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ABSTRACT
In previous studies, the three invariants of the velocity

gradient tensor have been used to study turbulent flow struc-
tures. For incompressible flow the first invariant P is zero
and the topology of the flow structures can be investigated in
terms of the second and third invariants, Q and R respectively.
However, these invariants are zero at a no slip wall and can no
longer be used to identify and study structures at the surface
in a wall-bounded flow. At the wall, the flow field can be de-
scribed by a no slip Taylor-series expansion. Like the velocity
gradient tensor, it is possible to define the invariants P , Q
and R of the no slip tensor. In this paper it will be shown how
the topology of the flow field on a no slip wall can be studied
in terms of these invariants.

INTRODUCTION
A critical point is a point in a flow field where the veloc-

ity u1 = u2 = u3 = 0 and the streamline slope is indeterminate.
Close to the critical point the velocity field can be described
by the linear terms of a Taylor-series expansion. Two types
of critical points can be described: one is the free slip critical
point which is located away from a no slip wall and the other
is the no slip critical point which occurs on a no slip wall.

Free-slip critical points
For free slip critical points, the velocity ui in xi space is

given by

 u1
u2
u3

 =

 .
x1
.

x2
.

x3

 =

 dx1/dt
dx2/dt
dx3/dt

 =

 A11 A12 A13
A21 A22 A23
A31 A32 A33

 x1
x2
x3


or

.
xi=

dxi

dt
= Ai jx j (1)

where Ai j = ∂ui/∂x j is the velocity gradient tensor.

The invariants of the velocity gradient tensor
For an observer moving in a non-rotating frame of refer-

ence with any particle in a flow field, the flow surrounding the
particle is described in terms of the nine components of the
velocity gradient tensor Ai j.

The characteristic equation of Ai j is

λ
3
i +Pλ

2
i +Qλi +R = 0, (2)

where λi are the eigenvalues and P, Q and R are the tensor
invariants which are defined as

P = −(A11 +A22 +A33)

Q = A11A22−A12A21 +A11A33−A13A31

+A22A33−A23A32 and

R = A11A23A32−A11A22A33 +A12A21A33

−A12A23A31−A13A21A32 +A13A22A31 (3)

The characteristic equation (2) can have (i) all real roots
which are distinct, (ii) all real roots where at least two roots
are equal, or (iii) one real root and a conjugate pair of complex
roots. In the P−Q−R space, the surface which divides the
real solutions from the complex solutions is given by

27R2 +(4P3−18PQ)R+(4Q3−P2Q2) = 0 (4)

For incompressible flow, the first invariant P is zero and hence
all free-slip critical points can be described by the second and
third invariants, i.e. Q and R respectively. The invariants
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of the velocity gradient tensor have been used to study tur-
bulent flow structures in order to extract information regard-
ing the scales, kinematics and dynamics of these structures
(see Davidson, 2004, pg. 268 and Elsinga & Marusic, 2010).
These invariants can also be used to study turbulent structures
using data from Direct Numerical Simulations (DNS), for ex-
ample in the DNS of homogeneous isotropic turbulence by
Ooi et al. (1999) and in wall-bounded shear flows by Chong
et al. (1998).

No slip critical points
In wall-bounded flows, there is no slip at the wall, i.e. u1 = u2
= u3 = 0 when x3 = 0, where x3 is the wall-normal direction.
If the origin of a Taylor-series expansion is located on the no
slip wall, i.e. at x3 = 0, the linear terms of the expansion are
given by

 u1
u2
u3

 =

 0 0 A13
0 0 A23
0 0 0

 x1
x2
x3


where A13 = ∂u1/∂x3 and A23 = ∂u2/∂x3; x1 is the stream-
wise direction and x2 is the spanwise direction. All the invari-
ants of the above tensor are zero at the wall and hence they
cannot be used to map the topology of the flow pattern at a no
slip surface.

