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ABSTRACT during the end-stage of K-type transition, it has been noted
Vorticity stretching in wall-bounded turbulent and tran-  (Sandham & Kleiser, 1992) that the stretching of vorticity in-
sitional flows has been investigated by means of a new diag- volved in the roll-up of detached shear layers leads to turbu-
nostic, designed to pick up regions with large amounts of vor- lence regeneration. The fact that the vorticity stretching itself
ticity stretching. It was found that the largest occurrence of provides a rapid growth mechanism becomes evident when
vorticity stretching in fully turbulent channel flows is present  studying the vorticity transport equation in an incompressible
at a wall-normal distance of"™ = 6.5, i.e. in the transition flow. Assume there is initially some vorticitgs, and strain,
between the viscous sublayer and the buffer region. Instanta- dus/ds, in the direction ofs, wheres is the strain elongation
neous data showed that the coherent structures associated withaxis. Assume further that the strain is negligible in the other
these stretching events have the shape of flat ‘pancake struc- spatial directions so that the vorticity tilting terms vanish; then
tures’ in the vicinity of high-speed streaks, here denoted ‘h- the vorticity transport equation reduceS«D}ﬁ’5 = ws%, pro-
type’ events. The other event found, also studied in an asymp- yjged theRe is high enough so that the damping tewii2cas
totic suction boundary layer, is the ‘I-type’ event present on

top of an unstable low-speed streak. These events are fur-
ther thought to be associated with the exponential growth of
streamwise vorticity in the turbulent near-wall cycle.

is small. Solving forws givesws ~ exp(%t), i.e. exponen-

tial growth of vorticity alongs, assuming a constant strain rate
following the fluid element. The above mentioned examples
indicate that vorticity stretching is dynamically important for
the growth of instabilities in wall-bounded flows. Therefore,
we intend to study this mechanism in more detail in three dif-
ferent flows with successively increasing complexity: A near-
wall cycle in an asymptotic suction boundary layer; K-type
transition in a plane channel flow and fully turbulent channel
flow. As we progress towards fully turbulent, spatially uncon-
strained flows the increased complexity needs to be handled
accordingly and we need tools to extract the flow physics. In
order to locate the largest occurrence of vorticity stretching in
the flow, we will define the following scalar measure:

INTRODUCTION

In wall-bounded turbulent flows, streamwise velocity
streaks (Klineet al., 1967) and quasi-streamwise vortices
(Smith & Metzler, 1983) are known to dominate the near-wall
region. Hamiltonet al. (1995); Jinénez & Pinelli (1999) and
others showed that these structures are tied together via a self-
sustained cycle, where the streamwise vortices create streaks
and the streaks break down to create new streamwise vortices.
Minimal flow units (Jinénez & Moin, 1991) were used to
show that if this cycle was broken at any point the flow would
relaminarise. While the mechanism in which streaks are cre- Mp(%Y,zt) = max{a|wal, Blwgl, ylwyl}, (1)
ated by streamwise vortices is fully understood and well doc-
Emegted ellg. Klebanoff et al., in%z;hLandahlL’ 1580)|; Lhere dwhere a, B andy are the eigenvalues of the strain tensor

as been less consensus on how the streaks break down and.. 1, 4u | dy; d d -
. . . =5(5-+ 5 , th ticit -

the streamwise vortices are recreated. There are however in- S 2(‘9“1 *ou ) an_ wa “p an wy are the VOI’-ICI y com
dications €.g. Waleffe, 1997) that the breakdown is preceded ponents along thg pnn.0|p.al axes given by thg elgen\./ec.tors of
by exponential growth ok-dependent disturbances. For the S‘J_' The subsclz_nptp m_drl]cak:es t_hat we afre in a pnrk:cnpal
late stages of the streak instability phase, Schoppa & Hus- axis system, aligned with the direction of strain. The pro-

sain (2002) elaborated on a mechanism responsible for the pedure of decomposing the sFrain tensor into its eigenvectors
formation of streamwise vortex sheets which eventually col- is commonly adopted in studies of homogeneous turbulence

