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ABSTRACT
Recent investigations into wall-bounded turbulent flows

have shown a nonlinear scale interaction, whereby the large-
scale motion amplitude modulates the small-scale struc-
tures (Hutchins & Marusic, 2007b). Mathiset al. (2009) de-
veloped a scheme to quantify the degree of modulation using a
decoupling procedure, based on the Hilbert transformation ap-
plied to the filtered small-scale component of the fluctuating
streamwise velocity; and highlighted the similarity between
the wall-normal evolution of the degree of amplitude modula-
tion and the skewness profile. This became the topic of study
by Schlatter &Örlü (2010), who questioned this technique (at
least at low Reynolds number) for unambiguously detecting
and quantifying the effect of large-scale amplitude modula-
tion of the small scales. The present study provides a com-
plementary analysis of the relationship between the degree of
amplitude modulation and the skewness using experimental
and synthetic signals. It is shown that the Reynolds number
trend in the skewness profile is related to the amplitude mod-
ulation of the small-scales by the large-scale signal.

Introduction
In wall-bounded turbulent flows, the near-wall region has

attracted considerable attention based on the premise that it
accounts for the highest levels of shear and turbulence pro-
duction. However, most of these studies have been performed
at low Reynolds numbers, tending to mask the effects of the
outer-flow and large-scale motions. Over the past decade or
so, the advent of innovative high-Reynolds number facili-
ties (Hites, 1997; Zagarola & Smits, 1998; Osterlund, 1999;
Nickels et al., 2005), in conjunction with advances in nu-
merical capability (Hoyas & Jiḿenez, 2006; Schlatteret al.,
2010), have provided fresh insights into inner/outer regions
and scale interactions. There is accumulating evidence that
large-scale events are universally present in wall-bounded
flows (Hutchins & Marusic, 2007a; Monty et al., 2007, 2009),
and that they become increasingly more energetic as the

Reynolds number increases. There is also evidence that as
the Reynolds number increases the strength of the interaction
between large-scales and the near-wall small-scales also in-
creases. Particularly, it was suggested by Hutchins & Marusic
(2007b), that in addition to the super-imposition effect of the
large-scales onto the near-wall small-scales, these big motions
seem to also have a distinct modulating influence. Complete
discussions of these recent advances and other issues aris-
ing at high Reynolds numbers can be found in recent reviews
by Marusicet al. (2010b) and Smitset al. (2011).

In our previous work (Mathiset al., 2009), we proposed
a decoupling procedure to quantify the amplitude modulation
effect of the large-scale motion onto the small-scale struc-
tures. The single-point amplitude modulation coefficient, de-
fined as the correlation coefficient between the filtered enve-
lope of the small-scale fluctuations,EL(u

+
S ), and the large-

scale component,u+L , is of the form:

AM(z+) =
u+L EL(u

+
S )

√

u+L
2
√

EL(u
+
S )

2
(1)

To obtain equation 1, the fluctuating streamwise veloc-
ity u+ is first decomposed into a large-u+L and a small-
scaleu+S contribution,u+ = u+L +u+S , using a carefully cho-
sen cut-off wavelength,λ+

x = 7000 (whereλ is the stream-
wise wavelength,λ+

x = λUτ/ν , with Uτ the friction velocity
andν the kinematic viscosity). The filtered envelope of the
small-scale contribution is obtained via a Hilbert transforma-
tion (see Mathiset al., 2009, for full details). A typical trend
of the wall-normal evolution ofAM(z+), along with the skew-
ness profileSk(z+) of the streamwise velocity component, is
given in figure 1 for Reynolds numberReτ = 2800 (where
Reτ = δUτ/ν , with δ the boundary layer thickness). In addi-
tion, as we noted in our previous work (Mathiset al., 2009),
AM(z+) exhibits remarkable (or surprising) similarities to the
skewness profileSk(z+).
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Table 1. Experimental parameters for single-normal hot-wire experiments in the Melbourne wind tunnel.

