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ABSTRACT

Modeling of subfilter scalar dissipation rate is critical
to accurate simulation of turbulent combustion using large
eddy simulation (LES). Non-equilibrium models contain a
timescale coefficient 47 that is generally unknown a priori
and cannot be determined by conventional dynamic modeling
procedures. Here, an alternative dynamic procedure is formu-
lated from the variance transport equation (VTE). The mod-
eling accuracy of the VTE-based dynamic model for %% is
assessed through a priori tests in homogeneous isotropic tur-
bulence and in a planar jet flow. Particular attention is given
to the effects of various averaging methods used for coeffi-
cient estimation and a novel conditional averaging approach
is presented.

INTRODUCTION AND MOTIVATION

The scalar dissipation rate is a fundamental parameter
in the study of nonpremixed flames. In such flames, species
mass fractions and temperature can be related to the mixture
fraction Z, a conserved scalar (Bilger, 1980). Reactions are
assumed to occur in a thin zone around iso-surfaces of the
stoichiometric mixture fraction value. The scalar dissipation
rate
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quantifies the rate at which small scale mixing occurs and is
related to the relaxation time of the diffusive layer surrounding
the reaction zone, with D denoting the scalar molecular diffu-
sivity. This picture of flame structure is embodied by flamelet
modeling, in which local thermochemistry is determined by
the values of Z and 7 (Peters, 2000).

Large eddy simulation (LES) has become the preferred
methodology for the simulation of nonpremixed turbulent
combustion because it accurately predicts the mixing of fuel
and oxidizer at large scales by solving for the filtered mixture
fraction. Favre, or density-weighted, filtering is often used in
variable density flows (Pitsch, 2006). The Favre filtered mix-
ture fraction is defined as Z = pZ/p, where (-) indicates a
spatial filtering operation at filterwidth A.

The molecular mixing characterized by )z is associated
with flow length scales far smaller than those present in the
filtered scalar field. As a consequence, the filtered scalar dis-
sipation ¥z is dominated by its unclosed subfilter component
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Since the second term in Eq. 2 can be computed directly from
the LES filtered scalar solution, a model for either £ or Y7
provides closure for both quantities. Here, models will be
written for €. Diffusivity is both a function of species com-
position and local temperature. In this work, this molecular
diffusivity is denoted by D. It is assumed that all the species
have equal diffusivity.

The subfilter scalar dissipation rate also appears in the
transport equation for the subfilter mixture fraction variance,
Z, = ZZ — 77, another key quantity in LES combustion mod-
eling that characterizes the small scale fluctuations of Z. After
closing subfilter flux terms using an eddy diffusivity D, the
variance transport equation (VTE) is given by
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Commonly, both the scalar variance and scalar dissipation rate
are modeled by algebraic closures that assume a local equilib-
rium between variance production at resolved scales (modeled
by the second term on the right hand side of Eq. 3) and dissi-
pation at subfilter scales. This results in the model
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Girimaji and Zhou (1996) arrived at the same model by apply-
ing arguments from renormalization group theory.

However, variance can be predicted more accurately by
using its modeled transport equation rather than an algebraic
model (Kaul and Raman, 2011; Jimenez et al., 2001). Eq. 4 is
unsuitable for use with the variance transport equation since
the final equation form would contain no source or sink terms,
erroneously causing variance to be conserved in a closed sys-
tem (Jimenez et al., 2001). Instead, a common model (Peters,
2000) from Reynolds averaged simulations (RAS) is adapted
to the LES context. This model can be written as

Z,
Tz
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where %7 is a model coefficient and 77 is a mixing timescale,
given by expressions such as (Colucci et al., 1998; Jaberi et
al., 1999; Raman and Pitsch, 2006)

A2
~“D+Dr

6)

Tz

As for any model in LES, Eq. 5 imperfectly captures
the characteristics of the quantity it represents. A model of
this type implicitly links production and dissipation by relying
on a mixing timescale formed from filter scale variables and
effectively assumes an energy cascade process (Fox, 2003;
Pitsch, 2006). Despite the model’s deficiencies, the fact re-
mains that no alternative non-equilibrium model exists. Fur-
thermore, from a practical standpoint, the most significant
problem posed by the use of Eq. 5 is the determination of the
model coefficient 47. The optimal value of this model co-
efficient is usually unknown a priori and depends on the flow
under consideration and the chosen timescale expression. Fur-
thermore, it must be recalled that in LES, unlike in RAS, ¢~
is a spatially and temporally varying quantity.

