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ABSTRACT
A zero pressure-gradient flat plate boundary layer was per-
turbed dynamically with a short strip of roughness, introduc-
ing large-scale velocity fluctuations in a spatially impulsive
way. The velocity field was measured downstream by hot-
wire anemometry, and the subsequent velocity fields were an-
alyzed spectrally. Composite spectral maps of the distribution
of streamwise turbulent energy revealed that the motions in-
duced in the flow by the perturbation were coherent over a sig-
nificant downstream area. The velocity signals were decom-
posed in a phase-locked sense and the modes of velocity fluc-
tuation were described. The relative phase between the forced
velocity oscillations and the turbulent fluctuations was stud-
ied by considering a mean period of the phase-locked velocity
signals. This phase-relationship between forced, large-scale
(singular) structures and the remaining unforced scales in the
flow was compared with the work of Mathis et al. (2009)
and Chung & McKeon (2010) on the amplitude modulation
of small scales by large scales structures in unforced turbu-
lent shear flow. The ‘active roughness’ wall actuation was
shown to alter the scale modulation observed in the flow, and
the differences between the two approaches to observing this
modulation provide a new way of thinking about the signif-
icance of the correlation between large and small scales and
the physical interpretation of skewness in turbulent flows.

BACKGROUND
Recent interest in the decomposition of turbulent shear flows,
whether by means of standard POD analysis, shown recently
in Hellström & Smits (2011), or using a singular mode re-
solvent approach, outlined in McKeon & Sharma (2010),
has demonstrated that certain significant features of turbulent
flows can be described by just a few dominant modes of ve-
locity fluctuations. One of the questions precipitated by this
work is the relationship between these dominant modes and

less dominant modes – in particular, the modulating effect of
dominant modes on small scales in the flow. Mathis et al.
(2009) experimentally explored the question of the modula-
tion of small scales by larger scales by considering a cor-
relation coefficient Rτ which represented the correlation be-
tween the filtered envelope of small-scale fluctuations with
large scale fluctuations. Chung & McKeon (2010) employed
a similar technique in a computational study of channel flow,
as did Guala et al. (2011) in the atmospheric surface layer.
The former two studies found that this measure of scale-
modulation produces a distinctive shape across the half-height
of the channel (or pipe radius or boundary layer). Mathis et al.
(2009) observed that this distinct shape of the correlation pro-
file was remarkably similar to the profile of the streamwise
skewness across the boundary layer (where skewness is de-
fined as the third moment of streamwise velocity fluctuations
normalized by the three-halves power of the second moment);
subsequently Schlatter & Örlü (2010) demonstrated that this
similarly was not merely accidental, but in fact appeared to
be a consequence of the method of calculation of the cor-
relation coefficient itself. Whatever the mathematical simi-
larity between the correlation coefficient and the skewness,
the question remains, what is the appropriate interpretation
of the skewness in the context of large-scale to small-scale
modulation in turbulent flows? Mathis et al. (2009) observed
that the wall-normal location of the zero-crossing of Rτ over-
lapped the location of the outer peak in the streamwire en-
ergy spectrum and further established a direct and negative
association between zero-crossing position (in outer-scaling)
and Reynolds number – both of which indicate structural sig-
nificance to the shape of the Rτ and skewness profiles. The
current study offers a different perspective on this question,
by considering a turbulent boundary layer with periodic forc-
ing applied by means of a short strip of oscillating rough-
ness elements. By forcing the flow periodically, a phase-
locked decomposition of the flow can be considered, similar

1



p = 7.14mm

k = 1

mm

δ1 δ2

δ0

x

y

x/δ=3-5 x/δ=23-25

x/δ= 0.1 1.1 2.3 3.4 5.0 8.5, 12.3, 16.8, 24.1

PIV PIV

Hotwire

Figure 1. A schematic of the arrangement of the flat plate,
the roughness strip, and the diagnostic locations; not to scale.
The internal layers are also marked in order to provide an idea
of the relative size and development rates.

to earlier studies of vibrating ribbons performed by Hussain
& Reynolds (1970), but the dominance of the external forc-
ing in the current experiments allows for new insights into the
relationship between the large and small scale motions in the
turbulent flow. Guala et al. (2011)