lapse due to the stretching caused by the streamwise strain, where the u_sual spatial coordinate directions have a subordi-
du/dx. This shows that vorticity stretching may be an im- nated. meaning £0. .Sheet al., 1991, Nomura} & Post, 1998).
portant ingredient in the near-wall cycle. There is also some We will compare this measure to the following:

evidence (Jonet al., 2009) that vorticity stretching plays an du ov ow

important role in self-sustained transition processes, such as Fe(xy,2t) = max{|ax| -, |‘*’5’|(7y’ w554 @)

the unsteady vortex shedding in a separated flow. In addition,

where the subscriptc® denotes ‘Cartesian’. The region of
intensel” will further be linked to the birth of vortices by lo-
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cating high concentration of, (Jeong & Hussain, 1995) in
the flow.

NUMERICAL METHOD & SIMULATION SETUP

The solutions of the incompressible Navier—Stokes equa-
tions were obtained by a Chebyshev-Fourier pseudo-spectral
code described in Chevaliet al. (2007). Each one of the
three cases are described more in detail below.

Near-wall cycle in an asymptotic suction
boundary layer (sinuous instability)

The asymptotic suction boundary layer (ASBL) enables
the study of an open boundary layer in the temporal frame-
work, i.e. by employing suction at the wall the spatial growth
of the boundary layer is removed, which opens the possibil-
ity of using a streamwise periodic domain. Hence, for the
present simulation, employed at a Reynolds numbdreoE
Ux0*/V = Uw /Veo = 750 U being the free-stream velocity,
0" the displacement thickness aviglthe imposed vertical ve-
locity) we used a computational domain with periodic bound-
ary conditions in the spanwise and streamwise directions. A
Dirichlet condition in the form of a constant velocity.{) in
the negative vertical direction was applied at the bottom of the
domain. The dimensions of the domain (non-dimensionalised
by 6*) were chosen as, = 12,Ly = 15 andL; = 6, such that
the flow would be a ‘minimal flow unit’ and the dynamics of
a single streak could be studied. A satisfactory spatial reso-
lution was chosen to bly = 32, N, = 32 Fourier modes in
the streamwise and spanwise directions bipe- 129 Cheby-
shev modes in the wall-normal direction. The critical trajec-
tory (‘edge state’) was found by bisection where the ampli-
tude of the random initial condition was tuned such that the
flow neither becomes turbulent nor goes laminar (Schneider
et al., 2007). The result is a time-periodic orbit with a period
of T = 3347. The edge state in the ASBL flow was com-
puted and studied by Magl(2011) and discussed by B. Eck-
hardt (ETC-12, 2009, Marburg). The aim of the present case
is however not to study its state-space properties, but merely
to use the case as an alternative to minimal channel flows in
an effort to simplify turbulent dynamics as much as possible.
Some snapshots representative for the streak instability phase,
breakdown and streak regeneration are shown in Figure 1. The
initially straight low-speed streak at=tg (Figure 1) is in-
dicated by the gray surface of constant streamwise velocity.
Soon, around = tp + 0.16T, the low-speed streak experi-
ences a sinuous instability amedependent disturbances are
amplified (Figure b). As the disturbance growth has reached
nonlinear amplitudest (= tg + 0.39T, Figure I) the streak
breaks down into smaller scales. During this phase, stream-
wise vortices are regenerated which leads to the growth of
a new streak, displaceld,/2 to the left. Thus, the flow at
t =tp+ 0.5T shown in Figure 1), is the exact symmetric
equivalent to the flow in Figure &) with respect to a span-
wise midplane.

