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ABSTRACT
Three-dimensional turbulent flow is highly complex and

few investigations have focused on the use of modal decom-
positions to characterise important physical phenomena and
interactions. In this paper, we consider the Proper Orthog-
onal Decomposition (POD) and Dynamic Mode Decompo-
sition (DMD). We show how the correlation matrix which
is needed for POD can be re-used in the computation of the
DMD modes. After two introductory examples, we focus on
modal decompositions of a complex turbulent flow around a
wall-mounted finite cylinder atRe = 2 ·105. Finally, the use-
fulness of both decompositions is discussed.

INTRODUCTION AND OBJECTIVES
The analysis of the dynamics in turbulent flow is still a

major challenge due to the unsteady, three-dimensional and
stochastic nature of turbulence. It is important to charac-
terise and quantify the properties of turbulence, so that desired
and undesired effects such as strong mixing or high drag, can
be identified, understood and possibly controlled. A method
based analysis is indispensable because of the complex spa-
tial and temporal interaction in turbulent flow. Here, modal
decompositions are used to analyse the data, which can subse-
quently be used for the development of low-dimensional mod-
els which capture the essential flow physics.

Two different types of modal analysis are considered,
namely the Proper Orthogonal Decomposition (POD) and the
Dynamic Mode Decomposition (DMD). We show how the
correlation matrix which is needed for POD can be re-used
in the computation of the DMD modes. Both methods are ap-
plied to the turbulent flow field around a finite circular cylin-
der mounted on a ground plate. The results of the conceptually
different approaches (POD and DMD) are compared in order
to examine their strengths and weaknesses.

MODAL DECOMPOSITION
The main goal in this paper is the extraction of (large-

scale) coherent motion from a given data set. To this end

modal decomposition techniques are used to analyse the spa-
tial structure and temporal evolution separately. Starting point
is a set ofN flow fields obtained by experiment or simulation.
For simplicity, consider the fluctuating part (around the mean)
of an equidistantly (with timestep∆t) sampled velocity vector
field u(x, t). The N snapshotsu j = u(xi, t j) are assembled
columnwise in aP×N data matrix

U =
[

u1 . . . uN−1 uN
]

, (1)

whereP is the number of grid points times the number of
considered variablesn. Alternatively, the following equiva-
lent notation can be used{u(xi, t j)} wherei = 1, . . . ,P/n and
j = 1, . . . ,N.

The data ensemble can be represented as a superposition
of M modes or motion patterns

u(xi, t j) =
M

∑
m=1

bm(xi)am(t j) or U = XT , (2)

whereT contains the temporal amplitudesam(t j), X the spa-
tial modesbm(xi) andM ≪ N, since only modes describing
large scale coherent motion are retained. Mathematically, a
variety of basis functions can be chosen for either the temporal
amplitudes or the spatial modes, e.g. Fourier functions, poly-
nomials, etc. In this paper the basis functions are physically
motivated and data driven. Two methods are used: the Proper
Orthogonal Decomposition and the Dynamic Mode Decom-
position. The POD method was used to identify so-called co-
herent structures (modes) in turbulent flows by Berkooz et al.
(1993). POD can be considered a purely statistical method
where the modes are obtained from maximisation of the en-
ergy over the complete data ensemble. In the DMD method
the snapshots are assumed to be generated by a linear dynam-
ical system, which implies that the extracted basis is char-
acterised by growth rate and frequency content of the snap-
shots. Both methods are detailed in the literature, e.g. POD
by Berkooz et al. (1993) and DMD by Rowley et al. (2009);
Schmid (2010). Here we show the partial congruence of POD
and DMD and how the (weighted) POD correlation matrix can
be used in the DMD computation.
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Proper Orthogonal Decomposition (POD)
Premise for the POD is spatial or temporal correlation

(coherence) of the flow field. Since POD is a statistical
method which maximises the variance over all snapshots, it
is ideally performed using the fluctuating flow field values,
i.e. the time-averaged flow field is subtracted.