To satisfy the no slip condition, the Taylor-series expan-
sion at the wall (i.e. at x3 = 0) can be re-written to include
higher order terms and at the same time satisfy the no slip
boundary condition. The expansion is given by

u1 = A13x3 +(A11x1 +A12x2 +A13x3)x3

u2 = A23x3 +(A21x1 +A22x2 +A23x3)x3

u3 = (A31x1 +A32x2 +A33x3)x3

Since u1 = u2 = u3 = 0 at the wall (at x3 = 0), we cannot
integrate the velocity field at the wall to obtain the surface
flow pattern or skin friction lines. However, by defining

o
xi as

o
x=

dxi

dτ
(5)

where dτ = x3dt. the no slip velocity field can be expressed
as

u1

x3
=

o
x1=

dx1

dτ
= A13 +(A11x1 +A12x2 +A13x3)

u2

x3
=

o
x2=

dx2

dτ
= A23 +(A21x1 +A22x2 +A23x3)

u3

x3
=

o
x3=

dx3

dτ
= (A31x1 +A32x2 +A33x3)

A critical point occurs on the wall when A13 = A23 = 0 and at
this critical point


o
x1
o
x2
o
x3

 =

 dx1/dτ

dx2/dτ

dx3/dτ

 =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 x1
x2
x3



or

o
xi=

dxi

dτ
= Ai jx j. (6)

In this paper, the Ai j will be referred to as the ‘no slip ten-
sor’. The above vector field can be integrated with τ to gen-
erate surface streamlines (limiting streamlines or skin friction
lines).

The invariant of the no slip tensor
To satisfy boundary conditions on a no slip surface, the

no slip tensor is given by

Ai j =

A11 A12 A13
A21 A22 A23

0 0 − 1
2 (A11 +A22)

 (7)

By substitution of the above expansion into the Navier-Stokes
equation, it can be shown that A11, A12, A21 and A22 are re-
lated to the vorticity gradients and A13 and A23 are related to
pressure gradients. Like the velocity gradient tensor, the no
slip tensor has three invariants P , Q and R. For incompress-
ible flow, the first invariant P is no longer zero and is given
by

P =−1
2

(A11 +A22) . (8)

It can also be shown that the relationship between the three
invariants of the no slip tensor is given by

2P3 +PQ +R = 0. (9)

SURFACE SKIN FRICTION AND SURFACE
VORTICITY VECTOR FIELDS

The main aim of this study is to investigate the topol-
ogy of skin friction fields and the surface vorticity field at the
wall in wall-bounded flows. Wall shear stress or skin friction
is defined as the normal derivative of the velocity vector at
the wall. Hence the direction of the near-wall velocity vec-
tor when projected normal to the wall is in the same direc-
tion as the wall shear stress vector, i.e. surface streamlines
are known as skin friction lines. Figure 1 shows skin friction
lines in a streamwise-spanwise plane at the no slip wall using
data from the Direct Numerical Simulation (DNS) of chan-
nel flow by del Alamo et al. (2004). The simulation is for
Reτ = huτ/ν = 934 where h is the channel half height, ν is
the kinematic viscosity and uτ is the friction velocity.

Skin friction lines (limiting streamlines at the no slip
wall) are obtained from integrating the streamwise velocity
u1 and spanwise velocity u2 in the first plane from the wall,
and it generally assumed that this first plane is very close to
the wall. How close this plane has to be to produce suffi-
ciently accurate skin friction lines, is an open debatable issue.
In most computations of wall bounded flows it is generally
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Figure 1. Typical surface skin friction lines at the wall using
data from DNS of channel flow at Reτ = 934 (see del Alamo et
al., 2004 for details of computations). The region shown is for
a random area of the entire channel wall in the computational
domain.

Figure 2. Surface skin friction field showing critical points
(a saddle and a node) at the wall from the same data as that in
figure1.

agreed that the first plane is such that x+
3 = x3uτ/ν ≤ 1. In

the computation by del Alamo et al. (2004), the first plane off
the wall is for x+

3 = 0.0313. The surface skin friction lines
shown in figure 1 are for a small region of the flow, i.e. for
x+

1 × x+
2 plane≈ 300×925, the size of the entire streamwise-

spanwise channel wall, in viscous units, is 3072×2304 . The
figure is fairly typical of surface skin friction lines which
consist of bifurcation lines which are associated with surface
streak lines and streamwise vortical motions (or streamwise
eddying motions) at the wall.