Subcritical K-type transition
(varicose instability)

Direct numerical simulation (DNS) of subcritical K-type
transition atRe, = 3333 were performed in order to exam-
ine the role of vorticity stretching in a classical transitional
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Figure 1. Evolution of the low-speed streak indicated by a

surface of constant streamwise velocity= 0.6 (gray), at

(@ t=tg, (b)t =tyg+0.16T, (c) t =tg+ 0.39T and ()

t =to+ 0.5T, whereT denotes the period of the periodic or-

bit. Vectors of crossflow velocities are shown in a crossflow
plane.

flow (Gilbert & Kleiser, 1990). The initial disturbances con-
sist of a two-dimensional TS wave with a streamwise wave
number ofa = 1.12 and an amplitude of 3% of the lami-
nar centre-line velocity; together with two three-dimensional
oblique waves with wave numbegs= 1.12 and3 = 2.1 and
amplitudes of 0.05%. This wave packet, superimposed on a
laminar Poiseuille channel flow, experiences an exponential
growth eventually leading to turbulent breakdown. Around
t = 120 theA-vortex appears, which develops into a hairpin
vortex att ~ 135. Shortly thereaftet & 160), the highly fluc-
tuating transitional phase sets in; and finallyt at 220, the
flow has reached a fully developed turbulent state. The box
lengths werd x x Ly x L, = 2m/a x 2 x 211/ and the reso-
lution used wady x Ny x N; = 128x 129x 128, inspired by
Gilbert & Kleiser (1990).

Turbulent channel flow at Re; = 180

Fully turbulent channel flow simulations were performed
at a Reynolds number &e; = 180, based on friction veloc-
ity, ur, and channel half heighh, in order to study the vor-
ticity stretching diagnostics in a fully turbulent flow. Periodic
boundary conditions in both the streamwise and spanwise di-
rections were applied in a domain of sizex Ly x L = 41 x
2 x 2mand a resolution oNy x Ny x N; = 128x 129x 128
(Moseret al., 1999).

RESULTS

In the following, the evaluation of ¢ and Iy in these
three flow cases is presented.



1. The effect of sinuous instabilities on vortic- which together with the lifted vorticity creates large spanwise
ity stretching vorticity stretchingw,dw/dz. A similar situation is found to

In order to facilitate understandingg (retaining compo- be present when the streak is bent (Figusge Since the braid
nent information more obviously) is as a first step computed region has moved over to the convex side of the streak (left in
in the asymptotic suction boundary layer, with its evolution  Figure 3), this is where we find high valueslaf. Similarly,
shown together with\, in Figure 2 at similar instants as in high values of"¢ are found to the right as soon as the streak
Figure 1. As long as the high- and low-speed streaks are (rea- ‘wiggles’ over to this sidedashed). It should be pointed out
that the same mechanism is responsible for the high values
of spanwise stretching alternating from side to side below the
high-speed streak, given that the sketch in Figure 3 in that case
would be upside down. The cartoon in Figure 3 is confirmed
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Figure 3. Explanation for an ‘l-type’ event:a) straight
streak, where high values od, are lifted fromA and mul-
tiplied by spanwise strain iB; (b) similar mechanism for a
bent streak in one of its outer positions.

y
X
L:z by results from the numerical simulation. In particular, a top
view of a velocity field at = tp+0.18T is provided in Figure
Figure 2. Evolution ofl ¢ (red) and A, (green) shown at 4(a), where the relation betwedn, I'p, A2 and the low-speed
(@ t=tg (b)t=1tyg+0.16T, (c) t =ty+ 0.30T and ¢) streak can be seen. It shows that high valueEgf indeed

t = tg -+ 0.39T, whereT denotes the period of the periodic ~ are located on the convex side of the bent streak. Here, we
orbit. The levels of the corresponding isosurfaces are fixed. @S0 note that the differences betwelgnandr'p are small.
The isosurface of streamwise velocity= 0.5 (gray), indi- A more detailed comparison is given in Figurdgj, where

cates streaks and the crossflow plane is coloureitb the isosurface level is decreased approximately by a factor of
P Y two. Still, I'c andl™ are located in similar regions in the flow.

More specifically, they both pick up vorticity stretching on top
of the low-speed streak and beneath the high-speed streak near
the wall associated with the creation of drag.(he ‘pancake
structures’). It is evident that, although being located in the
same regions, tilted at the same angle from the wall and be-
ing similarly flat, larger pancake structures are present in the
case ofl ¢ as compared tdp. The main difference notewor-
thy is that whereak. is decoupled from the quasi-streamwise
vortices,I"p is capable of picking up the vorticity stretching
associated with those, shown in Figuré)(The reason for
this is thought to be the slight tilting of the vortices in the flow,
such that the vorticity stretching in the streamwise direction is
small. In a principal axis system, however, this tilting is ac-
counted for.