Reτ x (m) U∞ (m/s) δ (m) Uτ (m/s) ν/Uτ (µm) l+ l/d ∆T+ TU∞/δ

2800 5 11.97 0.098 0.442 35.0 22 200 0.53 14 600

7300 21 10.30 0.319 0.352 44.0 23 200 0.34 17 400

19000 21 30.20 0.303 0.960 16.0 22 233 0.59 12 000
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Figure 1. Wall normal evolution of the amplitude modula-
tion coefficientAM and skewness factorSk; Reτ = 2800.

Schlatter &Örlü (2010) attempted to investigate and ex-
plain this surprising similarity by means of experimental and
synthetic signals. They show that the correlation coefficient
AM used to quantify the amplitude modulation is related to
the skewnessSk of the original signal. Due to such resem-
blance, they conclude thatAM may not be an independent
tool to unambiguously detect or quantify the effect of large-
scale amplitude modulation of the small scales. However, it
should be noted that their conclusions were restricted to rel-
atively low Reynolds numbers, where there is limited scale-
separation. Nevertheless their study raises valid questions
about the strong similarity between both quantities, despite
their clear fundamental differences (Skis a measure of asym-
metry in the probability distribution of a signal, andAM is
the degree of amplitude modulation between small and large
scales). To this end, here we will attempt to provide more
information regarding this issue in order to remove potential
ambiguities in the assessment of the amplitude modulation ef-
fect.

Experimental dataset
To investigate the relationship between the turbulence

modulation and the skewness in wall-bounded flows, an ex-
perimental dataset obtained in the High Reynolds Number
Boundary Layer Wind-Tunnel (also known as HRNBLWT)
of the University of Melbourne is used. The setup and de-
tailed results have been fully described in Hutchinset al.
(2009) and Mathiset al. (2009). For consistency, we will
briefly recall some of the boundary layer properties along
with the main measurement characteristics. This facility con-
sists of an open-return wind-tunnel with a working test sec-
tion of 27× 2× 1 m, and a free-stream turbulence intensity

less than 0.05%. The pressure gradient is maintained to zero
along the working test section by bleeding air from the tun-
nel ceiling through adjustable slots. Further details of the
facility can be found in (Hafezet al., 2004), and Nickels
et al. (2005). Measurements of the streamwise fluctuating ve-
locity were conducted by means of a single-normal hot-wire
probe. The probe is made from platinum Wollaston wire of
various diameters, operated in a constant temperature mode
using an overheat ratio of 1.8. For each Reynolds number
the diameterd and lengthl of the sensing element were ad-
justed in order to maintain a constant viscous scaled length of
l+ = lUτ/ν ≃ 22, with l/d= 200 as recommended by Ligrani
& Bradshaw (1987). Such arrangement allows comparison
without any spatial resolution influences, a recurrent issue in
wall-bounded flow measurements (see Hutchinset al., 2009).
To adequately resolve both the smallest- and largest-scales, a
non-dimensional sample interval was set in the range∆T+

≃

0.3−0.6, with a total length of the velocity sampleT in the
range 12000−18000 boundary layer turnover times (defined
in outer scalingTU∞/δ whereU∞ is the freestream veloc-
ity). Table 1 gives the full details of the experimental condi-
tions, wherex refers to the distance between the tripped inlet
and the measurements stations. The friction velocityUτ was
calculated from a Clauser chart fit (using log-law constants
κ = 0.41 andA= 5.0) which has been confirmed with oil-film
interferometry measurements (Chauhanet al., 2010). Bound-
ary layer thickness is calculated from a modified Coles law of
the wake fit (Joneset al., 2001).

Amplitude modulation versus skewness
Mathis et al. (2009) and Schlatter &̈Orlü (2010) both

made use of synthetic signals to demonstrate the robustness
of AM and to show its intimate link toSk. These synthetic
signals, both fundamentally different, are useful to under-
stand further the relationship between the turbulence modu-
lation and the skewness factor. Here we briefly present the
main characteristics of these signals. The synthetic signal
used by Mathiset al. (2009) for validation purposes, is con-
structed using the original signal in which the phases of the
corresponding Fourier coefficients have been replaced (scram-
bled) with a randomly generated number between 0 and 2π.
Hence, this operation preserves the energy spectra distribution
of the signal as well as the variance. However, this opera-
tion removes all asymmetrical information, resulting in a zero
skewness distribution. This synthetic signal,usc, is referred to
hereafter as the“scrambled signal”. The synthetic signal in-
troduced by Schlatter &̈Orlü (2010) is also constructed from
a real measurement, only in which the whole signal has been
shuffled. Hence, this operation conserves all probabilities of
the signal (variance, skewness and flatness), but the structural
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Figure 2. Iso-contours of pre-multiplied energy spectra of
the streamwise velocity fluctuationskxφuu/U2