The first step in the POD method is the computation of a
(weighted) correlation matrix

C = UT WU, (3)

whereW is a weighting matrix. In our case, this is a diagonal
matrix where the weights are given by the local cell volumes
corresponding to each grid point, i.e.W = diag

[

V1 . . . VP
]

.
The entries ofCi j = (ui,u j) = uT

i Wu j describe the (global)
covariance of two snapshots at different moments in time.

The second step is to find the eigenvalues and eigenvec-
tors ofC

Cvi = λivi, i = 1, . . . ,N. (4)

SinceC is symmetric, positive-semidefinite, all the eigenval-
uesλi are real and nonnegative, i.e.λ1 ≥ λ2 ≥ ·· · ≥ λN ≥ 0,
and the eigenvectorsvi are orthogonal. The eigenvalues are
proportional to the fluctuation energy associated with each
amplitude / mode in the modal decomposition.

The temporal amplitudes are scaled versions of the nor-
malised (orthonormal) eigenvectorsvi

T =







a1(t j)
...

aN(t j)






=









vT
1

√

λ1
...

vT
N

√

λN









. (5)

The POD modes can now be computed by inversion of (2)

X = UT−1 = U
[ v1

√

λ1
. . .

vN
√

λN

]

. (6)

These modes are orthonormal with respect to the weighted
inner product, i.e.XT WX = I .

Since the POD extracts a bi-orthogonal basis which is
sorted with respect to the variance or energy contained, it
is not always straightforward to interpret the physical mean-
ing of the amplitudes and modes in the decomposition. In
complex flows, different temporal and spatial scales are of-
ten present in one amplitude / mode. Thus, POD allows for
frequency and scale mixing, but also for variable frequency
content.

Dynamic Mode Decomposition (DMD)
The goal of the DMD method is the extraction of dy-

namic information, e.g. temporal evolution of spatial struc-
tures, from a given snapshot sequence. It is assumed that the
snapshots are generated by a linear discrete-time model

uk+1 = eÃ∆tuk = Auk. (7)

It is also assumed that the snapshots become linearly depen-
dent for an increasing number of snapshots, such that the last
snapshotuN can be constructed (or approximated) by a linear

combination of all previous snapshots, i.e.

uN =
N−1

∑
j=1

c j u j. (8)

Summarising, we have

[

u2 . . . uN
]

= A
[

u1 . . . uN−1
]

= ŨC̃, (9)

with the the companion matrix̃C =















0 0 · · · 0 c1
1 0 0 c2
0 1 0 c3
...

. . .
...

0 · · · 0 1 cN−1















and

the reduced data matrix̃U =
[

u1 . . . uN−1
]

. The weightsci
are computed such that the error is minimised (least-square
problem).

For the DMD method, we also need to solve an eigen-
problem

C̃ ṽi = λ̃iṽi, i = 1, . . . ,N −1. (10)

The eigenvalues̃λi are a subset of the eigenvalues ofA and
the corresponding eigenvectors can be constructed by

bi =
[

u1 . . . uN−1
]

ṽi. (11)

In general, the eigenvaluesλ̃i and the eigenvectorsbi are com-
plex numbers. The eigenvectors ofA are called DMD modes
and are assembled in a matrix

X̃ = ŨṼ = [b1 . . .bN−1]. (12)

The DMD amplitudes can be computed by inversion of
the eigenvector matrix̃V (compare (2) with (12)) or by span-
ning the first snapshot in the basis of the DMD modes, i.e.
u1 = ∑N−1

i=1 dibi, which leads to a Vandermonde matrix (see
Rowley et al., 2009). Let the temporal amplitudes be given by

T̃ =







ã1(t j)
...

ãN(t j)






. (13)

In the continuous domain, the frequencyfi and growth
rateσi of a DMD modebi are obtained by

fi = ℑ [ln(λm)]/∆t/2π (14)

σi = ℜ [ln(λm)]/∆t. (15)

In general, the dynamic modes are non-orthogonal. They
can be sorted by frequency, mode norm or growth rate. DMD
provides one frequency and growth rate per mode. An uncon-
verged time-averaged flow field is indicated by a non-constant
temporal amplitude corresponding tofi = 0.