In order to see if ¢ p can be linked to the existence of ex-
ponential growth, we show the evolution of the vorticity com-

sonably) straight, most of the vorticity stretching activity re-
sides in the high-speed streak, close to the wall (Figaje 2
Here, we observe that isosurfaces of consfantippear as

flat ‘pancake structures’ close to the wall. A closer investi-
gation reveals thafc = |w,|dw/0z, i.e. vorticity is stretched
most intensively in the spanwise direction. As soon ascthe
dependent disturbances are amplified and the streak starts to
‘wiggle’, we rather observe the highest values gfon the top

of the low-speed streak (Figurd) Henceforth, we will re-

fer to the former event as ‘h-type’ (high-speed) and the latter
as ‘I-type’ (low-speed). Also herd; is in all points equal

to spanwise vorticity stretching, save that the sign is differ-
ent due to the absolute value in the-measure. As for the
high-speed streak, the appearance of vorticity stretching al-
ternates f_rom side to side also on the low-speed streak,_ such ponentsa | together with A, and|[¢ p| in Figure 5). More
that the highest values are always found on the convex side of specifically, at each time the maximum absolute value over
_the streak. Th(_a reason for this can be understood by study- the domainQ, is found,i.e. maxa{| - |}1. The variables are
ing the sketch in Figure 3. Due to the mean shear, there are

always high values of spanwise vorticitsg,, present close

to the wall @). In the case of a straight streak (Figura) 3

this vorticity is lifted by the streamwise vortices, due to the Yn th(_% case Oﬂ_z, only neanive values isolate vortices (Jeong
well-known lift-up effect (Landahl, 1980). In the braid region & Hussain, 1995),i.e. maxa{|min(A2,0)|} would be the correct
above the streakB) the highest values a@w/dz are found operation. However, we have noted that the maximum absolute

value always equals the absolute value of the largest megediue,

3 i.e maxq{|Az2|} = maxq{|min(A2,0)|}.
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Figure 4. Isosurfaces o&) I'c = I'p = 0.0040 ¢ed andyel-
low, respectively) in a top view (aligned with the coordinate

axes) andlf,c) 'c = I'p = 0.0023 from behind at an angle, at
t =tp+0.18T, together withu = 0.6 (gray) andA; (green).

scaled in outer units antdT = 0 corresponds tt in Figure
2. Due to the mean sheawy is the overall strongest vorticity
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Figure 5. Maximum absolute value oM@rof w, (x), wy (e),

wx (o) together withA; (0), ¢ (¢), I'p (+) during the streak in-
stability phase and the nonlinear breakdown. Straight lines in-
dicating exponential growth are included for reference. Here,

t/T = 0 corresponds tty in Figure 2.

component. The second strongest componea, idue to the
existence of high- and low-speed streaks and the correspond-
ing shear layer in between them. The first aspect to notice is
that there is a slight decrease of these two vorticity compo-
nents before the nonlinear breakdown. However, the weakest
component,wy, is increasing. As indicated by the straight
dash-dotted line the growth is weakly exponential. A simi-
lar growth rate is observed fa. AsTl¢p involves the large
spanwise vorticity, its growth rate is higher than the former
two, albeit still exponential. Furthermore, the two measures
are observed to behave very similarly. None of thetilting
terms (not shown) show any tendencies to grow exponentially.