A question this study seeks to answer is: Are there criti-
cal points in the surface skin friction field?

This question is best addressed by considering the sur-
face vorticity lines which are orthogonal to the surface skin
friction lines (see Chong et al., 1998). It is conjectured in
the DNS of wall bounded flows, that since the flow is peri-
odic in the spanwise direction and the outflow is re-cycled

Figure 3. Surface vortex lines (red) superimposed on the sur-
face skin friction field shown in figure 2. Surface vortex lines
are orthogonal to the surface skin friction lines. Note that crit-
ical points in the surface skin friction field are also critical
points in the surface vorticity field. A saddle in the skin fric-
tion field is also a saddle in the vorticity field. A node in the
skin friction field is a focus in the vorticity field.

and fed back as inflow, the surface skin friction field at the no
slip wall can be mapped on to the surface of a toroid. The
Poincare-Hopf index theorem or Poincare Bendixson theorem
(see Hunt, et al., 1978, Lighthill, 1963 or Flegg, 1974) states
that the topology of a smooth vector field on a toroidal surface
is such that the number of nodes minus the number of saddles
is equal to zero, a saddle having a Poincare index of -1 and
a node (or a focus) having a Poincare index of +1. Hence, if
the skin friction field for the entire no slip wall is similar to
that shown in figure 1, where no critical points can be seen,
then the Poincare-Hopf index theorem is satisfied. This led to
the initial conclusion that there are probably no critical points
on the surface of a no slip wall since a single critical point (a
single saddle or a single node) will violate the Poincare-Hopf
theorem for the topology of the flow field on the surface of a
toroidal surface.

However, contrary to expectations, there are critical
points in the surface skin friction field at the wall. Figure 2
shows a close-up (x+

1 × x+
2 plane ≈ 100× 225) from another

area of a surface skin friction field using data from the same
computation as that used to produce figure 1. This figure
shows an example of critical points which are found to exist
on the no slip wall; these critical points come as a saddle-node
pair so that the Poincare index around the pair of critical points
is such that it is zero around a closed circuit enclosing the two
critical points. Critical points in the surface skin friction field
are also critical points in the surface vorticity field. In fact,
all critical points on the surface come as a saddle-node pair
so that for the entire surface in the computational domain, the
Poincare-Hopf index theorem is satisfied. The topology of the
surface vorticity field also satisfies the condition that the sur-
face vortex lines must form closed loops and can only cross
at critical points in vorticity. Critical points can also be found
on the surface using data from the DNS of a pipe flow by
Chin et al. (2010) and also in the recent spatial computation
of a zero pressure gradient turbulent boundary layer by Wu &
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Moin (2009).

Taylor-series expansion solutions of the
Navier-Stokes equations

To investigate the three-dimensional structure of the flow
on a no slip surface, the technique described in Perry & Chong
(1986) will be used to generate smooth three-dimensional skin
friction vector fields which are local solutions of the Navier-
Stokes equations. The velocity field for a complex flow can
be represented by Taylor-series expansions of arbitrary order
N as

ui =
N

∑
n=0

S(ai,bi,ci)x
ai
1 xbi

2 xci
3 (10)

where i = 1,2,3, and xi are the orthogonal spatial coordinates.
(ai,bi,ci) uniquely specify the terms in the expansion and the
powers of x1, x2 and x3 respectively.

The factor1 S is given by

S =
(ai +bi + ci)!

ai!bi!ci!
(11)

and

n = ai +bi + ci (12)

The above representation of the expansion for the velocity
field is ideal for generating algorithms so that computer pro-
grams can be written to obtain Taylor-series expansion for the
velocity, to arbitrary orders. Once generated, the expansions
in the above notation can be translated to a more conventional
notation. For example, the third order Taylor-series expansion
for the streamwise velocity u1, in a conventional notation, is
given by

u1 = P1 +P2x1 +P3x2 +P4x3

+ P5x2
1 +P6x2

2 +P7x2
3 +2P8x1x2 +2P9x1x3

+ 2P10x2x3 +P11x3
1 +P12x3

2 +P13x3
3 +3P14x2

1x2

+ 3P15x2
1x3 +3P16x1x2

2 +3P17x1x2
3 +3P18x2

2x3

+ 3P19x2x2
3 +6P20x1x2x3 (13)

where the P’s are the coefficients of the Taylor expansion. The
expansion for the spanwise velocity u2 and the wall normal
velocity u3 are similar to the above expansion, except that the
coefficients are denoted by Q′s and R′s respectively2.

