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ABSTRACT
Vorticity stretching in wall-bounded turbulent and tran-

sitional flows has been investigated by means of a new diag-
nostic, designed to pick up regions with large amounts of vor-
ticity stretching. It was found that the largest occurrence of
vorticity stretching in fully turbulent channel flows is present
at a wall-normal distance ofy+ = 6.5, i.e. in the transition
between the viscous sublayer and the buffer region. Instanta-
neous data showed that the coherent structures associated with
these stretching events have the shape of flat ‘pancake struc-
tures’ in the vicinity of high-speed streaks, here denoted ‘h-
type’ events. The other event found, also studied in an asymp-
totic suction boundary layer, is the ‘l-type’ event present on
top of an unstable low-speed streak. These events are fur-
ther thought to be associated with the exponential growth of
streamwise vorticity in the turbulent near-wall cycle.

INTRODUCTION
In wall-bounded turbulent flows, streamwise velocity

streaks (Klineet al., 1967) and quasi-streamwise vortices
(Smith & Metzler, 1983) are known to dominate the near-wall
region. Hamiltonet al. (1995); Jiḿenez & Pinelli (1999) and
others showed that these structures are tied together via a self-
sustained cycle, where the streamwise vortices create streaks
and the streaks break down to create new streamwise vortices.
Minimal flow units (Jiḿenez & Moin, 1991) were used to
show that if this cycle was broken at any point the flow would
relaminarise. While the mechanism in which streaks are cre-
ated by streamwise vortices is fully understood and well doc-
umented (e.g. Klebanoff et al., 1962; Landahl, 1980), there
has been less consensus on how the streaks break down and
the streamwise vortices are recreated. There are however in-
dications (e.g. Waleffe, 1997) that the breakdown is preceded
by exponential growth ofx-dependent disturbances. For the
late stages of the streak instability phase, Schoppa & Hus-
sain (2002) elaborated on a mechanism responsible for the
formation of streamwise vortex sheets which eventually col-
lapse due to the stretching caused by the streamwise strain,
∂u/∂x. This shows that vorticity stretching may be an im-
portant ingredient in the near-wall cycle. There is also some
evidence (Joneset al., 2009) that vorticity stretching plays an
important role in self-sustained transition processes, such as
the unsteady vortex shedding in a separated flow. In addition,
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during the end-stage of K-type transition, it has been noted
(Sandham & Kleiser, 1992) that the stretching of vorticity in-
volved in the roll-up of detached shear layers leads to turbu-
lence regeneration. The fact that the vorticity stretching itself
provides a rapid growth mechanism becomes evident when
studying the vorticity transport equation in an incompressible
flow. Assume there is initially some vorticity,ωs, and strain,
∂us/∂ s, in the direction ofs, wheres is the strain elongation
axis. Assume further that the strain is negligible in the other
spatial directions so that the vorticity tilting terms vanish; then
the vorticity transport equation reduces toDωs

Dt = ωs
∂us
∂ s , pro-

vided theRe is high enough so that the damping termν∇2ωs

is small. Solving forωs givesωs ∼ exp
(

∂us
∂ s t

)

, i.e. exponen-

tial growth of vorticity alongs, assuming a constant strain rate
following the fluid element. The above mentioned examples
indicate that vorticity stretching is dynamically important for
the growth of instabilities in wall-bounded flows. Therefore,
we intend to study this mechanism in more detail in three dif-
ferent flows with successively increasing complexity: A near-
wall cycle in an asymptotic suction boundary layer; K-type
transition in a plane channel flow and fully turbulent channel
flow. As we progress towards fully turbulent, spatially uncon-
strained flows the increased complexity needs to be handled
accordingly and we need tools to extract the flow physics. In
order to locate the largest occurrence of vorticity stretching in
the flow, we will define the following scalar measure:

Γp(x,y,z, t) = max{α |ωα |,β |ωβ |,γ|ωγ |}, (1)

where α , β and γ are the eigenvalues of the strain tensor

Si j = 1
2( ∂ui

∂u j
+

∂u j

∂ui
) andωα , ωβ andωγ are the vorticity com-

ponents along the principal axes given by the eigenvectors of
Si j. The subscript ‘p’ indicates that we are in a principal
axis system, aligned with the direction of strain. The pro-
cedure of decomposing the strain tensor into its eigenvectors
is commonly adopted in studies of homogeneous turbulence
where the usual spatial coordinate directions have a subordi-
nated meaning, (e.g. Sheet al., 1991; Nomura & Post, 1998).
We will compare this measure to the following:

Γc(x,y,z, t) = max{|ωx|
∂u
∂x

, |ωy|
∂v
∂y

, |ωz|
∂w
∂ z

}, (2)

where the subscript ‘c’ denotes ‘Cartesian’. The region of
intenseΓ will further be linked to the birth of vortices by lo-
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cating high concentration ofλ2 (Jeong & Hussain, 1995) in
the flow.

