’, and the initial conditions
Reynolds number Re0.

There are two main routes to obtain self-similar solutions
depending on the choice of the scaling function G (George,
1992; Speziale & Bernard, 1992): either determine F and G
directly from dimensional analysis and the assumption that
they depend only on u′(t) & `(t), leading to F = u′2` and
G = u′3, which is the classical similarity constraint used e.g.
by Kármán & Howarth (1938) and Sedov (1944, 1959); or re-
lax this constraint and let the equation itself dictate the func-
tional forms of G and F which turn out to be G = νu′2/` and
F = u′2`. The two routes lead to the same answer only if the
Reynolds number u′ `/ν remains constant during decay.

We follow Mazellier & Vassilicos (2010) and consider
self-similar solutions of the type proposed by George (1992);
George & Wang (2009), but we cannot preclude the possibil-
ity of the fractal generated flow achieving a self-similar state
where the classical similarity constraint is satisfied as in Se-
dov (1944). This influences little the following discussions
since we focus on consequences of self-similarity which are
common to both similarity constraints, such as the proportion-
ality between L and λ (and thus ` can be taken to be either L
or λ ) and the preservation of the shape of f normalised by u′

& `.
Mazellier & Vassilicos (2010) proposed a convenient

functional form for the kinetic energy decay and the evolu-
tion of L & λ that is both consistent with the power-law decay

Figure 1. Three different fractal grids studied by Hurst &
Vassilicos (2007). From left to right, a fractal cross grid, a
fractal ’I’ grid and a fractal square grid

and the exponential decay law proposed by George & Wang
(2009):


L2

∝ λ
2

∝ `2 = `(x0)
2
[

1+
4νac

`2(x0)U∞

(x− x0)

]
u′2 =

2u′2(x0)

3

[
1+

4νac
`2(x0)U∞

(x− x0)

]−(1+c)/2c

(5)
where a and c are dimensionless positive real numbers (a,c >
0). In the limit of c→ 0 (5) asymptotes to an exponential
decay with constant length-scales throughout the decay, but
otherwise it is a power-law decay with an exponent n = (1+
c)/2c. This power law decay can also be written and fitted as

u′2 ∼ (x−ξ0)
−n (6)

where ξ0 = x0− `2(x0)U∞

4νac . Note that ξ0 is not the conventional
virtual origin where the kinetic energy is singular and that it
does not have to be positive.

Multi-scale-grid generated turbulence
One of the motivations behind studying turbulence-

generating grids with a fractal arrangement, such as the ones
proposed by Hurst & Vassilicos (2007) (see Figure 1), is the
expectation that these multi-scale turbulence generators will
create a turbulent field with sufficiently different initial con-
ditions to be noticeable, beyond experimental error, on turbu-
lence properties such as the energy decay rate and dissipation
scaling. Indeed their experimental results seem to confirm
these expectations most dramatically for some of the grids,
namely some of the fractal square grids, but not so signif-
icantly for other grid geometries like the fractal cross and
’I’ grids (even though turbulence data generated with fractal
cross and ’I’ grids were use by Mazellier & Vassilicos (2008)
to demonstrate and quantify the dependence of Cε on large-
scale flow topology).

To gain understanding of the differences between frac-
tal and regular grid-generated turbulence as well as the dif-
ferences between the three types of fractal grid turbulence
generators proposed by Hurst & Vassilicos (2007) one needs
to consider the turbulence generation mechanisms and how
they may be affected by the fractal design. It is important to
recognise two essential processes of homogeneous turbulence
generation triggered by the upstream grid: i) the formation of
shear layers on the solid boundaries leading to turbulent wakes
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and ii) the interaction between adjacent turbulent wakes lead-
ing to the diffusion of inhomogeneities and the breakdown of
these individual wakes. This latter mechanism is essential for
the generation of a freely decaying homogeneous field instead
of individual turbulent wakes developing downstream.

