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ABSTRACT 

The particle interpolation method such as the Smoothed 

Particle Hydrodynamics (SPH) for solving free surface flows 

has been reformulated so that the effects of turbulent 

fluctuations are reflected in the equations for particle 

interpolated quantities. Calculation of benchmark flow of 

collapsing water column indicates that the terms representing 

the dispersion of fluctuating particle paths need to be included 

in addition to added viscosity similar to the sub-grid eddy 

viscosity used in Large Eddy Simulation (LES).  Preliminary 

calculation of flat-bed open channel flows also indicates that 

the present formulation is consistent with the conventional 

fixed-grid methods of computing turbulent flows. 

 

 

INTRODUCTION 

Calculation of flows with large deformation of the flow 

boundaries and interfaces such as flood flows and coastal 

flows with large wave motion can be better done by 

computing flow quantities defined at positions of particles 

moving with the flow rather than quantities at fixed grid points.  

Smoothed Particle Hydrodynamics (SPH) (Gingold and 

Monaghan, 1977, and Monaghan, 1992) and Moving Particle 

Implicit (MPS) (Koshizuka et al. 1994) are examples of the 

particle method and are recently been applied to various 

engineering and environmental problems with potentially great 

success. These Lagrangian methods do not have stability 

problems associated with the nonlinear convective terms that 

Eulerian method must solve. However, when they are applied 

to high Reynolds number flows, the effects of the turbulent 

fluctuations must necessarily be accounted for but they are 

often overlooked and necessary models have not received as 

much attention as in the fixed-grid counterpart of Reynolds 

Averaged Navier Stokes method or Large Eddy Simulation 

(LES) methods. Colagrossi & Landrini (2003) Violeau & Issa 

(2007) and Gotoh et al.(2001) interpreted the SPH or MPS 

methods just as the numerical discretization techniques of 

given partial differential equations and directly applied to the 

Reynolds-averaged equations or spatially-filtered equations of 

motion without particular attention to the smoothing of 

turbulent fluctuations. Holme (1999) on the other hand, 

rigorously derived equations of motion for averaged flows in 

Lagrangian coordinates and pointed out that there are 

differences between Eulerian and Lagrangian averages and 

that the Lagrangian averages (which are close to the particle 

averages) are influenced by the dispersion of particle paths. 

In the present paper, we formulate the SPH equations with 

due attention to the turbulent fluctuations. We point out that 

the terms arise from the interaction of turbulent fluctuations of 

velocity and the particle positions and propose a method of 

taking into account of their effects. Then we apply the 

proposed model and the procedure to some benchmark flows. 

 

PARTICLE INTERPOLATION FOR TURBULENT 

FLOWS 

The basic SPH method first considers the kernel-integral 

representation AI for flow quantity A at position r by averaging 

around r with weight function W with smoothing distance h 

 

        ∫∫∫ −= dr'r',h)A(r')W(r(r)AI                           (1) 
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The integral on the right hand side is then approximated by the 

sum over finite number of discrete points within distances 

about h 
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where b is a point or the fluid particle at position rb, mb and ρb 

are the mass and the density so that mb/ρb is the volume of 

fluid represented by particle b.  The next step is to replace the 

original value A(rb) on the right hand side by the interpolated 

value AI at rb denoted by Ab, so that the particle interpolation 

representation of A at ra , the position of particle a, is given by 
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The last step is often overlooked as just a method of 

description but is an approximation that is poor when the 

scales of spatial variations of A is smaller than h. This 

equation allows representation of any flow quantity at 

arbitrary positions and that is what is usually done in particle 

methods. However, this approximation is not good to apply to 

unsmoothed flow quantities in turbulent flows in which the 

scales of fluctuations are very small for large Reynolds 

numbers.   

In the present work, with application to turbulent flow in 

mind, we like to avoid using (3) and apply Eq. (1) directly to 

the unsmoothed original flow quantities and use it as a way of 

spatial filtering of the flow.  To this end, we apply the particle 

interpolation procedure (2) to all terms in the equations of 

motion and the continuity equation for (slightly) compressible 

flow written in the Eulerian coordinates   
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so that we obtain the equations for the particle-interpolated 

quantities. When applying the particle interpolation to all 

terms in Eqs.(4) and (5), it is noted that it commutes with the 

spatial differentiation so that  
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where subscript I indicates the particle interpolated value at 

the indicated position r(t) at time t, and 
r

∇ is used to stress 

the differentiation with respect to r. Now, since the position 

where the interpolation is taken is moving, the time derivative 

does not commute with the interpolation. The particle 

interpolation of the time derivative of A is  
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This means that the particle interpolation of the time derivative 