τ (Reτ = 19000);
Levels are from 0.2 to 1.8 in steps of 0.2;(a) measured signal
compared to scrambled signal;(b) measured signal compared
to shuffled signal; The horizontal red dot-dashed line shows
the location of the spectral filterλ+

x = 7000.

information about spatial scales is lost. This synthetic signal,
ush, is referred to hereafter as the“shuffled signal”. The en-
ergy content of both synthetic signals, compared to the orig-
inal measurement used to constructed them, is shown in fig-
ure 2. It should be noted that the scrambled signalusc re-
tains all characteristics of the energy content of a turbulent
flow even if the skewness is set to zero (Fig. 2a). This means
that the structural information and the range of scales are con-
served. On the other hand, the shuffled signalushhas all its en-
ergy weighted towards the smaller-scales (as in white-noise)
while retaining asymmetrical information (Fig. 2b). There-
fore, the range of scales is reduced to just small-scale events,
which is unrealistic for a turbulence signal, particularly in
wall-bounded flows. One should also note that since the shuf-
fled signal contains only small-scales, the notion of applying
a scale decomposition becomes somewhat meaningless. (The
cut-off wavelength used in the amplitude modulation charac-
terisation scheme developed by Mathiset al. (2009) is noted
by the horizontal red dot-dashed line in figure 2.)

Despite the unphysical nature of their shuffled sig-
nal, Schlatter &Örlü (2010) applied to it a scale decompo-
sition and the amplitude modulation diagnostic tool. A com-
parison of the wall-normal evolution of the coefficient of mod-
ulationAM is given in figure 3 for the original and synthetic
signals. For the discussion, the skewness profile of the origi-
nal signal has also been added to the figure. It should be noted
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Figure 3. Wall-normal evolution of the amplitude modula-
tion coefficientAM for the original and synthetic signals, and
skewness profileSkof the original signal;Reτ = 19000.

that these results correspond to high Reynolds number data
from the University of Melbourne (Reτ = 19000), thus avoid-
ing issues and possible misinterpretations due to limited scale-
separation. As can be seen in figure 3,AM andSkare clearly
separated and cannot be confused when the Reynolds number
becomes sufficiently high. However, as shown by Schlatter &
Örlü (2010), the amplitude modulation coefficient applied to
the shuffled signal does return a high degree of resemblance
to the skewness profile, whereas in the case of the scrambled
signal the modulation coefficient returns zero. It is noted that
while the large-scale energy content of the shuffled signal is
nearly zero (as well as the energy of the filtered envelope of
the small-scale, involved in Eqn. 1), it still returns a signifi-
cant degree of modulation. Such a result may be due to the
fact that the diagnostic toolAM is simply a correlation coef-
ficient between the large-scales and the filtering envelope of
the small-scales, which can return, as occurs here, a signifi-
cant degree of modulation even if their energy is low. In this
respect, the formulation of the amplitude modulation coeffi-
cient given in equation 1 may not be,technicallyas robust
as we originally claimed in Mathiset al. (2009), and likely a
refined version ofAM would need to be developed. Based
on this, Schlatter &Örlü (2010) claimed that this method
“may not be an independent tool to unambiguously detect or
quantify the effect of large-scale amplitude modulation of the
small-scales”. However, it should be kept in mind that the
first step of the amplitude modulation diagnostic tool consists
of a scale separation operation and as clearly stated in Mathis
et al. (2009), the chosen cut-off wavelength should be care-
fully selected according to the pre-multiplied energy spectra
map of the considered signal. But, as seen in figure 2(b),
applying a scale-decomposition below and aboveλ+

x = 7000
makes no sense in the case of the shuffled signal. Therefore,
in the case of turbulent flow, such ambiguity is unlikely to oc-
cur as long as each step of the modulation diagnostic tool is
carefully applied. Nevertheless, Schlatter &Örlü (2010) have
clearly shown that theAM coefficient and the skewness factor
are somehow related, which is not surprising as the amplitude
modulation would introduce or increase asymmetry in signals.
Therefore, the amplitude modulation diagnostic may provide
a framework to interpret the Reynolds number trend of the
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Figure 4. Wall-normal evolution of the expansion terms of
the skewness factor;Reτ = 2800.

skewness factor profile, which will be discussed in the next
section.