The turbulence generation mechanism of grids with a
fractal design differ from non-fractal design not only by in-
ducing wakes of different sizes behind each individual bar,
but also for controlling the interaction between the similar size
wakes and wakes of different sizes. For the turbulence down-
stream to become homogeneous with a high turbulence inten-
sity it is important that: i) the fractal dimension of the grid
takes the maximum possible value 2, ii) there are sufficient
fractal iterations N (number of repetitions of the base geome-
try on different sizes) and iii) there is, in the case of fractal ’I’
and square grids, a sufficiently large ratio between the thick-
ness of the largest and smallest bars, tr = t0/tN−1. From the
accumulated experience from laboratory and numerical exper-
iments since Hurst & Vassilicos (2007), namely Mazellier &
Vassilicos (2010); Nagata et al. (2008); Laizet & Vassilicos
(2011) it can be inferred that design parameters of the fractal
grids must be carefully chosen if we are to expect a signif-
icant region of high Reynolds number homogeneous quasi-
isotropic turbulence downstream from the grid. As a rule of
thumb one needs at least N = 4 fractal iterations and a thick-
ness ratio higher than tr = 10.

Experimental data
A short outline of the experimental setup is given here,

but the reader is referred to Valente & Vassilicos (2010) for a
more complete account. These experiments were performed
in an open circuit wind-tunnel with a square test section of
side T = 0.46m and 5m in length, where measurements were
taken at the centreline from x≈ 1.8m up to x≈ 4.5m. The data
were taken with one- and two-component hot-wire anemome-
ters operating in constant-temperature mode (CTA) using a
DANTEC StreamLine CTA system. For the single compo-
nent measurements two different single-wires (SW) were used
with a sensing length (lw) of 1mm & 0.45mm respectively.
For the two component measurements a cross-wire (XW) with
lw = 0.5mm was used. The tested fractal square grid, sketched
on the right hand side of Figure 1, has N = 4 fractal iterations,
a thickness ratio of tr = 17 and a blockage ratio of σ = 25%.

The present results are compared with the experimental
investigation of Mazellier & Vassilicos (2010), which includes
measurements in the same wind-tunnel using the same fractal
square grid, but the length of the assessed decay region was
limited to x < 3.5m. Their data were taken with SW sensors
of lw = 1mm driven by the DISA 55M10 CTA bridge.

Energy decay One of the central properties of tur-
bulence generated by the fractal square grids is the acceler-
ated rate of decay. Previous studies suggested that the decay
law might be exponential or as in (5) with a low value of c
(and therefore a high value of n) (Hurst & Vassilicos, 2007;
Mazellier & Vassilicos, 2010). In the present work we show
that by increasing the length of the assessed decay region and
by applying a wide range of fitting methods (see Valente &
Vassilicos (2010) for details) we can distinguish between an

Figure 2. Turbulence decay for: U∞ = 10m/s (E); U∞ =

15m/s (@), fitted by the non-linear least squares fitting
method used in Valente & Vassilicos (2010) (solid line) and
by using (5) with a very low value of c as in Mazellier &
Vassilicos (2010) dashed line. Insert shows the Mazellier &
Vassilicos (2010) data for U∞ = 5,10,15m/s fitted with the
same algorithms.

exponential and a power law decay and suggest that the tur-
bulent kinetic energy decays as in (5) or equivalently (6) with
an exponent n close to n ≈ 2.5 (see Table 1). This is much
less than the values of n reported by Mazellier & Vassilicos
(2010) but nonetheless much larger than the exponents found
for decaying turbulence generated by regular and active grids,
typically 1.0 < n < 1.5. In Figure 2 the decay of the longi-
tudinal component of the turbulent kinetic energy is plotted
against the streamwise position x normalised by the wake in-
teraction length-scale x∗ ≡ L2

0/t0 (L0 is the side of the largest
square of the fractal grid and t0 is it’s thickness). Linear ab-
scissae vs. logarithmic ordinates are chosen so that an expo-
nential decay yields a straight line. The data are fitted using
(5) and a very low value of c (i.e. very high value of n) as in
Mazellier & Vassilicos (2010) (dashed line) and also using a
non-linear least-squares regression algorithm used in Valente
& Vassilicos (2010) (solid line) which yields (5) or (6) with
n close to 2.5. It can be appreciated that considering only the
region 0.5 < x/x∗ < 1 the two fits appear equally valid, but by
increasing the range to x/x∗ ≈ 1.5 the distinction between the
two decay laws is clear (refer to Valente & Vassilicos (2010)
for further discussions and details).

