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ABSTRACT 
The motion of spanwise vortical elements has been 

tracked in the outer region between wall-normal distance 
z/δ = 0.11 and 0.30 of a turbulent boundary layer at 
Reθ = 2460. The experimental dataset of time-resolved three-
dimensional velocity fields used has been obtained by 
tomographic particle image velocimetry. The tracking of these 
structures yields their respective average trajectories as well as 
the variations thereof, quantified by the root-mean-square of 
the trajectory coordinates as a function of time. It is 
demonstrated that the variation in convection can be described 
by a dispersion model for infinitesimal particles in 
homogeneous turbulence, which suggests that these vortical 
structures are transported passively by the external velocity 
field without significant changes in their topology, at least 
over the present observation time of 1.2δ/Ue. It is shown that 
the measured variation in convection velocity can further be 
used successfully to predict the temporal development of 
space-time correlation functions starting from the 
instantaneous correlation map. In this prediction the structures 
are assumed to convect without change, following our 
observations. 

 
1. INTRODUCTION 

The convection velocity of coherent flow structures in 
wall-bounded turbulence has received considerable attention, 
first of all because of a fundamental interest in the dynamic 
behaviour of these structures. The turbulent flow contains a 
variety of structures (for a recent survey see Adrian 2007), 
which, in principle, may all advect at different velocities. We 
may then further imagine that such a difference in convection 
velocity ultimately causes the structures to change their 
relative position and interact, which results in topological 

changes, like for instance the generation of a new structure. In 
that sense convection can be seen as an appropriate starting 
point for the investigation of coherent structure dynamics. 

Unfortunately very little quantitative information is 
available on the changes in convection velocity from one 
structure to the next, as most attention has been paid to their 
average convection velocities. However, as will be shown in 
this paper, the variation around the mean is of significant 
importance too, particularly when interpreting space-time 
correlations and assessing the validity of Taylor’s hypothesis. 
Therefore, the aim of the present paper is to provide such 
quantitative information by tracking individual structures in 
the outer layer of a turbulent boundary layer. 

Before proceeding, the main conclusions from earlier 
work will be summarized, which mainly concerns the average 
convection. First of all, the average has been shown to be 
scale-dependent. Kim and Hussain (1993) consider the 
propagation velocity of turbulent fluctuations in turbulent 
channel flow at different spatial wavelengths and find that it 
increases with spanwise scale in the near wall region. 
Compared to earlier experimental work (e.g. Wills 1964, 
Bradshaw 1967, Willmarth and Wooldridge 1962), Kim and 
Hussain (1993) have benefited from the introduction of direct 
numerical simulations (DNS), which resolves both the time 
and length scales in contrast to the experimental methods 
available at that time, such as hot-wire anemometry. The latter 
provide time series in a limited number of points (usually 
two). Therefore, the resulting space-time correlations from 
those experiments cannot distinguish well between a fast large 
eddy and slow moving small eddy. 

The average convection velocity has also been found to 
depend on the flow variable or coherent structure under 
consideration (Guezennec, Piomelli and Kim 1989, Krogstad, 
Kaspersen and Rimestad 1998, Kim and Hussain 1993). 
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Furthermore, convection of the flow structures connects to 
some very important practical applications such as 
establishing the most appropriate velocity scale when 
converting temporal into spatial scales using Taylor’s 
hypothesis of frozen turbulence (Taylor 1938). The validity 
and the interpretation of the results obtained in this way are 
both long-standing topics, which have been revived recently 
(Dennis and Nickels 2008, Del Alamo and Jimenez 2009, 
Moin 2009) in light of the energetic very-large-scale motions 
observed in Taylor reconstructions of hot-wire time signals 
(e.g. Kim and Adrian 1999). 

As recognized before in the papers cited, there exists some 
variation in the instantaneous convection velocity even 
between coherent flow structures of the same type. This 
scatter has not been quantified extensively yet, but its presence 
is visible, for instance, in the sample probability density 
function for the time delay between detected events at two 
streamwise locations, as presented by Krogstad, Kaspersen 
and Rimestad (1998) in their figure 6. Furthermore, the width 
of the rim in the turbulent spatio-temporal power spectrum 
(figure 2 in Moin 2009) illustrates that a single spatial wave is 
associated to a range of temporal frequencies, that is a range 
of convection velocities (assuming the spatial wave remains 
undistorted). 