Combining POD and DMD
As a first step in the analysis of turbulence, a POD of the

snapshot ensemble is computed. A low-dimensional model of
the snapshot ensemble can be build from the results (examples
in Luchtenburg, 2010) and the correlation matrix can be used
in the calculation of DMD as shown in the following.
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The construction of the correlation matrix (3) is expen-
sive because of the huge amount of data. It is therefore con-
venient to use (partial) results of this decomposition step for
further analysis. For DMD, we need to construct a companion
matrix with weightsci given by (8). Taking the inner product
with snapshotui on both sides of (8), we have

(ui,uN) =
N−1

∑
j=1

(ui,u j)c j, i = 1, . . . ,N −1. (16)

If we choose the same inner product as used for computation
of the correlation matrix in (3), then (16) simplifies to

CiN =
N−1

∑
j=1

Ci j c j, i = 1, . . . ,N −1. (17)

Note that the weightsci can now be calculated by a weighted
least-square problem(ŨT WŨ)c= ŨT WuN , where the matrix
and right-hand-side easily follow from the POD correlation
matrix.

RESULTS
Firstly the capabilities of POD and DMD are demon-

strated using two simple generic examples and secondly re-
sults for the complex turbulent flow around a wall-mounted
cylinder are presented. For the cylinder flow two different
cases are considered: (i) POD and DMD of the velocity field
in a subdomain at the cylinder top on a coarse grid and (ii)
POD and DMD of the pressure field (based on the POD cor-
relation matrix) of the complete domain with the original
highly-resolved grid and wake dynamics.

(a) POD (b) DMD

Figure 1. Dominant modes and their temporal amplitudes
for a single travelling wave.

POD and DMD of simple examples
As a first simple example, a harmonic travelling wave

is considered. The snapshots are given byu1(xi,yi, t j) =

e−(yi/b)2
cos(kxi −ωt j) for a single periodT = 2π/ω. The

parameters are chosen asb = 0.02, k = π/b and ω = 20π.
The time period is equidistantly sampled by 150 time steps
and the spatial resolution is 100× 100 cells in a domain of
10b×2.5b. To test the robustness of the methods, the snap-
shots are contaminated by strong white noise with a variance
of 40% with respect to the snapshot mean.

The spatial structure and temporal amplitudes of the
dominant mode pairs obtained by POD and DMD are shown
in figure 1. Both techniques extract the correct spatial
pattern and the sinusoidal temporal behaviour. (The only
difference is a nonrelevant phase shift.) DMD provides a
frequency off = 10.0023 and a growth rateσ = −0.0019 for
this example. The exact result of 10 is obtained for zero noise.

(a) POD (b) DMD

Figure 2. Dominant modes and their temporal amplitudes
for two superimposed travelling waves.

Another simple example, comprising two superim-
posed waves is given byu2(xi,yi, t j) = u1(xi,yi, t j) +

1.1
[

e−(yi/b)2
cos( kxi

5 −
ωt j

2 )
]

with the same parameters as be-

fore. Since the simulation time is also unchanged, only half a
time period of the lower frequency is resolved. The dominant
POD and DMD modes are presented in figure 2. The DMD
method does not filter out all noise, but the frequencies are
well separated and the harmonics are almost perfectly recov-
ered. The strong noise particularly contaminates the real part
of the underresolved long-wave harmonic. The extracted fre-
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quencies are 10.0591 and 4.9132 with small negative growth
rates. The clarity of the structures and convergence of the fre-
quencies improve significantly with reduced noise level.

The POD results show relatively strong scale and fre-
quency mixing for this relatively simple example. The second
mode pair does not correctly represent the structure of the sec-
ond harmonic. The temporal amplitudes are partially not even
sinusoidally. Also the spatial structure of the first dominant
mode pair does only partially represent the travelling wave
pattern. Note that POD is not designed for optimality with re-
spect to scale and frequency separation but for most energetic
global structures. In this particular case, the approach suffers
from underresolved temporal dynamics, which implies inac-
curate statistics. Thus the results for POD can be improved
with an extended time interval.