It is interesting to notice that the power law exponents
obtained are close to 2.5 which is the value of n expected
for decaying turbulence with conserved Loitsyansky invari-
ant and Cε ∼ Re−1

λ
. For decaying turbulence with conserved

Loitsyansky invariant and the assumption of self-similarity
of large-scale motions we should have u′2LM+1 = Const for
M = 4. In Figure 3 this quantity is plotted and it can be
seen that u′2L5 is indeed approximately constant for much
of the decay region when U∞ = 10m/s, but much less so
when U∞ = 15m/s. However, n is not quite 2.5 either when
U∞ = 15m/s.

Dissipation scaling Another central property of
turbulence generated by this fractal square grid is the fact
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Figure 3. Development of u′2LM+1 for M = 4 during decay
for U∞ = 10m/s (@); U∞ = 15m/s (q).

Table 1. Decay exponents and virtual origin estimation from
the non-linear least-squares fitting method.

Grid U Power law

(ms−1) n ξ0(m)

SFG 10 2.52 -0.89

SFG 15 2.36 -0.65

that Lu/λ is (approximately) constant during decay and not
proportional to Reλ as in the Richardson-Kolmogorov phe-
nomenology. It follows that the normalised energy dissipation
for this flow takes the functional form Cε ∼ Re−1

λ
.

The experimental results are plotted in Figures 4a and
4b where it can be confirmed that in fact Lu/λ ≈ Const and
Cε ∼ Re−1

λ
for the entire decay region assessed in these mea-

surements. These result are in quantitative agreement with
previous experiments by Mazellier & Vassilicos (2010) al-
though the larger length of the present wind-tunnel brings to
evidence that Lu/λ is not exactly constant, but is roughly so
for all the assessed decay region. This might be due to the
wind-tunnel confinement affecting the growth of the integral
scale Lu, since the ratio between the tunnel width T and Lu
is decreasing both due to the growth in Lu and the growth
of the side wall boundary layers which decrease the effective
width of the tunnel. As this confinement effect might not af-
fect the growth of λ as much as that of Lu, the ratio Lu/λ

would decrease progressively downstream instead of being
exactly constant, which is consistent with the experimental
results. However, it may also be the case that a single-scale
self-preserving turbulence obeying (4) and generated at suffi-
ciently high Reynolds number may eventually collapse when
a low values of Reλ is reached which is nevertheless not low
enough for the final period of decay to have set in.

The present results also confirm that the ratio Lu/λ is
set by the grid Reynolds number (e.g. Re0 ≡U∞t0/ν where
U∞ is the inflow velocity and t0 is a characteristic length of

Figure 4. Behaviour of turbulence generated the multi-scale
grid (SFG). Present data for two speeds and for two sensor
lengths: U∞ = 10m/s, lw = 1mm sensor 5; U∞ = 10m/s,
lw = 0.45mm 5�; U∞ = 15m/s, lw = 1mm 0; U∞ = 15m/s,
lw = 0.45mm 0�. Data from Mazellier & Vassilicos (2010):
U∞ = 5m/s, lw = 1mm q, U∞ = 15m/s, lw = 1mm t. (a)
Ratio between the integral scale Lu and the Taylor micro-scale
λ contrasting with the expected classical high Reynolds be-
haviour Lu/λ = Cε

15 Reλ (dashed lines) for 0.3 <Cε < 0.8; (b)
Normalised energy dissipation rate Cε = εLu/u′3.

the grid, here taken to be the thickness of the largest bars) as
previously observed by Mazellier & Vassilicos (2010). Con-
sequently, as the turbulence kinetic energy decays and Reλ

decreases, Cε grows as Re−1
λ

but the proportionality factor in
Cε ∼ Re−1

λ
is pre-determined by the grid Reynolds number

Re0 ≡U∞t0/ν . To illustrate that these results are not mean-
ingfully influenced by the resolution of the probes, the mea-
surements were repeated with a probe with twice the spatial
resolution. It can be seen that the increased resolution probe
(dw ≈ 2.5µm, lw ≈ 0.45mm) has a slightly higher Lu/λ ra-
tio due to the better estimation of (∂u/∂x)2, but it does not
change the main observation that Lu and λ are roughly con-
stant during decay.
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Collapse of 3D energy spectra The single-
length-scale assumption which is in-built in the theory of
self-similar decay of Sedov (1944, 1959) and George (1992);
George & Wang (2009) can be assessed by plotting the nor-
malised energy spectra for different positions along the mean
flow direction and evaluating the collapse of the data or the
lack thereof.