DYNAMIC PERTURBATION EXPERIMENT
A zero pressure gradient turbulent boundary layer was ex-
plored over a flat plate in the 2′ × 2′ wind tunnel at Cal-
tech. The boundary layer was tripped by a cylindrical wire
just downstream of the elliptical leading edge, and the virtual
origin of the turbulent boundary layer was measured 0.22m
downstream of the leading edge. Approximately 1m down-
stream of the leading edge, the flat plate was modified to al-
low an array of two-dimensional roughness elements, fixed
on a single patch, to pass through grooves in the plate, as dia-
grammed in figure 1. The elements could be fixed in at a sin-
gle amplitude as a ‘static’ spatially-impulsive patch of rough-
ness, described in Jacobi & McKeon (2011b); or the patch
could be actuated mechanically by a motor and crankshaft as-
sembly, in order to alternate the amplitude of the roughness
elements sinusoidally, from a condition flush with the sur-
face of the flat plate, to a maximum amplitude matched to the
static case (such that the root-mean-square amplitude of the
dynamic perturbation is equal to the static amplitude), as de-
scribed in Jacobi & McKeon (2011a). During this ‘dynamic’
roughness perturbation, the phase of the roughness was mea-
sured by a magnetic linear encoder, with spatial resolution
of 1µm. The phase of the roughness perturbation was syn-
chronized with the hotwire measurements of the downstream
flow field, in order to allow for phase-locked decomposition
of the instantaneous velocity time series. Hotwire measure-
ments were recorded at 11 logarithmically-spaced streamwise
locations, at 27 logarithmically-spaced wall-normal locations.
In addition, PIV measurements in the streamwise-wall-normal
plane were recorded at two downstream locations.

SPECTRAL COMPOSITE MAPS
Following the approach of Hutchins & Marusic (2007), the
spectral composite maps of the streamwise turbulent fluctu-
ations were calculated from the velocity time signals, trans-
forming the frequency domain using Taylor’s hypothesis (with
the local mean convective velocity) into a wavelength domain.
The maps corresponding to the unperturbed flow and the stat-
ically perturbed flow are shown in figure 2. The statically per-
turbed case is provided for comparison with the dynamically
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Figure 3. (Top) Composite spectra for the perturbed case at
x/δ = 2.3; levels follow figure 2 and are the same as in Jacobi
& McKeon (2011b) (Bottom) x/δ = 23.7

perturbed flows, shown in figure 3. Both the static and dynam-
ically perturbed flows show a displacement of spectral energy
away from the wall – an expected consequence of the two-
dimensional elements – as well as a noticeable suppression of
the near-wall cycle in the immediate vicinity of the perturba-
tion. Moving farther downstream, the near wall cycle quickly
recovers and the displaced energy slowly dissipates. The sig-
nificant feature of the dynamically perturbed flow, however,
is the presence of the signature of the dynamic forcing and
its harmonics. This spectral signature tends to extend through
most of the boundary layer and over a significant streamwise
extent, indicating that the forcing produces a coherent and
persistent modification of the boundary layer even far from
downstream (> 20δ ). And in particular, the forced motions are
large-amplitude motions, with wavelength on the upper end of
the spectrum of wavelengths associated with large-scale and
very-large scale motions.
The coherent nature of the perturbation indicates the useful-
ness of a phase-locked decomposition of the instantaneous ve-
locity field, in order to identify the shapes of large-scale ve-
locity fluctuation produced in the flow and their relationship
to the smaller scales.
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Figure 2. Composite spectra at x/δ = 0.6: (Left) Unperturbed Reθ = 2770 The white ‘+’ marks the vicinity of the inner peak
(λ+x ≈ 1000,y+ ≈ 25), the black ◯ marks the expected location of the VLSM peak at(λx/δ ≈ 6), and ⋯ marks the peak along
λx/δ ≈ 3; (Right) Statically perturbed, with markings as in the left plot.

PHASELOCKED VELOCITY MEASUREMENTS
Following the velocity decomposition proposed by Hussain
& Reynolds (1970), the instantaneous velocity signal u(y,t)
can be decomposed into a temporal mean U(y), a component
phase-locked to the dynamic perturbation ũ(y,t) (which has,
by definition, zero mean), and a remaining fluctuation quan-
tity, u′(y,t). The same decomposition was performed for the
wall-normal velocity signal v(y,t), although the remainder of
this paper will treat only the streamwise velocity components.

u(y,t) =U(y)+ ũ(y,t)+u′(y,t) (1)

The remainder of the analysis will consider these quantities
ensemble-averaged over each phase, in order to consider a
‘mean period’ of the velocity fluctuations in the flow. There-
fore, for the remainder of the paper, the quantity u′(y,t) will
be taken to refer to the root mean square value of the fluctu-
ations as opposed to the actual mean fluctuations, which are
zero in the ensemble averaged sense.
The relative energetic content in the different components of
the velocity are of interest. One measure of the energy content
can be formulated as the ratio of the integrated kinetic energy
of the disturbances across the boundary layer, given by equa-
tion 2

Er(ui,u j) = ∫
δ

0 ui dy.