NUMERICAL METHOD & SIMULATION SETUP
The solutions of the incompressible Navier–Stokes equa-

tions were obtained by a Chebyshev-Fourier pseudo-spectral
code described in Chevalieret al. (2007). Each one of the
three cases are described more in detail below.

Near-wall cycle in an asymptotic suction
boundary layer (sinuous instability)

The asymptotic suction boundary layer (ASBL) enables
the study of an open boundary layer in the temporal frame-
work, i.e. by employing suction at the wall the spatial growth
of the boundary layer is removed, which opens the possibil-
ity of using a streamwise periodic domain. Hence, for the
present simulation, employed at a Reynolds number ofRe =
U∞δ ∗/ν = U∞/V∞ = 750 (U∞ being the free-stream velocity,
δ ∗ the displacement thickness andV∞ the imposed vertical ve-
locity) we used a computational domain with periodic bound-
ary conditions in the spanwise and streamwise directions. A
Dirichlet condition in the form of a constant velocity (V∞) in
the negative vertical direction was applied at the bottom of the
domain. The dimensions of the domain (non-dimensionalised
by δ ∗) were chosen asLx = 12,Ly = 15 andLz = 6, such that
the flow would be a ‘minimal flow unit’ and the dynamics of
a single streak could be studied. A satisfactory spatial reso-
lution was chosen to beNx = 32, Nz = 32 Fourier modes in
the streamwise and spanwise directions andNy = 129 Cheby-
shev modes in the wall-normal direction. The critical trajec-
tory (‘edge state’) was found by bisection where the ampli-
tude of the random initial condition was tuned such that the
flow neither becomes turbulent nor goes laminar (Schneider
et al., 2007). The result is a time-periodic orbit with a period
of T = 3347. The edge state in the ASBL flow was com-
puted and studied by Madré (2011) and discussed by B. Eck-
hardt (ETC-12, 2009, Marburg). The aim of the present case
is however not to study its state-space properties, but merely
to use the case as an alternative to minimal channel flows in
an effort to simplify turbulent dynamics as much as possible.
Some snapshots representative for the streak instability phase,
breakdown and streak regeneration are shown in Figure 1. The
initially straight low-speed streak att = t0 (Figure 1a) is in-
dicated by the gray surface of constant streamwise velocity.
Soon, aroundt = t0 + 0.16T , the low-speed streak experi-
ences a sinuous instability andx-dependent disturbances are
amplified (Figure 1b). As the disturbance growth has reached
nonlinear amplitudes (t = t0 + 0.39T , Figure 1c) the streak
breaks down into smaller scales. During this phase, stream-
wise vortices are regenerated which leads to the growth of
a new streak, displacedLz/2 to the left. Thus, the flow at
t = t0 + 0.5T shown in Figure 1(d), is the exact symmetric
equivalent to the flow in Figure 1(a) with respect to a span-
wise midplane.

Subcritical K-type transition
(varicose instability)

Direct numerical simulation (DNS) of subcritical K-type
transition atReb = 3333 were performed in order to exam-
ine the role of vorticity stretching in a classical transitional
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(c) (d)
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Figure 1. Evolution of the low-speed streak indicated by a
surface of constant streamwise velocity,u = 0.6 (gray), at
(a) t = t0, (b) t = t0 + 0.16T , (c) t = t0 + 0.39T and (d)
t = t0 +0.5T , whereT denotes the period of the periodic or-
bit. Vectors of crossflow velocities are shown in a crossflow
plane.

flow (Gilbert & Kleiser, 1990). The initial disturbances con-
sist of a two-dimensional TS wave with a streamwise wave
number ofα = 1.12 and an amplitude of 3% of the lami-
nar centre-line velocity; together with two three-dimensional
oblique waves with wave numbersα = 1.12 andβ = 2.1 and
amplitudes of 0.05%. This wave packet, superimposed on a
laminar Poiseuille channel flow, experiences an exponential
growth eventually leading to turbulent breakdown. Around
t = 120 theΛ-vortex appears, which develops into a hairpin
vortex att ≈ 135. Shortly thereafter (t ≈ 160), the highly fluc-
tuating transitional phase sets in; and finally, att ≈ 220, the
flow has reached a fully developed turbulent state. The box
lengths wereLx ×Ly ×Lz = 2π/α ×2×2π/β and the reso-
lution used wasNx ×Ny ×Nz = 128×129×128, inspired by
Gilbert & Kleiser (1990).