POD and DMD of complex turbulent flow
The results presented below are obtained from the nu-

merically predicted flow around a wall-mounted finite cylin-
der, which has been analysed extensively by Frederich (2010).
The flow field with a Reynolds number of 2· 105 (based on
the diameter of the cylinder) has been simulated employ-
ing a large-eddy simulation (LES). For the current section a
database of 700 snapshots of an isolated region at the top of
the cylinder is used. The time step is∆t = 0.1D/U∞, and the
velocity fields have been resampled to an equidistant Carte-
sian grid of 390000 cells in order to reduce numerical ef-
fort and to replace the original highly-resolved and curvilinear
grid.
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Figure 3. Dominant POD mode 1 at the cylinder top (spatial
structure shown by isosurfaces of the velocity components)

The fluctuations and vortical motion in the top region
of the cylinder represent only a small amount of fluctuation
energy compared to the wake structures. Thus, a POD of
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u = ±0.001U∞ v = ±0.0005U∞ w = ±0.0005U∞

(d) imaginary part of mode 2

Figure 4. Dominant DMD mode 2 at the cylinder top (spatial
structure shown by isosurfaces of the velocity components)

the (complete) global flow field could not sufficiently dissect
local phenomena and restriction to a subdomain of interest
is mandatory. Due to the stochastic nature of the flow on
the cylinder top and the (time-averaged) global correlation,
POD is not able to (clearly) separate fluid motion with re-
spect to frequency or wavelength. The dominant, most en-
ergetic mode, shown in figure 3, is isolated as single mode
with spectral components at Strouhal numbers of St= 0.015
and 0.055. The first frequency is associated with the vertical
flapping motion of the separated shear layer and the second
one has been identified as an intermodulation artefact of dom-
inant wake patterns (details in Frederich, 2010). Nearly all
higher modes do not admit physical interpretation due to a
high level of frequency (and scale) mixing which spans over
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the whole spectrum of St= 0...1.5. For the current configu-
ration, POD has shown to be inapt for the decomposition of
the highly complex turbulent region on the cylinder top into
(distinct) individual coherent structures; only dominant global
patterns can be identified but without clear differentiation.

A DMD of the flow near the cylinder top results in an
almost non-changing (converged) mean flow and dominant
low-frequency harmonics at St= 0.015 and 0.045 with small
damping rates. As illustrated in figure 4 for the predomi-
nant harmonic, the DMD method yields unmixed frequencies.
On the one hand this avoids scale mixing as is the case for
POD, but on the other hand small frequency variations can re-
sult in several similar modes in narrow frequency bands (like
FFT). The spatial structure of the mode itself is comparable
to the POD mode, especially for the imaginary part (compare
figures 3 b and 4 c,d). The harmonic describes changes in
size and topology of the recirculation region on the cylinder
top, which are associated with the flapping state of the adja-
cent shear layer (and a fixed frequency). The most interest-
ing observation is that the entire phenomenon has been solely
captured by this mode, as the DMD spectrum does not in-
clude further modes of this frequency component (insert in
figure 4 b).

POD and POD-based DMD of complex turbu-
lent flow

Results shown in this section are computed for the origi-
nal LES simulation grid of 12.3·106 cells and 2744 snapshots
of the flow around the wall-mounted finite cylinder. For such
a large snapshot ensembleU, the computation of the DMD
requires parallelisation or smart utilisation of algebraic fea-
tures which to reduce computational load. Thus, in contrast
to the previous section, we now use the POD correlation ma-
trix for calculation of the weightsci in the companion ma-
trix (see (17)). This allows for a relatively cheap computation
of the DMD. Previous investigations revealed that the influ-
ence of volume weighting, implied by the weighting matrix
W, has a small impact in general. In particular, the sensitivity
increases for wall-bounded coherence resolved by near-wall
refinement of typical numerical grids. A remaining problem
is the a-priori mode sortation. Sortation based on the mode
norm is not convenient since all modes need to be computed
which is not feasible because of the very large dimensions.