∫
δ

0 u j dy.
(2)

where ui and u j represent components of the phase-locked de-
composition given in equation 1. The ratios of the different
components are tabulated with the ratio given as the column

value over the row value in table 1. Note that the two repli-
cated values between the hotwire and PIV values are consis-
tent with an error of less than 10%.

Table 1. Integrated fluctuating intensities, Er(ucol ,urow)

ũHW ũ ṽ u′

u′HW 11.58

ṽ 7.64

u′ 12.55 1.64

v′ 25.59 3.35 2.04

The integrated fluctuating energy in the streamwise direc-
tion u′ is roughly twice that of the wall normal direction,
v′, while the phase-locked component is almost eight times
larger. As discussed in Jacobi & McKeon (2011a), these ra-
tios are not expected to remain constant downstream of the
perturbation, as the ‘internal forcing’ of the shear flow (i.e.
the non-linearities of the flow, as described in McKeon &
Sharma (2010)), expressed in the Reynolds normal stresses,
are not isotropic, and therefore the relative rates of decay of
the phase-locked signals in the streamwise and wall-normal
directions are expected to be significantly different. But at
least locally at one streamwise location, these ratios provide
a sense of the relative strength between large and small scales
and thus provide a context for interpreting the subsequent
phase analysis. They also demonstrate that the forcing in-
volved in the current study, using a patch of dynamically ac-
tuated roughness elements, is significantly stronger than that
obtainable by the vibrating ribbon used in past studies, as de-
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scribed in Jacobi & McKeon (2011a).

PHASE DIFFERENCES
In order to consider the relationship between the large-scales
and small-scales in the flow, Mathis et al. (2009) proposed
defining a correlation coefficient relating the envelope of
small-scale motions, identified by means of a Hilbert trans-
form of a high-pass filtered velocity signal, and the corre-
sponding low-pass velocity signal. Chung & McKeon (2010)
noted that this correlation coefficient Rτ is equivalent to the
inner-product of these two signals and thus conveys informa-
tion about the phase-different φ between the large and small-
scale motions, according to the standard relationship for inner-
products, Rτ = cosφ .
Both of the approaches of Mathis et al. (2009) and Chung
& McKeon (2010) involve filtering the velocity signals in or-
der to separate the different scale sizes before constructing
the correlation coefficient. The phase-locked velocity signals
of the current study provide a different means of directly mea-
suring the relationship between the phase-locked (large scale)
forcing, ũ, and the envelope of fluctuations, u′, by consider-
ing the mean period of these quantities, ensemble averaged
over all phases. From the mean periods of these two quanti-
ties, the relative phase between each velocity component φP,
as a function of wall-normal location, can be identified from
a cross-correlation of the two signals. And then the cosine of
this phase-difference can be represented as RP = cosφP, in or-
der to distinguish this quantity, which represents the phase be-
tween the single, dominant large scale and remaining scales,
from Rτ which represents the phase difference between an in-
tegrated average of large scales (via the filtering) and smaller
scales. Both of these methods will be examined below.
Consider first a map of ũ over an average period at a given
streamwise location, in figure 4a. The positive and nega-
tive fluctuations form a distinctive mode shape, characterized
by a reasonably sharp inclination in the streamwise direc-
tion near the wall; an amplitude maximum around y/δ ≈ 0.1;
and a phase-shift in the wall-normal direction of 180○ farther
from the wall. These three characteristics are typical of the
critical layer velocity modes familiar from solutions of the
Orr-Sommerfeld problem, and detailed in McKeon & Sharma
(2010). These velocity modes represent the single large-scale
modulating wave in the flow – its dominance was apparent
from the spectral composite maps shown above, in figure 3.
The envelope of the fluctuations (as represented by the root
mean square amplitude of the fluctuations) is shown in figure
4b. The shape of these fluctuating modes shares some simi-
larity with the large-scale, forced modes; in particular, the in-
clination of the modes and the peak amplitude near the wall.
However, the smaller-scales appear to be exactly out of phase
with the forced scales over a significant fraction of the bound-
ary layer. For comparison, the contour lines (representing 1%
deviation from both the positive and negative side of zero)
from the small-scale modes are superposed on the contour re-
gions of the large-scale fluctuations, in figure 4a. It is quite
apparent that very near the wall and far away from the wall
(past the 180○ phase shift in the large scale modes), the small
and large scales are again in phase.
By calculating the phase difference between the dominant
scale of the forcing and the fluctuating scales in the flow, ex-
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Figure 4. The maps for the streamwise velocity components.
Top: ũ; Bottom: the envelope of the root mean square am-
plitude fluctuations of u′. All measurements are taken at
x/δ ≈ 0.3 in order to capture the undistorted mode shapes; far-
ther downstream the modes tend to spread in the wall-normal
direction.