The purpose of the present paper is to provide a further 
quantification of the variation in the instantaneous convection 
velocities of coherent structures. This will be based on the 
detection and tracking of large numbers of individual 
spanwise vortex elements in the logarithmic and outer region 
of a turbulent boundary layer, as described in §3. These 
structures are believed to be representative features for wall-
bounded turbulence, especially in the context of the hairpin-
type models (Adrian 2007). The resulting trajectories yield the 
average, but more importantly, also the root-mean-square 
(RMS) convection over time (§4). Furthermore, it will be 
demonstrated that the present results can be used to predict the 
space-time correlation function of different flow variables, 
given their respective instantaneous spatial auto-correlation 
functions (§5). This provides insight on how these correlations 
should be interpreted and puts the present results in relation to 
some of the earlier work, which have relied on such space-
time correlations to establish average convection velocities 
and explore the validity, or range of applicability, of Taylor’s 
hypothesis. In this investigation, existing three-dimensional 
and time-resolved experimental velocity data were used, the 
details of which are presented in §2. 

 
2. EXPERIMENTAL DATASET 

The turbulent boundary layer data was obtained from a 
time-resolved tomographic Particle Image Velocimetry 
measurement (Elsinga et al. 2006) in a water tunnel. The setup 
and first results have been described in detail by Schröder et 
al. (2011). Furthermore, the data were used before to study the 
dynamic evolution and lifetimes of the invariants of the 
velocity gradient tensor, which characterize the local flow 
topology around a fluid particle (Elsinga and Marusic 2010). 
For completeness, however, we will briefly recall some of the 

boundary layer properties here. The zero-pressure gradient 
boundary layer develops over a 2.5 m long flat plate with an 
elliptical leading edge at a free-stream flow velocity Ue of 
0.53 m/s and with a free-stream turbulence level below 0.5%. 
Transition is forced 15 cm downstream of the elliptical 
leading edge by a zig-zag strip. At the measurement location, 
2.0 m downstream, the boundary layer thickness δ is 37 mm 
and the Reynolds numbers Reθ and Reτ are 2460 and 800 
respectively. 

The three-dimensional velocity distribution V(x,y,z,t) is 
evaluated in an effective volume spanning 1.8δ × 1.8δ in 
streamwise (x) and spanwise (y) direction and covering 
0.11 < z/δ < 0.30 in wall-normal (z) direction in five time-
series of 2 seconds each. The sampling frequency is 1 kHz 
corresponding to 70Ue/δ and Δt+ = 0.47, which indicates that 
the flow is well resolved in time. Between subsequent velocity 
volumes, the flow structures advect by approximately 10 wall 
units. The spatial resolution, taken as the cross-correlation 
volume linear dimension, is 0.07δ, corresponding to 
approximately 58 wall units in each direction, which is 
sufficient to capture energy containing motions in the flow 
(Schröder et al. 2011, Elsinga and Marusic 2010). 
Furthermore, 75% cross-correlation volume overlap is used in 
both space and time. The latter is the result of a time stepping 
method (correlating the volumes corresponding to first image 
1 with that from the 5th image recorded 4 ms later, then image 
2 with 6 and so on), which increases the dynamic range of the 
measurement. 

The vortical structures within the measurement domain 
were detected by a local evaluation of the velocity gradients 
(see section 3), which were obtained by a second order 
regression filter in space and time (Elsinga et al. 2010). The 
frequency response of this filter is similar to the inherent 
window averaging effect in PIV when taking the filter kernel 
size equal to the cross-correlation window. 

 
3. VORTEX DETECTION & TRACKING METHOD 

The individual snapshots contain a variety of three-
dimensional vortical structures and before following them in 
time, first a detection method is required to locate individual 
events. In this paper, the focus will be on spanwise vortex 
elements, which are defined as regions of positive spanwise 
swirling strength λci,y. The detected features may not be an 
isolated structure, but can be part of a larger vortex. For 
example, a hairpin vortex contains a spanwise vortex element, 
i.e. the head, with quasi-streamwise vortex elements on either 
side, i.e. the so-called legs. The spanwise swirling strength 
used here, is the absolute value of the imaginary part of the 
eigenvalue of the reduced velocity gradient tensor Juw , given 
by: 
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which considers only the components in the streamwise, wall-
normal plane. The eigenvalue λci,y is non-zero only when the 
velocity vectors in that plane describe a local swirling motion 
(Christensen and Adrian 2001). Previous investigations using 
Linear Stochastic Estimation (LSE) have indicated that λci,y is 
associated to the head of a hairpin type vortex (e.g. 
Christensen and Adrian 2001, Elsinga et al. 2010). Hairpins 
are a very prominent feature in the models for wall-bounded 
flow (see for example Adrian 2007), which has been a main 
motivation for choosing spanwise swirling strength. An 
additional reason is that it is more spatially compact than 
swirling in the other directions (associated with the legs of 
hairpins), hence easier to detect and track accurately. 