Turbulent channel flow at Reτ = 180
Fully turbulent channel flow simulations were performed

at a Reynolds number ofReτ = 180, based on friction veloc-
ity, uτ , and channel half height,h, in order to study the vor-
ticity stretching diagnostics in a fully turbulent flow. Periodic
boundary conditions in both the streamwise and spanwise di-
rections were applied in a domain of sizeLx ×Ly ×Lz = 4π ×
2× 2π and a resolution ofNx ×Ny ×Nz = 128× 129× 128
(Moseret al., 1999).

RESULTS
In the following, the evaluation ofΓc and Γp in these

three flow cases is presented.
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1. The effect of sinuous instabilities on vortic-
ity stretching

In order to facilitate understanding,Γc (retaining compo-
nent information more obviously) is as a first step computed
in the asymptotic suction boundary layer, with its evolution
shown together withλ2 in Figure 2 at similar instants as in
Figure 1. As long as the high- and low-speed streaks are (rea-
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Figure 2. Evolution ofΓc (red) and λ2 (green) shown at
(a) t = t0, (b) t = t0 + 0.16T , (c) t = t0 + 0.30T and (d)
t = t0 + 0.39T , whereT denotes the period of the periodic
orbit. The levels of the corresponding isosurfaces are fixed.
The isosurface of streamwise velocity,u = 0.5 (gray), indi-
cates streaks and the crossflow plane is coloured byΓc.

sonably) straight, most of the vorticity stretching activity re-
sides in the high-speed streak, close to the wall (Figure 2a).
Here, we observe that isosurfaces of constantΓc appear as
flat ‘pancake structures’ close to the wall. A closer investi-
gation reveals thatΓc = |ωz|∂w/∂ z, i.e. vorticity is stretched
most intensively in the spanwise direction. As soon as thex-
dependent disturbances are amplified and the streak starts to
‘wiggle’, we rather observe the highest values ofΓc on the top
of the low-speed streak (Figure 2b). Henceforth, we will re-
fer to the former event as ‘h-type’ (high-speed) and the latter
as ‘l-type’ (low-speed). Also here,Γc is in all points equal
to spanwise vorticity stretching, save that the sign is differ-
ent due to the absolute value in theΓc-measure. As for the
high-speed streak, the appearance of vorticity stretching al-
ternates from side to side also on the low-speed streak, such
that the highest values are always found on the convex side of
the streak. The reason for this can be understood by study-
ing the sketch in Figure 3. Due to the mean shear, there are
always high values of spanwise vorticity,ωz, present close
to the wall (A). In the case of a straight streak (Figure 3a)
this vorticity is lifted by the streamwise vortices, due to the
well-known lift-up effect (Landahl, 1980). In the braid region
above the streak (B) the highest values of∂w/∂ z are found,

which together with the lifted vorticity creates large spanwise
vorticity stretching,ωz∂w/∂ z. A similar situation is found to
be present when the streak is bent (Figure 3b). Since the braid
region has moved over to the convex side of the streak (left in
Figure 3), this is where we find high values ofΓc. Similarly,
high values ofΓc are found to the right as soon as the streak
‘wiggles’ over to this side (dashed). It should be pointed out
that the same mechanism is responsible for the high values
of spanwise stretching alternating from side to side below the
high-speed streak, given that the sketch in Figure 3 in that case
would be upside down. The cartoon in Figure 3 is confirmed
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Figure 3. Explanation for an ‘l-type’ event: (a) straight
streak, where high values ofωz are lifted fromA and mul-
tiplied by spanwise strain inB; (b) similar mechanism for a
bent streak in one of its outer positions.