The decomposed skewness profile
To understand further the relationship between the corre-

lation coefficientAM and the skewness factorSk, it is useful
to consider the expansion ofSkusing the decomposed signal
u+ = u+L +u+S ,

Sk=
u+3

(

u+2
)3/2

=
u+3

L +3u+2
L u+S +3u+L u+2

S +u+3
S

(

u+2
)3/2

, (2)

which can be written as

Sk= u+3
L +3u+2

L u+S +3u+L u+2
S +u+3

S , (3)

with X = X/
(

u+2
)3/2

,

and such decomposition has been considered before
by Sreenivasanet al. (1999).
The wall-normal evolution of each term of the decomposed
skewness factor is given in figure 4 forReτ = 2800. The

small-scales termu+3
S appears to account for the majority of

the skewness factor up toz+ = 200, whereas the other terms
seem to have little contribution (we are not considering in
the discussion the wake region, where intermitence effects are
dominant). Furthermore, it is observed in the insert of figure 4

that the cross term 3u+L u+2
S also has a non-negligible contri-

bution, the two other terms appearing to be zero or nearby. To
gain a better understanding of the role of each dominant terms
of the decomposed skewness factor, the wall-normal evolu-

tion of Sk, u+3
S and 3u+L u+2

S are plotted in figure 5 for sev-
eral Reynolds numbers. The Reynolds number trend ofSkhas
been previously established over a large range of Reynolds
number, from laboratory facilities to atmospheric surface lay-
ers (Metzger & Klewicki, 2001). Particularly, as the Reynolds
number increases, a change in sign of the minima occurring in
the buffer region has been observed, as shown in figure 5(a)
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Figure 5. Reynolds number trend of(a) the skewness factor
Skand dominant terms of the expansion of the skewness fac-
tor, (b) u3

S and(c) 3uLu2
S; The vertical dot-dashed line marks

the location of the minima of theSkprofile.

(the vertical dot-dashed line marks the location of the min-
ima). The reasons for such behaviour remain unclear. The

small-scale termu+3
S appears to contribute only to the rise

of this minima (Fig. 5b). In contrast, 3u+L u+2
S appears to

be the most sensitive term to the increasing Reynolds num-
ber. A strong rise of the profile is observed all the way
through the boundary layer, in the buffer layer particularly,
with values nearly four times higher betweenReτ = 2800 and
Reτ = 19000. What is more remarkable is the high degree
of resemblance of this profile to the profile of the amplitude
modulation coefficientAM. This is even more evident by plot-
ting them together as shown in figure 6. In other words, this

suggests that the cross-term 3u+L u+2
S of the skewness factor

expansion might be used as an alternative or complementary
diagnostic tool toAM, to quantify the level of amplitude mod-
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Figure 6. Wall-normal evolution of the amplitude modula-
tion coefficientAM (left hand-side vertical axis) and the cross

term 3u+L u+2
S of the skewness factor expansion (right hand-

side vertical axis), for Reynolds numbersReτ = 2800, 7300
and 19000.
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Figure 7. Reconstruction of the skewness factor without the

cross term 3u+L u+2
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S .

ulation of the small-scales by the large-scales. This is not so
surprising given that it is similar to a small-scale envelope
(u+2

S ), correlated with a large-scale component (u+L ). Hav-
ing established this, it also suggests that the Reynolds number
trend of the skewness factor is closely related to rising am-
plitude modulation effect asReτ increases. Indeed, it is now
known that the large-scale motions strengthen with increasing
Reynolds number, and so too does the amplitude modulation
effect (Mathiset al., 2009), which is shown here to contribute
to the rise of the skewness factor. In fact, a reconstruction

of the skewness factor without the cross-term 3u+L u+2
S , e.g.