For the current case we compute (a subset of) the eigen-
values ofA and only compute the DMD modes in a particular
frequency band. A natural parallelisation for the computation
of the modes is given by the block-structured domain, where
the same weights to construct the DMD modes are provided
for each block. Here, for simplicity the results of the scalar
pressure field are shown.

The wake of the flow around the wall-mounted cylin-
der is dominated by a strongly deformed vortex street which
is associated with a frequency of St≈ 0.165 (for details see
Frederich et al., 2011). This pattern is mostly contained in
the dominant POD mode pair, but mixed with other large co-
herent large structures. In particular the temporal amplitudes
reveal the involvement of spectral components at St≈ 0.2.
The comparison of the dominant POD mode and associated
DMD mode (withSt = 0.165) in figure 5 demonstrates that the
modes are very similar. Nevertheless the DMD approach en-

p = ±0.10ρU2
∞

(a) dominant POD mode pair

p = ±0.25ρU2
∞

(b) dominant DMD mode

Figure 5. Dominant POD and DMD modes within the full
spatial domain around the finite cylinder

ables extraction of frequency-specific phenomena. The DMD
modes (with vortices in dark) associated with St≈ 0.2 are pre-
sented in figure 6. These structures, reveal another variant of
sideways vortex shedding which cannot directly be obtained
by POD. Note that harmonic filtering of POD modes succeeds
only partially, because the frequencies of interest are of sim-
ilar magnitude and can hardly be separated by the required
bandpass filter. On the other hand the DMD approach cannot
account directly for slight variations of the harmonics. This
results in a variety of related modes in narrow spectral bands.

p = ±0.25ρU2
∞

Figure 6. DMD mode corresponding to frequency St≈ 0.2
for the flow around the finite cylinder

In general the DMD method yields a variety of harmonic
modes with corresponding amplitudes which are characterised
by a single (fixed) frequency and a growth rate. The (varying)
mean flow is obtained as a single (real) mode times a modal
(temporal) amplitude, whereas in the POD method the ensem-
ble mean is directly computed from the snapshots. As already
mentioned, employing DMD transient data, e.g. a change of
the mean flow, is indicated by a non-constant modal amplitude
(nonzero growth rate).

DISCUSSION AND OUTLOOK
The focus of this contribution is the modal decomposi-

tion of turbulent flow fields employing POD and DMD. Ap-
plication of both methods has become increasingly popular
for the analysis of complex turbulent flow and shear flow phe-
nomena over the last years. Strengths and weaknesses of POD
and DMD as well as the similarity between them are discussed
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in order to transfer knowledge gained from application to a
complex turbulent flow field.

Sample results have been shown to highlight some inher-
ent properties of POD and DMD. The POD extracts coherence
based on correlation of the snapshots and is best performed
in a relatively large domain (see Frederich, 2010). It does
not clearly separate frequencies and scales, but effectively fil-
ters out coherent structures based on kinetic energy content
and provides temporal amplitudes which are directly related
to particular flow dynamics. The DMD method yields pure
harmonic phenomena, with distinct frequencies and growth
rates, but cannot describe temporal varying frequencies. Both
methods capture dominant phenomena (characterised by large
energy content). In addition, DMD provides stability proper-
ties.

We suggest that first a POD of the data is performed,
which can be used for further postprocessing like filtering,
modelling and phase-averaging. A subsequent DMD is rel-
atively cheap because the POD correlation matrix can be
used for construction of the companion matrix and then the
(weighted) least-squares problem does not require the use of
the high-dimensional data matrix.

Our motivation for this work is a framework for modal
post-processing. Therefore we will continue to analyse data
with diverse parameters (e.g. volume weighting, DMD mode
order, etc.) in order to establish guidelines for the modal anal-
ysis of complex turbulent flows.
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