pressed as RP, the change in relative phase across the bound-
ary layer is seen to evolve moving downstream, away from
the initial perturbation, as shown in figure 5. The key fea-
tures observed above are apparent again: the different scales
are in phase near the wall, almost exactly out of phase out
until the location of the 180○ phase shift in the large scales,
and then are in phase again, outside the mean edge of the
boundary layer. Mathis et al. (2009) also observed this return
to in phase alignment outside the mean edge of the bound-
ary layer, although the correlation dropped rapidly to zero
farther away from the wall. The zero-crossing of the phase,
which represents the wall-normal location at which the large
and small scales are out of phase by 90○, varies as a function
of streamwise measurement location. The significance of this
zero-crossing suggested in Chung & McKeon (2010) is that it
represents the shift from in phase to out of phase alignment
of small and large scales that occurs as a result of a chain of
inclined, alternating high and low speed regions of large scale
motion in the flow.
Returning to the definition of Rτ offered in Chung & McK-
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eon (2010), the correlation coefficient can be calculated by ap-
propriate filtering of the velocity time series (using a tapered-
window on the entire time series, without phase-locking) and
then cross-correlating the two quantities representing the large
scales, uL, and small scales, ũs, represented in equation 3.

Rτ =
⟨(uL−U(y))(ũs− ⟨ũs⟩)⟩

⟨(uL−U(y))2⟩1/2 ⟨(ũs− ⟨ũs⟩)2⟩1/2
(3)

This formulation will necessarily include a diversity of larger
scales found in the flow, determined by the width of the ta-
per (a set number of eddy-turnover times τ ∼ δ/U∞), and not
merely the single dominant scale applied to the flow, exam-
ined above with phase-locking. In addition to the calculation
of Rτ , the skewness of the streamwise turbulent fluctuations
can also be calculated for comparison with the correlation co-
efficient, following the observation of Mathis et al. (2009).
Although there is some variation with choice of taper width
τ , the shape is relatively robust for τU∞/δ = 1−20, as found
in Chung & McKeon (2010). Choosing an intermediate value
τU∞/δ = 5 produced a series of profiles which overlap almost
exactly with the skewness profiles calculated for the identical
time series. The only significant differences occurred near
the mean edge of the boundary layer and can most likely be
attributed to intermittency effects. Importantly, the profiles of
Rτ share the same three characteristic features as those for RP,
namely: the large and small scales are in phase near the wall,
then out of phase for a significant fraction of the boundary
layer, and finally in phase again far from the wall. And again
the zero-crossing appears to vary as a function of streamwise
distance downstream of the perturbation.
The differences between these two measures of the large-scale
modulation of smaller scales appear in the width and magni-
tude of the out of phase region of the boundary layer, and
the wall-normal location of the zero-crossing. The correla-
tion coefficient based on only the dominant scale, RP, shows
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Figure 6. Following the approach of Chung & McKeon
(2010): Skewness, Rτ Symbols as in figure 5