by results from the numerical simulation. In particular, a top
view of a velocity field att = t0 +0.18T is provided in Figure
4(a), where the relation betweenΓc, Γp, λ2 and the low-speed
streak can be seen. It shows that high values ofΓc,p indeed
are located on the convex side of the bent streak. Here, we
also note that the differences betweenΓc and Γp are small.
A more detailed comparison is given in Figure 4(b,c), where
the isosurface level is decreased approximately by a factor of
two. Still, Γc andΓp are located in similar regions in the flow.
More specifically, they both pick up vorticity stretching on top
of the low-speed streak and beneath the high-speed streak near
the wall associated with the creation of drag (i.e. the ‘pancake
structures’). It is evident that, although being located in the
same regions, tilted at the same angle from the wall and be-
ing similarly flat, larger pancake structures are present in the
case ofΓc as compared toΓp. The main difference notewor-
thy is that whereasΓc is decoupled from the quasi-streamwise
vortices,Γp is capable of picking up the vorticity stretching
associated with those, shown in Figure 4(b). The reason for
this is thought to be the slight tilting of the vortices in the flow,
such that the vorticity stretching in the streamwise direction is
small. In a principal axis system, however, this tilting is ac-
counted for.

In order to see ifΓc,p can be linked to the existence of ex-
ponential growth, we show the evolution of the vorticity com-
ponents|ωi| together with|λ2| and|Γc,p| in Figure 5(a). More
specifically, at each time the maximum absolute value over
the domain,Ω, is found,i.e. maxΩ{| · |}

1. The variables are

1In the case ofλ2, only negative values isolate vortices (Jeong
& Hussain, 1995),i.e. maxΩ{|min(λ2,0)|} would be the correct
operation. However, we have noted that the maximum absolute
value always equals the absolute value of the largest negative value,
i.e. maxΩ{|λ2|} ≡ maxΩ{|min(λ2,0)|}.
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Figure 4. Isosurfaces of (a) Γc = Γp = 0.0040 (red andyel-
low, respectively) in a top view (aligned with the coordinate
axes) and (b,c) Γc = Γp = 0.0023 from behind at an angle, at
t = t0 +0.18T , together withu = 0.6 (gray) andλ2 (green).

scaled in outer units andt/T = 0 corresponds tot0 in Figure
2. Due to the mean shear,ωz is the overall strongest vorticity
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Figure 5. Maximum absolute value overΩ of ωz (∗), ωy (•),
ωx (◦) together withλ2 ( ), Γc (⋄), Γp (·) during the streak in-
stability phase and the nonlinear breakdown. Straight lines in-
dicating exponential growth are included for reference. Here,
t/T = 0 corresponds tot0 in Figure 2.

component. The second strongest component isωy due to the
existence of high- and low-speed streaks and the correspond-
ing shear layer in between them. The first aspect to notice is
that there is a slight decrease of these two vorticity compo-
nents before the nonlinear breakdown. However, the weakest
component,ωx, is increasing. As indicated by the straight
dash-dotted line the growth is weakly exponential. A simi-
lar growth rate is observed forλ2. As Γc,p involves the large
spanwise vorticity, its growth rate is higher than the former
two, albeit still exponential. Furthermore, the two measures
are observed to behave very similarly. None of theωx-tilting
terms (not shown) show any tendencies to grow exponentially.

2. The effect of varicose instabilities and the
transition to turbulence on vorticity stretching

As a second step,Γc,p is computed in K-type transition,
where the initial spanwise vortex is tilted in the streamwise
direction and stretched as the hairpin vortex emerges in the
peak plane (Sandham & Kleiser, 1992). In Figure 6 isosur-
faces ofΓc andλ2 are plotted shortly before (a) and after (b)
the hairpin is created. Similar results are obtained forΓp, and
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Figure 6. Isosurfaces ofλ2 (green) andΓc (red) during K-
type transition at (a) an early stage (t = 125.5) and (b) at t =

136.5 when the hairpin vortex has emerged in the peak plane.