introduces additional term involving the product of the 

velocity of the position of the interpolating point and the 

gradient of the interpolant arises. Therefore, the particle 

interpolations of Eqs. (4) and (5) become 
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If we take the position of interpolation r(t) to be exactly equal 

to the path of the particle travelling at the interpolated velocity 

vI,     

Iv
dt

dr(t)
=                                             (10) 

we have 
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These equations may also be written as 
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The last terms in these equations are due to the slight 

compressibility assumed in the SPH methods that relate the 

pressure to the density.  Apart from these terms the equations   

contain terms that are not quite the interpolated values.  They 

are 

IvIvI(vv)τ −=  and III vρv)(ρR −=      (15) 
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that resemble the Reynolds stress and the turbulent density 

flux and we need to model these terms in terms of the particle 

interpolated values. 

If these terms are modelled, with Eqs.(10), (13), (14) and 

a state equation for the pressure the flow can be solved. Since 

our main interest is the incompressible turbulent flows, we use 

the relation used by Monaghan (1994) and subsequent authors 

which is  
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with the value of γ=7, the value of B is taken so that the speed 
of sound is about 0.1 of the flow speed. 

τ resembles the sub-grid stress in LES while R is a new 
term representing the correlation between the density and the 

velocity. It should be noted that Eqs. (11) and (12) assume that 

Eq.(10) is accurately satisfied. In the present work, we try to 

extend the Smagorinsky model used in LES to model the term  
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Following the LES of shear flows we use the value of CS=0.1 

(see for example Sagaut (2006).. 

With regard to R, since the correlation between the density 

and the velocity is not expected to take significant values, we 

ignore this correlation for now and examine the results of 

calculation.  

 

NUMERICAL CALCULATION METHOD 

We first evaluate the right hand sides of Eqa.(13) and 

(14) by the particle summation formula Eq.(3). For the weight 

function W we use the cubic spline function  
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The pressure gradient and the viscous terms in Eq.(13) are 

evaluated by the equation proposed by Morris et al. (1997).  

The time advancement of Eq.(13) and (14) is done by semi-

implicit method. The pressure is obtained by explicit 

evaluation of the state equation Eq. (16). The rest of the details 

are very similar to the method used by Kajitar and Monaghan 

(2008) and we do not repeat here.      
   

 

CALCULATION OF BENCHMARK FLOWS 

First we apply our approach to the calculation of 

benchmark flow of collapsing water column, which is used as 

a validation case of many numerical methods. The experiment 

conducted by Koshizuka et al. (1995) used a rectangular tank 

of size 14.6cm long and about 10 cm high as shown in Figure 

1. The water column of 29.2cm high and 14.6cm wide initially 

held at rest is made to fall freely within the chamber and the 

flow of this water column at subsequent times is observed. 

Figure2 shows the photographs of the collapsing water column 

at six instances. The maximum flow speed exceeds 2m/s and 

the depth is about 5cm.  The Reynolds number based on these 

values is about 105. The flow when accelerating is smooth but 

is highly turbulent after colliding against the right wall.  

Therefore, calculation methods that are applicable to turbulent 

flows will have to reproduce these stages of t=0.5 and 1.0 sec. 

Figure 3 is the results of Koshizuka et al.’s (1995) 

calculation using the MPS method. The method does not 

consider any turbulence effects except possibly adjusting the 

value of the effective viscosity. The calculation is done with 

relatively small number of particles and the results up to t=0.3 

sec are seen to be close to the experiment but after t=0.3 sec 

the particles at the front tend to splash and scatter over large 

area. The results at t=1.0 sec do not show the free surface 

shape seen in the photograph. The value of the effective 

viscosity in this calculation is not known but the scattery 

results may be due to the lack of effective viscosity.  

Figure 4 shows the results of calculation done by 

following Monaghan’s (1994) original SPH method. The 

particles of 40x20x4 initially arranged in four planes in the 

direction normal to the vertical plane shown here. The 

viscosity is taken 100 times larger than the actual viscosity of 

the real water. If it is taken smaller, the calculation diverged, 

quicker for smaller values of viscosity. The results again up to 

t=0.3 sec are very good. The flow at subsequent time is seen to 

be slower and the height of the water column hitting the right 

wall does not rise as high as the experiment. At t=1.0 sec the 

water is seen to have slowed down too much and there is no 

violent waves like those seen in the photograph. These results 

imply that the turbulence effects are not correctly represented. 

Figure 5 shows the results of Monaghan’s(1994) improved 

method XSPH.  In this method, the particle is moved with the  

 
L=14.6cm     

Figure 1. Initial state of water column in Koshizuka et al.’s 

(1995) experiment. 
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t=0.1sec t=0.2sec t=0.3sec 

 

t=0.4sec t=0.5sec t=1.0sec 

 
Figure 2. Experiments of Koshizuka et al. (1995) collapsing water column. 