It can be shown that the number of unknown coefficients
for a Nth-order expansion is given by

Nc = 3
N

∑
K=0

K+1

∑
J=0

J (14)

1S was introduced in the original technique for generating the
Taylor-series expansions and is retained in the analysis given in this
paper - for details, see Perry & Chong (1986).

2Note that P’s, Q’s and R’s are coefficients of the expansion for the
velocity field and not to be confused with the invariants of the velocity
gradient tensor.

The Navier-Stokes equation and continuity equation in tensor
notation3 is given by

∂ui

∂ t
+u j

∂ui

∂x j
= − ∂ p

∂xi
+ν

∂ 2ui

∂x j∂x j
(15)

∂ui

∂xi
= 0 (16)

where p is ‘kinematic’ pressure = p/ρ and ν is the kinematic
viscosity.

Differentiating the velocity expansions (13), substitution
into the continuity equation (16), and equating like powers
of x1, x2 and x3, relationships between the coefficients can
be generated. Examples of continuity relationships generated
from equation (16) are:

P2 +Q3 +R4 = 0

P5 +Q8 +R9 = 0

P8 +Q6 +R10 = 0

... etc (17)

For an Nth-order expansion, the number of these relationships
is given by

Ec =
N

∑
n=0

n

∑
J=0

J (18)

By equating cross-derivatives of pressure in the Navier-Stokes
equations, and by collecting terms for like powers of x1, x2
and x3, the Navier-Stokes relationships can be generated. A
typical example of a Navier-Stokes relationship for a fifth or-
der expansion is given below:

Ṙ8 − Ṗ10

+R2P8 +R3Q8 +R4R8 +R5P3 + R6Q2

+R8P2 +R8Q3 +R9R3 +R10R2 + 3R14P1

+3R16Q1 +3R20R1−P2P10−P3Q10 − P4R10

−P6Q4−P7R3−P8P4−P9P3 − P10Q3

−P10R4−3P18Q1−3P19R1−3P20P1

−12ν(R24 +R26 +R35−P33−P28−P29) = 0 (19)

For an Nth-order expansion, the number of these relationships
is given by

ENS =
N

∑
n=3

n−1

∑
J=2

(2J−1) (20)

Note that for time-dependent flow, these relationships are or-
dinary differential equations (hence determining the dynam-
ics of the flow). For steady flow problems these relationships,

3Using Einstein’s notation where repeated indices implies summa-
tion over indices 1,2 and 3.
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Figure 4. Local three-dimensional separation pattern. Flow
is in the x1 direction. x1−x2 is the no slip surface and x1−x3
is a plane of symmetry.

like the continuity relationships, are algebriac (kinematic) re-
lationships.

The number of unknown coefficients for different order
expansions and the number of continuity and Navier-Stokes
relationships generated is given in the following table.

N Nc Ec ENS
0 3 0 0
1 12 1 0
2 30 4 0
3 60 10 3
4 105 20 11
5 168 35 26
. . . .
. . . .

15 2448 680 1001
In all cases the total number of relationships generated

exceeds the total number of unknown coefficients of a given
order expansion N, and hence further equations are needed for
closure.

Three-dimensional separated flow on a no slip
wall

A third order solution for separated flow above a no-slip
surface will be used to illustrate how a solution can be gener-
ated.