are thus not shown independently. In the early stage (Figure
6a) the Γ-measure acts as a precursor to the shear layer and
the hairpin vortex formation. As for the ASBL, it also iden-
tifies the role of vorticity stretching in generating high speed
streaks near the wall (‘h-type’). Similarly, high values of vor-
ticity stretching are found slightly above and in between the
legs of theΛ-vortex, where the head of the hairpin vortex is
about to appear (‘l-type’). This mechanism is similar to the
one sketched in Figure 3, due to the positive wall-normal ve-
locity induced by the legs of theΛ-vortex. In Figure 6(b) we
note that theΓ-measure is properly aligned with the hairpin
vortex. As for the previous flow case, we include the evolu-
tion of the maximum absolute values in Figure 7 for a more
quantitative comparison. Again, it can be observed that the
amplitude of spanwise vorticity is nearly constant, while the
streamwise and wall-normal components grow exponentially.
It is interesting to notice thatλ2 is constant for a long time,
but starts to increase rapidly aroundt = 100. This shows that
Γ is capable of predicting instabilities.
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Figure 7. Maximum absolute value overΩ of ωz (∗), ωy (•),
ωx (◦) together withλ2 ( ), Γc (⋄), Γp (·) during the streak in-
stability phase and the nonlinear breakdown. Straight lines in-
dicating exponential growth are included for reference. Here,
t/T = 0 corresponds tot0 in Figure 2.
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3. Vorticity stretching in a fully turbulent flow
Next, we investigate the role of the vorticity stretching

diagnostics in a fully turbulent wall-bounded flow. In particu-
lar, we are interested to see if similar events (‘h’ and ‘l’) can
be observed as in the two previous flows. In Figure 8(a) a
snapshot of a fully developed channel flow is shown (colours
as before). The most prominent events are observed to be
the ‘pancake structures’ (‘h-type’) adjacent to the high-speed
streaks. Also a few ‘l-type’-events can be found in locations
of strong low-speed streak activity (indicated by the arrow). In
Figure 8(b) we showΓc (upper), Γp (lower) together withλ2.
We note that the ‘pancake structures’ are essentially the same
in both cases. The main difference is highlighted by the arrow
in Figure 8(b, lower), where the structure forms a ‘front’ in
the case ofΓp, not present in the case ofΓc. This difference is
thought to be of the same origin as the one in Figure 4; namely
that the region of intense stretching is inclined and therefore
artificially cut by Γc but shown in its full length byΓp. In
some locations in Figure 8(b) it can be seen that regions of
strong vorticity stretching give rise to quasi-streamwise vor-
tices. As soon as a vortex is created, it is convected away
from the ‘active’ region of the flow. Many of these ‘passive’
vortices are seen to be located far from the wall in Figure 8(b),
where the turbulent production is low. In that sense, the loca-
tion of vorticity stretching (as opposed to vortices) pin-points
the regions in a flow being dynamically relevant. Mean and
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Figure 8. (a) Γc (red) andu = 0.3 (gray) in a fully turbulent
channel flow; the arrow indicates an ‘l-type’-event. (b) Close-
up view of the same flow field, whereΓc (upper) is compared
to Γp (lower) and shown together withλ2 (green) and a plane
of streamwise velocity; the arrow shows the ‘front’ of the
structure captured byΓp.

root-mean-square (r.m.s) profiles ofΓc,p andλ2 are shown in
figure 9(a), where the mean is taken over the homogeneous di-
rectionsx,z, t. We observe the peak of bothΓ-measures to be
located aty+ = 6.5, i.e. in the transition between the viscous
sublayer and the buffer region. The peak ofΓp is around 50
% higher compared toΓc, whereas the mean fluctuation ofΓc

show a nearly identical behaviour with that ofΓp with max-

ima being located slightly closer to the wall, aty+ = 4.4. The
fact that the mean fluctuations peak at approximately the same
wall-normal distance as the mean itself suggests that the vor-
ticity stretching is not only a result of the mean shear but part
of a dynamical process. As also noted by Jeonget al. (1997),
sinceλ2 > 0 for y+ . 10, no vortices are present in the vis-
cous sublayer. These authors further point out that the peak
of λ ′

2 (r.m.s) aty+ ≈ 21 infers that the prominence of vortical
structures is located in the buffer region. This indicates that,
similar to the discussion above, vorticity stretching is most
active in the viscous sublayer and is part of the creation of
vortical structures, which are then convected outwards in the
flow. In order for the vorticity to grow exponentially, there
should be a predominance of stretching terms in the enstro-
phy transport equation (i.e. small amounts of tilting). There-
fore, the ratior = 〈|∑α ω2

α
∂uα
∂xα

|〉/〈|ωiω j
∂ui
∂x j

|〉, where〈·〉 is

taken over the homogeneous directions is examined. The re-
sult is thus a function of wall-normal distance, shown in Fig-
ure 9(b) together with the numerator and denominator sepa-
rately. The ratior can be interpreted as the enstrophy pro-
duced solely by stretching compared to the total enstrophy
production (i.e. stretching and tilting). The horizontal line
drawn atr = 1/3 indicates the degree of equipartition between
stretching and tilting. The results suggested by Figure 9(b)
is that the enstrophy production is dominated by stretching
over tilting close to the wall, with the peak ofr being attained
at y+ ≈ 3.5. Further out in the log-region (y+ ≈ 70) it ap-
proaches the equipartitioned state of 1/3. This demonstrates
that the near-wall cycle contains the stretching of vorticity as
an important ingredient and confirms that stretching becomes
less important further away from the wall.