(a)  

(b)  
Figure 1. (a) Conditional eddy of the average flow associated 
to a spanwise swirling event at z/δ = 0.2 wall-normal distance. 
The iso-surface indicates vortical motion revealed by the Q-
criterion. (b) Spanwise vortex template derived from the 
conditional eddy, which is used for detection of spanwise 
vortex elements. The color-coding indicates the spanwise 
swirling strength normalized by the peak value. 

 
 
The first step is then to create a template of the feature to 

be detected. For this purpose, the conditional eddy resulting 
from a LSE is used. It is determined by a cross-correlation of 
the velocity fluctuations with a specified event, which in this 
case is the spanwise swirl λci,y. The present LSE calculation is 
analogous to the ones by Christensen and Adrian (2001) and 
Elsinga et al. (2010). As expected, the resulting eddy 
resembles a hairpin-like vortex. From the conditional eddy we 
take again the magnitude of the spanwise swirling strength 
and use that for the template (figure 1). The template has a 
shape that is slightly elongated in the spanwise direction, and 
corresponds to the head of the conditional eddy. 

Structures are subsequently detected by finding the local 
maxima in the map resulting from a cross-correlation of the 
template with the measured instantaneous spanwise swirling 
strength distribution. The location of each maximum can be 
obtained to a higher, sub grid-scale, precision by performing a 

local Gaussian peak fit in all three directions. The peak of the 
fitted function is taken as the location of the identified vortex 
structure. 

Once the spanwise vortices have been identified in the 
instantaneous volumes, they can be tracked in time using 
methods similar to those for tracking tracer particles in 
Particle Tracking Velocimetry (e.g. Lüthi et al. 2005). When 
tracking a structure, its location at the next time step is first 
estimated based on the local average flow velocity. If a 
structure can be detected at this next time instant within a 
specified search radius from the estimated position (by the 
method described above), a link is established and the new 
location is added to the structure’s trajectory.  The procedure 
is repeated until the structure leaves the measurement domain 
or no structure is detected within the search radius (0.04δ in 
each direction, which is smaller than the typical distance 
between detected structures). Approximately 85% of the 
detected structures can be tracked over one or more time steps 
in this way. The other structures must be considered spurious, 
since the structures should reappear at least once due to the 
high temporal resolution. To reduce the noise in the final 
trajectories, a regression filter is applied, in which a second 
order polynomial in time is fitted to each spatial coordinate 
over a window of 31 time steps (that is 31 ms corresponding 
to Δt+ = 15 or 0.44δ/Ue). For this one-dimensional filter the 
cut-off wavelength is approximately equal to the window (see 
the appendix in the paper by Elsinga et al. 2010). A smaller 
window of 11 time steps was also tried yielding similar 
results, but with more noise. 

For further analysis we consider here only the clearly 
detectable and tractable structures, which are not too close 
(>0.07δ ) to the borders of the measurement domain as the 
structure detection method by cross-correlation may not be 
sufficiently accurate there. Hence, only events at a distance 
between 0.11δ and 0.30δ from the wall are considered. 
Reliable detection is established by requiring that the cross-
correlation coefficient during structure detection is above 0.5 
(averaged over the trajectory), while traceability requires that 
a structure can be traced over more than 100 time steps 
corresponding to a convection distance of about 1.2δ. 

Some examples of the resulting trajectories are given in 
figure 2, with superposed the corresponding detected vortex 
structures at its start and end. The first structure (figure 2a) is 
a typical arch vortex in the lower part of the measurement 
domain (its legs are cut at the edge of the measurement 
domain). In the other two examples (figures 2b and 2c), the 
detected event is a spanwise element connected to a larger 
vortex element, which extends beyond the measurement 
domain and is inclined with respect to the wall. The spanwise 
vortex elements in figures 2a and 2b do not display an 
appreciable change over time, while in 2c the spanwise 
element starts as a thin bridge between to neighboring taller 
structures and then thickens over time, which is due to an 
increase in swirling strength. The final result of the outlined 
tracking procedure is a total of 392 of such spanwise vortex 
trajectories (figure 3). 
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(a) (b) (c) 

   

Figure 2. Three examples of 
spanwise vortex element 
trajectories (black lines) with 
corresponding extended vortex 
structure (green, iso-surface of 
constant Q) at the start and end of 
their trajectory, which are marked 
by the blue crosses. 

 

 
Figure 3. Trajectories of 392 detected spanwise vortex 
elements. The spatial coordinates are relative to the initial 
position of the vortex. 