 

t=0.1sec t=0.2sec t=0.3sec 

 
t=0.4sec 

 

t=0.5sec t=1.0sec 

 

Figure 3. Calculation by Koshizula et al.(1995). 

 

t =0.1sec t=0.2sec t=0.3sec 

 

t =0.4sec 

 

t=0.5sec 

 

t=1.0sec 

 
Figure 4. Calculation by Monahgan’s (1994) orginal method. 
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speed averaged over nearby particles, Monaghan (1994) did 

not give theoretical justification for this model. The results 

indicate that the height of the water column hitting the right 

wall now rises higher and closer to the experiment and that at 

t=1.0 sec, the shape of the free surface is much closer to the 

experiment. Our reformulation implies that the extra term 

introduced by Monaghan (1994) is not quite consistent with 

the definition of the particle path. 

Figure 6 are the results by the present method. The results, 

throughout the entire sequence and particularly at time 

t=1.0sec, of the motion and the shape of the free surface are 

very close to the experiment. The only disagreement is the 

slight shift in time so that according to the calculation, the 

water in the middle of the container is dropping at t=1.0, but in 

the experiment, the water is back and rising in the central 

region of the container. This is thought to be due to slight 

mismatch of the wall friction which would be important in the 

slight slowdown of the flow velocity. 

 

CALCULATION OF FLOW IN OPEN CHANNEL 

In the flow of collapsing water column, all particles stay 

within the region contained by the link cells in which the 

summation of effects from neighboring particles is taken. In 

many fluid flows, flow comes in and goes out of the 

computational region. In order to show that the present method 

works in such cases, we computed the steady (mean) flow in 

an open-channel with a flat bed. In this case we apply the 

periodic boundary condition in the streamwise direction and in 

the spanwise direction. Particles leaving the computational 

region are introduced at the corresponding position in the 

upstream inflow section. Interpolation near these boundaries 

assumes that there are particles outside the boundary same as 

the particles at the corresponding opposite side. Calculation 

has been conducted for two cases. The first one is a subcritical 

case with Froude number 0.35 and the Reynolds number 

120,000. The second case is a supercritical case with Froude 

number 4.1 and the Reynolds number 20,000.  The length and 

the width of the calculation region are 4.2 and 2.0 times the 

mean depth. 157,500 particles are placed at equal distances 

apart initially and calculation of subsequent positions along 

with the velocity, the density and the pressure of the particles 

are calculated. The standard log law is assumed for the mean 

velocity distribution and random fluctuation is superposed to 

the mean velocity.  

The instantaneous distribution of particles obtained by the 

present calculation is shown in Figure 7. The color of the 

particles represents the velocity magnitude such that red color 

is fast flow and the blue slow.  Although the figure shows the 

position and the velocity of particles at one instance, all 

particles are shown and they represent more like the spanwise 

average. The case of subcritical Froude number shown in 

Figure 7(a) shows very small and smooth free surface profile 

but the supercritical case of Figure 7(b) indicates that there are 

surface waves of sharper slope than the subcritical case. 

 

CONCLUSIONS 

The particle interpolation technique originated by 

Gingold and Monaghan (1977) has been reformulated to apply 

to turbulent flows with fluctuations of scales much smaller 

than the spacing of interpolating particles. The basic equations 

of motion for the particle-interpolated quantities have been 

obtained. They represent the large-scale flows of large since 

the process removes the small-scale turbulent fluctuations.  

We find that extra correlation terms appear that are similar to 

the sub-grid stress known in large eddy simulation method.  If 

we take into account of these terms, the effective viscosity is 

increased where the turbulent stresses are large, resulting in 

stable solution but with appropriate fluctuating components. 

The flow due to collapsing water column has been 

calculated and the results are in very good agreement with the 

experimental results and show an improvement over existing 

methods. The same method is applied to flows in straight open 

channel. Calculation results for both subcritical and 

supercritical flows are correctly calculated.  However, detailed 

examination of the models of the extra terms is yet needed to 

improve the prediction in general cases. 
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t =0.1sec t=0.2sec t=0.3sec 

t =0.4sec t=0.5sec t=1.0sec 

Figure 6 Calculation using present model. 

 

t =0.1sec t=0.2sec t=0.3sec 

t =0.4sec t=0.5sec t=1.0sec 

Figure 5 Calculation by Monahgan’s (1994) XSPH method. 

 

(a) Fr=0.35 

 

(b)   Fr=4.1 

 
 

Figure 7.  Calculation of open-channel flow. 