CONCLUSIONS
Vorticity stretching is known to provide a rapid (expo-

nential) growth mechanism, hence the location of vorticity
stretching may reveal regions of dynamical importance in the
flow. Therefore, we have defined a diagnostic measure which
can locate these areas. Two different variants have been in-
vestigated: One is rotationally invariant (Γp), and thus a true
scalar quantity; the other is defined in a Cartesian framework
(Γc), facilitating implementation and understanding. It can
be concluded that the two measures do not differ from each
other significantly. Generally, vorticity stretching was found
to be present in conjunction with the lift-up effect creating
low-speed streaks (and the equivalent effect creating high-
speed streaks). In particular, in both the ASBL (acting as a
model for wall-bounded turbulence) and in the fully turbulent
channel flow atReτ = 180, large amounts of vorticity stretch-
ing were found on the convex side of high-speed streaks (‘h-
type’-events), taking the form of large, flat ‘pancake struc-
tures’. In locations of strong low-speed streak activity a simi-
lar but reversed phenomenon was observed on top of the low-
speed streaks (‘l-type’-events); also here on the convex side
of the streak. During the streak instability phase, exponential
growth of streamwise vorticity was observed in the ASBL,
while the other components decayed, in line with the obser-
vations by Waleffe (1997). The rotationally invariant measure
(Γp) could moreover detect vorticity stretching located within
the core of the streamwise vortices, which gives some evi-
dence for the mechanism suggested by Schoppa & Hussain
(2002), where streamwise vortex sheets break down due to
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Figure 9. (a) Mean and r.m.s. profiles ofΓc ( &
), Γp ( & ) and λ2 ( & );

(b) the enstrophy production ratio,r ( ) with
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stretching. In K-type transition, the measures did accurately
locate the regions of interest, in particular the formation of
high speed streaks near the wall (‘h-type’) and the appearance
of the hairpin vortex (‘l-type’). Here, the vorticity stretching
diagnostics were noticed to appear and grow long before the
vortices (λ2) showed any tendencies to grow. Shortly before
the turbulent breakdown the growth ofλ2 rapidly overtook
the growth of any other quantity, which shows thatΓ is ca-
pable of predicting growing instabilities. Statistics from the
fully turbulent channel flow showed that vorticity stretching
is active in the near-wall region, with a peak in the viscous
sublayer (y+ ≈ 6.5) and dominates over vorticity tilting. Fur-
ther out in the outer region of the flow where the turbulence
is more isotropic, the enstrophy produced solely by stretching
compared to the total enstrophy production attains a constant
value of∼ 1/3. In summary, the proposed diagnostic applied
to a turbulent flow finds regions where high-speed streaks cre-
ate drag or streak instabilities are present (both sinuous and
varicose). As opposed to vortices which are simply convected
away from the ‘active’ region of the flow as soon as they are
created and hence are generally seen to be located far from the
wall, where the turbulent production is low; high concentra-
tions of vorticity stretching are mainly found in regions where
growing instabilities are present and hence dynamically im-
portant.

ACKNOWLEDGEMENTS
The NORDITA Workshop on Turbulent Boundary Lay-

ers 2010 is acknowledged for providing a forum for the
present collaboration and thus making this project possible.

REFERENCES
Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson,

D. S. 2007 A Pseudo-Spectral Solver for Incompressible
Boundary Layer Flows.Tech. Rep. TRITA-MEK 2007:07.
Royal Institute of Technology (KTH), Dept. of Mechanics,
Stockholm.

Gilbert, N. & Kleiser, L. 1990 Near-wall phenomena in transi-
tion to turbulence. InNear-Wall Turbulence (ed. S.J. Kline
& N.H. Afgan), pp. 7–27. 1988 Zoran Zarić Memorial Con-
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