Dynamic procedures based on inertial range scaling ar-
guments are often used to specify model coefficients in LES.
These approaches infer the value of a subfilter scale quan-
tity using information from the smallest filtered scales that is
extracted by test filtering at a larger filterwidth A. Dynamic
procedures for estimating 4 have been put forth (Pera et al.,
2006; Chumakov and Rutland, 2004). However, dissipation is
a predominantly small scale quantity that cannot be reliably
predicted from its content in an inertial range test window. In-
deed, Pierce and Moin (1998) specifically avoided such a dy-
namic scalar dissipation model when proposing their dynamic
variance model. Another dynamic estimation scheme is based
on a global equilibrium assumption (Balarac et al., 2008) and

predicts a single time-varying value of €7 for the entire flow
domain. The total subfilter variance in a periodic flow domain
remains constant under this model, although mixing should
reduce subfilter variance with time.

Here, we present an alternative dynamic formulation in
which %7 is calibrated from the rate of scalar energy transfer
between test and filter scales, which can be estimated using
the VTE. A similar approach has been used to develop a model
for the viscous dissipation rate of the subfilter turbulent kinetic
energy (Ghosal et al.,1995). However, the extreme importance
of X7 in combustion modeling should be recalled in addition
to the function of € as a sink term for scalar variance. The
dual role of the scalar dissipation rate makes its modeling a
unique challenge.

Manipulation of the VTE, as described below, leads to
a spatially localized expression for the model coefficient.
The derivation of this expression is only the first step in the
model’s development. Model implementation raises further
issues that will be investigated by applying a priori analysis
methods to data from direct numerical simulation (DNS) of
homogeneous isotropic turbulence and of a planar jet. Selec-
tion of an averaging procedure for evaluation of the model
coefficient is one such aspect of model implementation that
will be investigated here.

MODEL DERIVATION

The derivation of the dynamic scalar dissipation rate
model is based on the idea that the variance transport equa-
tion can be applied at any filter scale falling within the iner-
tial range. On a physical level the model can be understood
in terms of a mixing cascade. It should be recalled that the
assumption of a mixing cascade is already implicit in the for-
mulation of Eq. 5. The dynamic procedure merely makes this
assumption explicit. Eq. 3 is the VTE is written at the LES
filter scale A. An analogous equation can be written at a test

filter scale K, with spatial filtering operation denoted by (/\)
and Favre filtering operation (-), as
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In Eq. 7, Z; is the sub-test filter variance, Z, = ZZ —ZZ. A
superscript ¢ indicates a model quantity evaluated at the test
filter level, e.g. D%. The test filterwidth is typically taken to
be twice the LES filterwidth, A = 2A. Test filtering Eq. 3 and
subtracting it from Eq. 7 gives the relationship

CX=Y=F+P—T (8)

if it is assumed that % varies slowly in space and can be re-
moved from the test filtering operation applied to Eq. 3. The
quantity X on the left hand side of Eq. 8 is given by
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The first two terms on the right hand side of Eq. 8 represent
the differences in convective and diffusive fluxes
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of variance at the test and filter scale. The third term repre-
sents accumulation or loss of scalar energy between filter and
test scales
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where L, is the variance Leonard term given by
L,=22-77 (13)

Note that L, = Z; — Z Since L, can be computed directly
from the resolved scalar fields, this relationship can be used
to compute Z; from the the known values of Z, and Z

The grouping of terms used here was chosen to highlight
their phenomenological characteristics. However, other order-
ings may be more efficient from a computational standpoint,
for example to reduce the number of test filtering operations
required. It should be recognized that many of the quanti-
ties in the model are terms from the filter level VTE that can
be reused by the dynamic procedure. Similarly, the test filter
level eddy diffusivity, DY can be computed with minimal ad-
ditional cost. If, at the LES filter level, Dy = %7A2|S] is mod-
eled dynamically (Moin et al.,1991) by assuming the model
coefficient 67 is scale invariant, it is then consistent with that
assumption to use DY, = €7A2|S|, 67 having the same value
in both expressions. The magnitude of the strain rate tensor
at the test filter level is already required by the dynamic eddy
diffusivity modeling procedure.

AVERAGING APPROACHES FOR MODEL IM-
PLEMENTATION

Although Eq. 8 encapsulates the basic dynamic dissipa-
tion rate modeling idea, additional factors must be considered
to put the model to use in simulations. Choices made in model
implementation can significantly affect predicted coefficient
values. Here we consider various averaging approaches that
can be employed for coefficient prediction.