2. The effect of varicose instabilities and the
transition to turbulence on vorticity stretching

As a second stef,c p is computed in K-type transition,
where the initial spanwise vortex is tilted in the streamwise
direction and stretched as the hairpin vortex emerges in the
peak plane (Sandham & Kleiser, 1992). In Figure 6 isosur-
faces ofl ¢ and A, are plotted shortly beforea) and after )
the hairpin is created. Similar results are obtained fgrand
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Figure 6. Isosurfaces of, (green) andrl ¢ (red) during K-
type transition atd) an early staget = 1255) and p) att =
136.5 when the hairpin vortex has emerged in the peak plane.

are thus not shown independently. In the early stage (Figure
6a) the M'-measure acts as a precursor to the shear layer and
the hairpin vortex formation. As for the ASBL, it also iden-
tifies the role of vorticity stretching in generating high speed
streaks near the wall (‘h-type’). Similarly, high values of vor-
ticity stretching are found slightly above and in between the
legs of theA-vortex, where the head of the hairpin vortex is
about to appear (‘I-type’). This mechanism is similar to the
one sketched in Figure 3, due to the positive wall-normal ve-
locity induced by the legs of tha-vortex. In Figure &) we

note that the-measure is properly aligned with the hairpin
vortex. As for the previous flow case, we include the evolu-
tion of the maximum absolute values in Figure 7 for a more
guantitative comparison. Again, it can be observed that the
amplitude of spanwise vorticity is nearly constant, while the
streamwise and wall-normal components grow exponentially.
It is interesting to notice that, is constant for a long time,
but starts to increase rapidly aroung 100. This shows that

I is capable of predicting instabilities.
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Figure 7. Maximum absolute value ov@rof w, (x), wy (),

wx (o) together withA; (0), ¢ (¢), I'p (-) during the streak in-
stability phase and the nonlinear breakdown. Straight lines in-
dicating exponential growth are included for reference. Here,
t/T = 0 corresponds tty in Figure 2.



3. Vorticity stretching in a fully turbulent flow

Next, we investigate the role of the vorticity stretching
diagnostics in a fully turbulent wall-bounded flow. In particu-
lar, we are interested to see if similar events (‘h’ and ‘I') can
be observed as in the two previous flows. In Figura) &
snapshot of a fully developed channel flow is shown (colours
as before). The most prominent events are observed to be
the ‘pancake structures’ (‘h-type’) adjacent to the high-speed
streaks. Also a few ‘I-type’-events can be found in locations
of strong low-speed streak activity (indicated by the arrow). In
Figure 8p) we showl ¢ (upper), I'p (lower) together withA,.

ima being located slightly closer to the wall,ydt = 4.4. The

fact that the mean fluctuations peak at approximately the same
wall-normal distance as the mean itself suggests that the vor-
ticity stretching is not only a result of the mean shear but part
of a dynamical process. As also noted by Jeetrsy. (1997),
sinceA, > 0 for y*+ < 10, no vortices are present in the vis-
cous sublayer. These authors further point out that the peak
of A5 (r.m.s) aty™ = 21 infers that the prominence of vortical
structures is located in the buffer region. This indicates that,
similar to the discussion above, vorticity stretching is most
active in the viscous sublayer and is part of the creation of

We note that the ‘pancake structures’ are essentially the same vortical structures, which are then convected outwards in the

in both cases. The main difference is highlighted by the arrow
in Figure 8p, lower), where the structure forms a ‘front’ in
the case of p, not present in the case B§. This difference is
thought to be of the same origin as the one in Figure 4; namely
that the region of intense stretching is inclined and therefore
artificially cut by I'c but shown in its full length by p. In
some locations in Figure BY it can be seen that regions of
strong vorticity stretching give rise to quasi-streamwise vor-
tices. As soon as a vortex is created, it is convected away
from the ‘active’ region of the flow. Many of these ‘passive’
vortices are seen to be located far from the wall in Figubg,8(
where the turbulent production is low. In that sense, the loca-
tion of vorticity stretching (as opposed to vortices) pin-points
the regions in a flow being dynamically relevant. Mean and

Figure 8. @) I'c (red) andu = 0.3 (gray) in a fully turbulent
channel flow; the arrow indicates an ‘I-type’-evert) Close-
up view of the same flow field, whefe&. (upper) is compared
to I'p (lower) and shown together withy (green) and a plane
of streamwise velocity; the arrow shows the ‘front’ of the
structure captured biyp.