Here we present the 3D energy spectrum which is com-
puted from two-component velocity signals. As it is argued
in Valente & Vassilicos (2010) this provides a way to account
for some of the anisotropy of the flow and thus obtain a more
representative assessment of the spectral collapse. From the
3D energy spectrum we recovered the integral scale L (in
an isotropic flow it is equivalent to the longitudinal integral
scale Lu), the turbulent kinetic energy and the Taylor micro-
scale. In Figures 5a & 5b we present the normalised energy
spectra using large-scale variables u2, L (Fig. 5a) and Kol-
mogorov inner variables ε , η (Fig. 5b) respectively. It can be
appreciated that large-scale variables reasonably collapse the
whole spectra (for both low and high wavenumber) whereas
the Kolmogorov inner variables appear to collapse only the
high wavenumber part of the spectra. Note that the uncer-
tainty in estimating L as well as the ratio L/λ not being ex-
actly constant are factors which can deteriorate the collapse
which nonetheless appears to be reasonably good.

Conclusions
The decay of a fractal square grid-generated turbulence

has been experimentally investigated using constant temper-
ature hot-wire anemometry. This work complements previ-
ous research on the decay of fractal grid-generated turbulence
(e.g. Hurst & Vassilicos, 2007; Mazellier & Vassilicos, 2010)
by doubling the extent of the assessed decay region and by
studying the effect of the hot-wire spatial resolution.

We find that for streamwise downstream positions be-
yond x/x∗ ≈ 0.6 the turbulence decays freely such that
L/λ ≈Const whilst Reλ sharply decreases, at least up to the
furthermost downstream position investigated. Nonetheless
L/λ increases with increasing grid Reynolds numbers Re0.
These observations are in direct conflict with the Richardson-
Kolmogorov cascade (Mazellier & Vassilicos, 2010), usually
dominant at this range of Taylor-based Reynolds numbers Reλ

in regular grid- and active grid-generated turbulence.
We observe that the energy spectra for the present frac-

tal square grid-generated turbulence are better described by a
single-scale self-preserving form than by Kolmogorov (1941)
phenomenology. Note that by Kolmogorov (1941) phe-
nomenology we mean, not only the necessity of two dynam-
ically relevant sets of variables, outer and inner, that collapse
the low- and the high-frequency part of the spectra separately,
but also that L/λ ∝ Reλ and Cε = Const, which implicitly
dictates the rate of spreading of the high-frequency part of the
spectra normalised by outer variables and vice-versa.

We also confirm the observations of Hurst & Vassili-
cos (2007) and Mazellier & Vassilicos (2010) concerning the
abnormally high decay rates obtained for the fractal-square
grids, compared with regular and active grid-generated turbu-
lence. By having significantly extended the streamwise fetch
of anemometry measurements we have been able to improve
on Hurst & Vassilicos (2007) who found exponential decay,

Figure 5. 3D energy spectra of turbulence generated by the
fractal square grid at four streamwise downstream locations
corresponding to Reλ = 275, 230, 200,165 at U∞ = 10ms−1

and normalized by (a) u2 = 2/3q2 and L (b) η and ε .

i.e. (5) with c = 0, and on Mazellier & Vassilicos (2010) who
found (5) with very small but non-zero values of c and there-
fore high values of n. Our data obtained over a much longer
decay region support (5) and equivalently (6) with c such that
n is close to 2.5 which is two to three times larger than the val-
ues found by Mazellier & Vassilicos (2010) but the n is nev-
ertheless twice as large as the decay exponent of turbulence
generated by regular and active grids.
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