The model is evaluated through a priori tests on data
from DNS of two different flows. The first is homogeneous
isotropic turbulence (HIT), simulated using pseudospectral
methods on a 5123 periodic domain. The velocity field was
forced to maintain Re; = 135 while the scalar field was de-
caying. Results are shown for a filterwidth A = 161, where

n is the Kolmogorov length. The second configuration is a
piloted planar jet with Reynolds number (based on jet width
H and average jet-to-coflow velocity difference) of 6000. The
computational domain extends 20H in the streamwise direc-
tion x, 15H in the stream-normal direction y, and 2.56H
in the periodic spanwise direction z. It is discretized by
768 x 512 x 128 in the x, y, and z directions, respectively.

Germano Averaging

It has been widely recognized that estimating a dynamic
model coefficient directly from an expression such as Eq. 8 is
undesirable because the resulting coefficient values can ex-
hibit rapid spatial variation. This violates the assumption
made in removing the coefficient from test filtering operations
and can negatively impact the stability of a simulation. There-
fore, some form of spatial averaging is usually employed to
evaluate a dynamic coefficient such as averaging over homo-
geneous directions of the flow (Germano et al., 1991), also re-
ferred to here as Germano averaging. By viewing points along
a homogeneous direction as members of a statistical sample,
this averaging can be associated with least squares line fit-
ting (Pierce and Moin, 1998). Taking Eq. 8 and the case of
a planar jet, the least squares fit over homogeneous directions
approach yields é; as
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where (-). indicates an average taken over the homogeneous z
direction of the flow.

Fig. 1 shows values of ¥ predicted for the planar jet
case using Germano averaging, Eq. 14. The model coefficient
shows rapid fluctuations between high and low values. Points
along a spanwise averaging line are statistically equivalent in
the sense of long time averages. At any given time step, how-
ever, these points can represent quite different flow conditions
as the instantaneous locations of turbulent structures vary. The
dynamic dissipation rate model also inherits the fluctuations
of the dynamic eddy diffusivity model, whose coefficient €7
is obtained using the same kind of spanwise averaging.

The predictions of the dynamic model using Germano
averaging are compared to exact £ values in Fig. 4. While
there is some level of qualitative agreement, the dissipation
rate is overpredicted near the inflow boundary. Additionally,
the structures of the modeled dissipation rate are more frag-
mentary than those of the exact quantity.

Conditional Averaging

In HIT, all points in the flow are statistically equivalent.
Under the Germano averaging approach, averages are taken
over the entire flow domain and a single coefficient is pre-
dicted at each time step. However, the relationship between
€7 and Z, /Tz seems to be more complex than that expressed
by a global linear fit. The quantity

(€212,/7z) (15)
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Figure 1. Prediction of €7 using Eq. 14. (a) Contours of ¢~
in xy-plane. (b) Instantaneous profiles of %7 at streamwise
locations x/H of 3.33 (blue), 6.67 (red), and 13.33 (green).

where & is computed from a fully resolved scalar field us-
ing Eq. 2, is a valuable gauge of a dissipation rate model’s
accuracy. This is a specific case of the fact that the condi-
tional mean of A conditioned on B, (A|B) is the minimum
mean square error predictor of A given knowledge only of B
(Deutsch, 1965). In a priori analysis, the conditional mean,
Eq. 15, allows the deterministic predictions of a subfilter
model to be compared quantitatively to exact subfilter quanti-
ties, which are random with respect to the filtered field. Fig. 2
shows the conditional mean, Eq. 15, computed from 5123
DNS data. Clearly, its curved shape cannot be replicated by a
single value of ¢%. To emphasize this point, Fig. 2 also shows
the least squares line fitted to the exact dissipation, which is
the ideal outcome of the dynamic model evaluated with Ger-
mano averaging in HIT.

Based on this observation, we propose an alternative av-
eraging approach using conditional averaging on Z, /7. Ad-
ditionally, we restrict the average to those points for which
XY > 0, i.e. points whose values of X and Y are consistent
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Figure 2. Conditional means of subfilter scalar dissipation
from 5123 DNS of homogeneous isotropic turbulence using
exact dissipation, Eq. 2 (black); least squares linear fit to exact
dissipation (red); dynamic model plus Eq. 16 (blue).

with a positive value of ¢7. Only those points which con-
form to the hypotheses of Eq. 8 are thus used to inform the
prediction of %;. This conditional averaging approach can be
written as

_ (XY|Z,/72,XY > 0)
¢ = (XX|Z,/77,XY >0) (16)

and predicts € as a function of Z,/tz. A variety of meth-
ods exist for computing conditional averages such as those in
Eq. 16, the simplest probably being the histogram approach in
which data are grouped into bins and an average is computed
over each bin. Fig. 2 shows the results of applying Eq. 16 in
HIT. The agreement with the conditional mean of the exact
dissipation is very good. Fifty bins, spaced logarithmically in
Z,/7z, were used in the computation. Halving the number of
bins was found to have little effect on predicted dissipation
values.