 

 
Figure 4. Spreading of the vortex trajectories in figure 3, as 
represented by the RMS of the relative positions Δx, Δy, Δz 
versus time (symbols). The dashed black lines are fits of 
Taylor’s (1921) model for turbulent dispersion of infinitesimal 
particles (Eq. 2), which suggest the observed spreading of the 
vortices can be described well by such a dispersion process up 
to at least ΔtUe/δ = 1.2. 

 
 

4. DISPERSION OF VORTICES 
The spanwise vortex element tracks (figure 3) reveal a 

significant spreading relative to the mean convection. The 

average convection velocity of similar structures in a 
boundary layer and channel flow has already received 
considerable attention in the literature (e.g Del Alamo and 
Jimenez 2009, Krogstad et al. 1998, Kim and Hussain 1993), 
and the tracking results just lend additional support for the 
earlier observations. The average convection velocity inferred 
from the tracks is constant over the considered time period and 
equal to 0.78Ue in the streamwise direction (equal to the local 
mean flow velocity at a distance of 0.2δ from the wall), 
0.06Ue in the wall-normal direction and zero in the spanwise 
direction. As already mentioned in the introduction, the mean 
is not the main interest here, but rather the variations around 
the average. 

The spreading of structures is expressed in terms of the 
RMS of the trajectory position as a function of time, which is 
shown in figure 4. The results show that the RMS of the 
streamwise position grows fastest followed by the spanwise 
and wall-normal position. 

Moreover, the curves are reminiscent of dispersion for 
infinitesimal particles in homogenous turbulence, which for 
the streamwise component is given by (Taylor 1921, Tennekes 
1979): 
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where σx is the RMS of the streamwise position, uc’ is the 
streamwise convection velocity fluctuation, TL is the 
Lagrangian integral time scale and t is time. Indeed Eq. 2 fits 
the results well as shown in figure 4. The fitted values used for 
the Lagrangian time scale and the RMS convection velocities 
are listed in table 1. It appears that the Lagrangian time scale 
for the streamwise dispersion is larger than for the other two 
directions, which suggests changes in the streamwise 
convection velocity of a given structure are relatively slow. 
Furthermore, when looking at the RMS convection velocity 
fluctuations (table 1), it is found that the streamwise and wall-
normal components are only slightly lower than the RMS flow 
velocity fluctuations. The spanwise component, however, is 
about 20% larger than the flow velocity fluctuations, meaning 
that the spanwise vortex elements experience greater 
movements along its axis than what may be expected based on 
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the flow velocity alone. The goodness of the fit in figure 4 
demonstrates that the motion of spanwise vortices in a 
boundary layer can be considered as a basic turbulent 
diffusion process up to at least a convection distance of 1.8δ 
(the size of the present measurement domain). To some extent 
this may be expected, since the characteristic time-scale for 
local flow topology evolution is much larger (a convection 
distance of about 11δ, Elsinga and Marusic 2010). Hence, the 
topology and spanwise vortices are not expected to undergo 
significantly changes within the present observation length, 
and consequently they experience predominantly convection, 
which is what has been observed. 

 
 

Table 1: Fit parameters Lagrangian integral time scale TL and 
RMS convection velocity components uc’, vc’, wc’ in the 
dispersion model (Eq. 2) for the spanwise vortex elements. 
For comparison the RMS flow velocities u’, v’, w’ measured 
at a distance of 0.20δ from the wall are included. 

 

direction 
TL 

[δ/Ue] 

RMS 
uc’, vc’, wc’ 

[Ue] 

RMS 
u’, v’, w’ 

[Ue] 
Streamwise, σx 1.0 0.070 0.071 
Spanwise, σy 0.6 0.060 0.050 
Wall-normal, σz 0.6 0.035 0.038 

 
5. PREDICTION OF SPACE-TIME CORRELATIONS 

The present results suggest that the flow structures mainly 
convect without significant change over a time of 1.2δ/Ue. 
This observation can be used to predict the space-time 
correlation of turbulent signal, as shown below. 