Sk= u+3
L +3u+2

L u+S +u+3
S , shows an invariant skewness fac-

tor over one order of magnitude in Reynolds number, as seen
in figure 7, as opposed to the trend observed in figure 5(a).

Amplitude modulation in turbulence modelling
Interesting observations about the relationship between

AM andSkcan also be made using the predictive model re-
cently proposed by Marusicet al. (2010a):
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Figure 8. Wall-normal evolution of the skewness factor for
the original and universal signals;Reτ = 7300.

u+p (z
+) = u∗(z+)

{

1+βu+OL

(

z+O,θL
)}

+αu+OL

(

z+O,θL
)

(4)

whereu+p is the predicted statistically-representative stream-
wise fluctuating velocity signal in the inner region,u∗ the uni-
versal signal, andα , β andθL are calibrated parameters. The
only input required in the equation is the fluctuating large-
scale streamwise velocity signalu+OL from a position in the
log-region. The model consists of two parts, the first part
modelling the amplitude modulation atz+ by the large-scale
log-region motions, and the second part modelling the super-
position of these large-scale motions felt atz+. The original-
ity of this empirical model is that it is built based on a uni-
versal signalu∗, which is defined as the idealised signal that
would exist in a turbulent boundary layer in the absence of
any large-scales influence. Therefore, this signal has no am-
plitude modulation or superposition effects from large-scale
events. This universal signal has been determined from a
calibration measurement performed at high Reynolds num-
ber (Reτ = 7300), in which the original signal is de-trended
(removing the superposition effect) and then de-modulated to
obtainu∗. Full details about the model and its construction
are available in Mathiset al. (2011).

An interesting property ofu∗ is that the signal, which
has been de-trended and de-modulated, maintains a non-zero
skewness factor, as shown in figure 8. However,u∗ con-
tains no sign of modulation, as it has been defined such that
AM(u∗) = 0. (It should be noted that scrambling or shuf-
fling this signal will also return a zero modulation coefficient.)
This shows that the amplitude modulation defined by the di-
agnostic toolAM is not purely a consequence of any asym-
metry information contained in a turbulent signal, as was sug-
gested by Schlatter &̈Orlü (2010). Furthermore, as the am-
plitude modulation effect is removed in the universal signal,
the skewness factor is lowered, which reinforces our previous
conclusion that the Reynolds numbers trend ofSk is a conse-
quence of large-scale turbulence modulation. Indeed, it has
been shown in Mathiset al. (2011) that the universal signal
is statistically representative of a low Reynolds number tur-
bulent boundary layer (Reτ ≃ 1000), even if it has been built
from a high Reynolds number case (Reτ = 7300).

Finally, it is worth noting that the modelling of the am-
plitude modulation in equation 4 is an essential element in the
prediction of the skewness factor, and more generally in all
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Figure 9. Prediction of the skewness factor with and without
amplitude modulation modelled;Reτ = 19000.

odd moments. An example of prediction with and without the
amplitude modulation effect is given in figure 9. Without the
amplitude modulation component the skewness is improperly
predicted. Typically, the Reynolds number trend of the skew-
ness factor would not be captured and all predictive odd mo-
ments would remain invariant at any Reynolds numbers con-
sidered.

Conclusion
The relationship between the large-scale amplitude mod-

ulation and the skewness factor in wall-bounded flow has been
extensively studied by means of synthetic signals and scale-
decomposition. It is shown that the diagnostic toolAM devel-
oped by Mathiset al. (2009) to quantify the amplitude modu-
lation of the small-scale structures by the large-scale motions
works well if applied with care and to realistic turbulent sig-
nals. It is emphasised that the scale-decomposition, consti-
tuting the first step of the method, must be sensibly applied
based on the energy content of the turbulent signal considered.
A closer analysis of the relative contribution of the large- and
small-scales to the skewness factor shows that the cross-term

of the expansion, 3u+L u+2
S , is closely related to theAM coeffi-

cient, and can be used as an alternative diagnostic tool. Fur-
thermore, the amplitude modulation effect appears to be the
only cause of the rise of the skewness factor as the Reynolds
number increases.
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