The conditional averaging approach can be applied to
flow configurations besides HIT. Because all points in the flow
are not statistically equivalent, the notion of a conditional av-
erage must be interpreted somewhat loosely. Conditional av-
eraging could be carried out over homogeneous flow direc-
tions only, resulting in %; values that are explicitly depen-
dent on spatial location as well as on the conditioning vari-
able Z,/17. However, this can severely limit the sample size
for estimating coefficients. Rather, we argue that it is reason-
able for the conditional coefficient calculation to amalgamate
points over the entire flow domain, regardless of the flow ge-
ometry. A basic principle of LES modeling is that geometry-
specific features of the flow are captured by the resolved fields
while subfilter scale motions are not directly dependent on
the large scales. From this viewpoint, a subfilter model co-
efficient should not require explicit geometrical dependence
if local flow conditions are adequately accounted for by the
choice of conditioning variable.

Predictions of & using Eq. 16 are shown in Fig. 3. The
nonzero coefficient value predicted in laminar regions is an
artifact of the binning method, which did not distinguish be-
tween very small and zero values of Z,/77. However, because
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Figure 3. Prediction of 4, using Eq. 16. (a) Contours of €%
in a representative xy-plane. (b) Instantaneous profiles of ¢~
at streamwise locations x/H of 3.33 (blue), 6.67 (red), and
13.33 (green).

Z,/7z is zero in those areas the model, Eq. 5, still properly
predicts zero dissipation. Twenty logarithmically spaced bins
were used in the computation of 4%. The dynamic eddy vis-
cosity coefficient %z was found using a local averaging pro-
cedure over test filter volumes. This approach was used to
eliminate any effect, even indirect, of averaging over homo-
geneous directions from the prediction of €. The utility of a
conditional averaging method for 47 remains open to investi-
gation.

Fig. 3 shows the spatial distribution of 67 predicted using
conditional averaging, Eq. 16. The variation is smoother than
that seen in Fig. 1 and more clearly related to the turbulent
structure of the jet. The subfilter dissipation rate values ob-
tained using this model implementation are plotted in Fig. 4.
The conditional averaging approach gives a good approxima-
tion to the exact dissipation near the jet inflow (Fig. 5). Dissi-
pation is overpredicted downstream. However, the accuracy

Figure 4. Contours of €7: exact, Eq. 2 (top); dynamic model
plus Eq. 14 (middle); dynamic model plus Eq. 16 (bottom).



12

101

Subfilter Dissipation
=

% o = 0 2 3 6
y/H
Figure 5. Instantaneous profiles of €7 at streamwise location

x/H = 3.33: exact dissipation, Eq. 2 (red) and dynamic model
plus Eq. 16 (blue).

of the dynamic dissipation rate model is contingent on the
accuracy of other closures of the VTE, such as the variance
production term. In unclosed form, the production term is
given by the product of the subfilter scalar flux and the filtered
scalar gradient and can be positive or negative. The closed
form of the production term, as in Eq. 3, follows from sub-
stitution of an eddy diffusion model for the subfilter scalar
flux. The production model underpredicts the magnitude of
the true production when it is positive and cannot capture re-
gions of negative production. Production modeling errors are
actually larger than dissipation modeling errors at these loca-
tions. Note that the term P, Eq. 11, in the dynamic model
is the change in production between the test and filter scales.
Therefore, if the model behaves consistently at the two scales
it remains possible to predict the value of this difference more
accurately than the actual magnitude of production.

CONCLUSIONS

A dynamic procedure for non-equilibrium modeling of
subfilter scalar dissipation rate was developed by applying the
variance transport equation at two scales. The effects of dif-
ferent averaging procedures for estimation of the model co-
efficient were considered. Specifically, Germano averaging
over homogeneous flow directions was compared with a novel
conditional averaging approach in homogeneous isotropic tur-
bulence and in a planar jet configuration. The choice of aver-
aging procedure had significant impact on dynamic modeling
outcomes and affected the spatial patterning of the predicted
dissipation fields as well as the magnitude of the modeled
dissipation values. Upstream, the conditional averaging ap-
proach yielded good agreement with exact dissipation values
but showed lower accuracy downstream. However, the dis-
sipation rate modeling errors were smaller than errors in the
production term at these locations.
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