Applying the no-slip condition (all coefficients without
x3 are zero) and continuity, the third-order Taylor-series ex-
pansions for the velocity field given in (13) expansion are re-
duced to

u1 = P4x3 +P7x2
3 +2P9x1x3 +2P10x2x3 +P13x3

3

+ 3P15x2
1x3 +3P17x1x2

3 +3P18x2
2x3 +3P19x2x2

3

+ 6P20x1x2x3

u2 = Q4x3 +Q7x2
3 +2Q9x1x3 +2Q10x2x3 +Q13x3

3

+ 3Q15x2
1x3 +3Q17x1x2

3 +3Q18x2
2x3 +3Q19x2x2

3

+ 6Q20x1x2x3

u3 = R7x2
3 +R13x3

3 +3R17x1x2
3 +3R19x2x2

3

(21)

To further simplify the problem, the flow is assumed to be
symmetrical about the x1 − x3 plane, i.e. u1 is even in x2,
hence P10 = P19 = P20 = 0 and u2 is odd in x2, hence Q4 =
Q7 = Q9 = Q13 = Q15 = Q17 = Q18 = 0. From continuity

R19 =−(P20 +Q18) = 0

and the expansions simplify to

u1 = P4x3 +P7x2
3 +2P9x1x3 +P13x3

3

+ 3P15x2
1x3 +3P17x1x2

3 +3P18x2
2x3

u2 = 2Q10x2x3 +3Q19x2x2
3 +6Q20x1x2x3

u3 = R7x2
3 +R13x3

3 +3R17x1x2
3 (22)

The above expansion has to satisfy continuity, i.e.

P9 +Q10 +R7 = 0

P15 +Q20 +R17 = 0

P17 +Q19 +R13 = 0 (23)

For a steady solution of the Navier-Stokes equation,

R17−P15−P18−P13 = 0 (24)

The no-slip velocity field is given by

o
x1= u1/x3 = P4 +P7x3 +2P9x1 +P13x2

3

+ 3P15x2
1 +3P17x1x3 +3P18x2

2
o
x2= u2/x3 = 2Q10x2 +3Q19x2x3 +6Q20x1x2
o
x3= u3/x3 = R7x3 +R13x2

3 +3R17x1x3 (25)

Further equations can be generated by specifying the location
and properties of critical points in the flow field. For exam-
ple, in generating a separated flow pattern, the properties of
separation/reattachment points can be expressed as


o
x1
o
x2
o
x3

 =

 a 0 B
0 na 0
0 0 − 1

2 a(n+1)

 x1
x2
x3

 (26)

For an angle of separation/separation θ , B is given by

B =
− 1

2 a(n+3)
tanθ

(27)
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Figure 5. The invariants of the no slip tensor for the DNS of
channel flow.

Figure 6. The invariants of the no slip tensor normalised (see
equation (9) ).

Using a few simple parameters, various three-
dimensional flow patterns can be generated. Figure 4
shows the local surface skin friction field, consisting of a
saddle-node pair, which is similar to the topology of the
skin friction field around critical points found on the wall
in the DNS of wall bounded flows. Figure 4 also shows the
three-dimensional structure above the surface (in the x1− x3
plane) indicating the saddle-node pairs are the footprints of
local three-dimensional separated flow at the surface, caused
by local vorticity and pressure gradients. Although one
would expect that the flow structures to be two dimensional
on the surface, the above study shows that the structures at
the surface are three dimensional. However, these instan-
taneous local vortical structures are exceedingly small and
the significance of these structures and effects on turbulent
structures further from the wall has yet to be investigated.
In an incompressible flow, vorticity is only generated at the
no-slip wall. Many questions remained unanswered, for
example: Is local instantaneous flow separation necessary for
the creation of three-dimensional vortical structures at the
wall?

The invariants of the no slip tensor at the wall may also
be used to help lead to a further understanding of flow struc-
tures at the wall. Figure 5 is a scatter plot showing the distribu-

tion of the three no slip invariants for the channel flow simula-
tion of del Alamo et al. and figure 6 shows that the second and
third invariants can be normalized as indicated by equation
(9). These two normalized invariants can be used to describe
structures on the surface of a no slip wall in a wall bounded
flow simulation. How these invariants are related to the topo-
logical structures (critical points) in the surface skin friction
and surface vorticity fields is the subject of future work in this
study of near wall structures in wall bounded flows.

CONCLUSION
A initial study of the topological structure of the surface

skin friction field and surface vorticity field is described in
this paper. The importance of these local structures on much
larger mean flow structures found in turbulent wall bounded
flows has yet to be fully investigated.
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