root-mean-square (r.m.s) profilesiafp andA; are shown in
figure 9@), where the mean is taken over the homogeneous di-
rectionsx, z,t. We observe the peak of bofhmeasures to be
located aty™ = 6.5, i.e. in the transition between the viscous
sublayer and the buffer region. The peak gfis around 50

% higher compared tB;, whereas the mean fluctuationlof
show a nearly identical behaviour with thatfof with max-

flow. In order for the vorticity to grow exponentially, there
should be a predominance of stretching terms in the enstro-
phy transport equation.é. small amounts of tilting). There-
fore, the ratior = <|zaaﬁg—gg|)/<|mwjg—)‘j}\>, where (-} is
taken over the homogeneous directions is examined. The re-
sult is thus a function of wall-normal distance, shown in Fig-
ure 9p) together with the numerator and denominator sepa-
rately. The ratior can be interpreted as the enstrophy pro-
duced solely by stretching compared to the total enstrophy
production {.e. stretching and tilting). The horizontal line
drawn atr = 1/3 indicates the degree of equipartition between
stretching and tilting. The results suggested by Figul® 9(

is that the enstrophy production is dominated by stretching
over tilting close to the wall, with the peak obeing attained
aty't ~ 3.5. Further out in the log-regiory( ~ 70) it ap-
proaches the equipartitioned state ¢B81 This demonstrates
that the near-wall cycle contains the stretching of vorticity as
an important ingredient and confirms that stretching becomes
less important further away from the wall.

CONCLUSIONS

Vorticity stretching is known to provide a rapid (expo-
nential) growth mechanism, hence the location of vorticity
stretching may reveal regions of dynamical importance in the
flow. Therefore, we have defined a diagnostic measure which
can locate these areas. Two different variants have been in-
vestigated: One is rotationally invariarty), and thus a true
scalar quantity; the other is defined in a Cartesian framework
(C¢), facilitating implementation and understanding. It can
be concluded that the two measures do not differ from each
other significantly. Generally, vorticity stretching was found
to be present in conjunction with the lift-up effect creating
low-speed streaks (and the equivalent effect creating high-
speed streaks). In particular, in both the ASBL (acting as a
model for wall-bounded turbulence) and in the fully turbulent
channel flow aRe; = 180, large amounts of vorticity stretch-
ing were found on the convex side of high-speed streaks (‘h-
type’-events), taking the form of large, flat ‘pancake struc-
tures’. In locations of strong low-speed streak activity a simi-
lar but reversed phenomenon was observed on top of the low-
speed streaks (‘I-type’-events); also here on the convex side
of the streak. During the streak instability phase, exponential
growth of streamwise vorticity was observed in the ASBL,
while the other components decayed, in line with the obser-
vations by Waleffe (1997). The rotationally invariant measure
(I'p) could moreover detect vorticity stretching located within
the core of the streamwise vortices, which gives some evi-
dence for the mechanism suggested by Schoppa & Hussain
(2002), where streamwise vortex sheets break down due to
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stretching. In K-type transition, the measures did accurately
locate the regions of interest, in particular the formation of
high speed streaks near the wall (‘h-type’) and the appearance
of the hairpin vortex (‘I-type’). Here, the vorticity stretching
diagnostics were noticed to appear and grow long before the
vortices @») showed any tendencies to grow. Shortly before
the turbulent breakdown the growth &% rapidly overtook

the growth of any other quantity, which shows tlfats ca-
pable of predicting growing instabilities. Statistics from the
fully turbulent channel flow showed that vorticity stretching

is active in the near-wall region, with a peak in the viscous
sublayer ¥+ ~ 6.5) and dominates over vorticity tilting. Fur-
ther out in the outer region of the flow where the turbulence
is more isotropic, the enstrophy produced solely by stretching
compared to the total enstrophy production attains a constant
value of~ 1/3. In summary, the proposed diagnostic applied
to a turbulent flow finds regions where high-speed streaks cre-
ate drag or streak instabilities are present (both sinuous and
varicose). As opposed to vortices which are simply convected
away from the ‘active’ region of the flow as soon as they are
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