Consider a turbulent signal containing the turbulent 
eddies. From here on, we use the streamwise velocity 
distribution u(x,t) as an example, but other quantities (like the 
invariants of the velocity gradient tensor) are equally possible. 
Then the eddy shape can be characterized statistically by the 
instantaneous auto-correlation function Auu(s): 

 

  

Auu (s) =
1

N
u(x,t)u(x + s,t)

x,t

!  (3) 

 
where N is the number of samples. Assuming that the eddies 
do not evolve in time and are simply convected by a constant 
velocity uc, then u(x,t) = u(x+ucΔt,t+Δt), which can also be 
written as a convolution: 

 

  

u(x,t + !t) = u(x " r ,t)# (r " uc!t)dr$  (4) 
 

where δ is the Dirac delta function. The hairpin tracking 
results, however, indicate that the convective velocity is not a 
constant. Allowing for these variations in the convective 
trajectories r(Δt) according to a probability density function 
P(r,Δt) (still assuming a pure convection without any eddy 

evolution), the expected velocity distribution at time t+Δt is 
given by: 

 

  

u(x,t + !t) = u(x " r ,t)P(r,!t)dr#  (5) 
 

or in discrete form: 
 

  

u(x,t + !t) = u(x " r ,t)P(r,!t)
r

#      

 
with    

  

P(r,!t) = 1
r

"  
(6) 

 
Subsequently, the space-time correlation Ruu(s,Δt) for non-
evolving eddies can be estimated as: 

 

  

Ruu (s,!t) =
1

N
u(x,t)u(x + s,t + !t)

x,t

"

=
1

N
u(x,t)u(x + s # r,t)P(r,!t)

x,t

"
r

"

= Auu (s # r )P(r,!t)
r

"

 (7) 

 
The space-time correlation is a convolution of the 
instantaneous auto-correlation Auu with the probability density 
function P(r,Δt) representing a statistical description of the 
convection and spreading rate of the eddies (figure 4). The 
function P(r,Δt) will be approximated by a Gaussian 
distribution with the RMS given by the dispersion model 
(table 1). A comparison with the actually measured 
distribution function suggests that the approximation is 
appropriate. 

 
Figure 5. Predicted (red) and measured (blue) space-time auto-
correlation RQQ(Δx,Δy,Δz,Δt) of the second invariant of the 
velocity gradient tensor Q, plotted along Δy = Δz = 0. The 
prediction is based on the instantaneous auto-correlation 
function RQQ(Δx,Δy,Δz, Δt = 0) and uses the observed 
spreading rate of the flow structures (figure 4) to predict the 
temporal development. 
 

Eq. 7 has been evaluated to predict the space-time 
correlation RQQ for the second invariant of the velocity 
gradient tensor Q (figure 5). The distribution P(r,Δt) for the 
spanwise vortex elements (table 1) was used in this case. The 
prediction is found to follow both the broadening and 
decreasing of the correlation peak with time, which further 
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supports the underlying assumptions of passive eddy 
convection. 

The decrease in the correlation peak height over time was 
used in the past to validate or disprove Taylor’s hypothesis. 
The present results indicate that this decrease can be attributed 
to the dispersion of flow structures rather than any actual 
change in topology. Therefore, the hypothesis may still be 
useful in studying certain aspects of turbulence (e.g. the nature 
of the flow topology does not change significantly), even 
though the correlation peak may drop considerably. This drop 
will be stronger for the small scales, first of all because their 
correlation peak is narrow compared to the spreading rate of 
the flow structures, but also due to this spreading rate being 
larger than for the large-scales. 

A word of caution may be added to the last point. 
Recently, Schröder et al. (2011) have suggested that specific, 
strong events can undergo visible topological change within a 
time period of 0.8δ/Ue. While their reported time evolution of 
conditional averages for strong vorticity and ejection events 
reveal only slight changes in the inclination angle, which they 
explained by the variation in convection velocity with wall-
normal distance (consistent with what we propose here), a 
rapid transformation is reported for the strong sweep events. 
Such strong sweep events are rare, however, and contribute 
only marginally to the overall correlations presented in this 
paper. 

 
6. CONCLUSIONS 

Spanwise vortex elements were tracked in time in the 
outer layer of a turbulent boundary layer. The following points 
summarize the main conclusions: 

(i) The average spanwise vortex element trajectory 
corresponds to the local average flow velocity, while the RMS 
track position can be characterized as dispersion of 
infinitesimal particles in homogenous turbulence (Eq. 2). 

 (ii) Assuming the vortical structures predominantly 
convect without interaction or significant topological change, 
the space-time correlations for different flow variables can be 
predicted based on their instantaneous auto-correlation and 
their spreading rate (i.e. the probability density function of 
their track position in time). This was illustrated for the 
second invariant of the velocity gradient tensor, Q. The 
prediction describes well the decrease and broadening of the 
correlation peak in time (at least up to the present observation 
time, 1.2δ/Ue). These temporal changes in the correlation 
must, therefore, be attributed mostly to the dispersion of flow 
structures rather than any actual change in topology. 

Future work will include the tracking of larger scales of 
motion, the bulges in particular. 
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