a significantly broader region of the boundary layer where
the fluctuations are almost identically out of phase, while the
skewness and Rτ show a narrower region, in which the phase
shift is closer to 60○ out of phase. And the zero-crossing
for RP tends to occur further from the wall than that of Rτ ,
at least within 15δ of the perturbation; far downstream the
two values appear roughly the same, consistent with the re-
laxation of the perturbed flow, as described in Jacobi & McK-
eon (2011a). To better compare the trend in the zero-crossing,
the zero-crossing locations for the three measures are shown
as a function of streamwise position in figure 7. The zero-
crossing of Rτ tends to increase, moving downstream, until
around 10δ , after which it decreases and then attains a roughly
constant value for the last two streamwise location; this trend
is match by the skewness zero-crossing. For RP, the zero-
crossing initially appears to attain the far downstream value
(around y/δ = 0.2), but it quickly drops off and then slowly
recovers going downstream, until around 15δ , at which point
it stabilizes near to the value found by Rτ .
Besides the interpretation of the zero-crossing (90○ phase dif-
ference) as relating to the sequence of low and high speed ve-
locity fluctuations in an inclined orientation, the zero-crossing
locations obtained in Örlü (2009) and Mathis et al. (2009) are
also observed to overlap the location of the outer peak in the
streamwire energy spectrum, and, in turn, indicate a direct and
negative association between zero-crossing position (in outer-
scaling) and Reynolds number. Therefore, the case of the dy-
namic perturbation is observed to cause a decrease in the zero-
crossing of Rτ immediately downstream of the perturbation,
followed by an overshoot in the recovery, which perhaps can
be interpreted as a local appearance of higher Reynolds num-
ber behavior driven by the forcing and associated alteration of
the structure of the flow. In the case of RP, the decrease in
zero-crossing position persists for much longer, with a mono-
tonic recovery.
The question is what explains the differences between the two
measures of large to small scale correlation – in particular the
shift of the zero-crossing closer to the wall in the case of RP
and the differences in the recovery? From the geometrical
picture in Chung & McKeon (2010), the shift nearer to the
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wall can be interpreted as a change in the mean inclination
angle of the large structures (which fixes the point at which
the phase is 90○ out of phase) or the small-scale envelope,
which would indicate that the inclination of the forced modes
is different from the average of all of the larger scale modes.
To investigate the difference among the forced and unforced
large scales, we can look at the phase between a band-pass
filtered signal at approximately the forcing frequency and the
same low-pass filter used for the large scales, uL. If the band
about the forcing frequency behaved the same as the average
of the large scales, then the signals would appear highly cor-
related, with negligible phase-difference. However, there ap-
pears to be significant variation in the phase-relation between
the two means of describing the large scales in the forced flow,
indicating that average of the large scales captured in uL is not
equivalent to considering just the forced large scale. Similar
investigations are currently being applied to the small-scale
and fluctuating envelopes. In any case, the structural (incli-
nation angle) differences are observed to relate directly to the
shape of the correlation profile, which may have implications
for the physical interpretation of the skewness profiles.

DISCUSSION AND CONCLUSIONS
The dynamic perturbation of a flat plat turbulent bound-
ary layer induced large-scale velocity modes with a distinc-
tive shape. The envelope of turbulent fluctuations about
these phase-mean mode shapes also produced a distinctive
shape, which enabled identification of the relationship be-
tween forced large and small scales. The overlap of these
two mode shapes revealed that the relative inclination of small
and large scale motions has significant important to the rela-
tive phase between the structures, as noted by Chung & McK-
eon (2010). This relative phase was investigated by compar-
ing the mean periods of these two velocity components (large
and small scales), and using cross-correlations to identify the
phase-difference between the modes as a function of wall-
normal position in the boundary layer. This phase relation,
RP, was compared with the correlation coefficient used by

Mathis et al. (2009) and Chung & McKeon (2010) to mea-
sure the amplitude modulation of small scales by large scales
in unforced turbulent flows, Rτ , which in turn appears to be
related to the skewness of the streamwise velocity fluctua-
tions. The latter correlation coefficient reflects the relation
between the envelope of the amplitude of the small scales to
an average set of the large scales, while the former measure
reflect the relation between the envelope of fluctuations and
just one large scale, namely the forcing. These two correlation
measures shared significant features in common, in particular:
correlation near the wall, a zero-crossing, and then negative
correlation out through the intermittent edge of the boundary
layer. However, the shape of the phase variation across the
boundary layer did differ between the two measures, and that
difference was suggested to stem from structural differences
between the forcing velocity modes and the mean of the large
scales including those modes. Under the conceptual picture
introduced in Chung & McKeon (2010), that difference could
be interpreted as related to the relative inclination of different
sized structures in the flow field.
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