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ABSTRACT
Numerical solving of fluid-structure interaction (FSI)

problems are of importance in various scientific fields. In
particular, the establishment of stable numerical scheme is
needed in order to analyze the details of flow phenomena. In
the present paper, we propose a weak-coupling method for
FSI problem: for a elastic body the rigorous equations of mo-
tion are discretized with finite volume method; in the flow
computation, the elastic body object is reproduced via im-
mersed boundary method. To demonstrate the performance of
proposed scheme, the 3D structure analysis and 3D FSI prob-
lems of a elastic body are solved. The results indicate that the
computation is stably conducted using the proposed method,
in spite of the occurrence of fairly large deformation of the
object. In addition it turns out that the realistic flow including
turbulence phenomena is well reproduce using the proposed
FSI scheme.

Introduction
Fluid-Structure Interaction (FSI) problem is concerned

with in various research fields such as mechanical, aerospace,
civil and medical engineering. The highly accurate and sta-
ble scheme for the FSI problem is desired to be developed. In
the view of numerical difficulty, while the FSI for the struc-
ture of rigid body is easiest problem, the large deformation
of structure often induces the divergence of computation due
to the distorted grid. Namely depending on the rate of de-
formation, the treatment of FSI problem is difficult. In gen-
eral, the major numerical method for FSI problem is divide
into two category,i.e., strong-coupling method (Zhang et al.,
2001) or monolithic method (Huber et al., 2004; Blom et al.,
1998) and weak-coupling method (Piperno et al., 1997; Farhat
et al., 2000). As the merit of strong coupling it has been al-
ready mentioned that the governing equations of both fluid
and structure are simultaneously solved, resulting in the sta-

ble and high-accurate computation. On the other hand in the
weak-coupling method, since the both computation of fluid
and structure are performed independently of each other, the
performance for the stability and accuracy is inferior than
that of strong-coupling. However, the conventional code for
the structure and flow computation can be utilized through
the slightly modification in which the information is alterna-
tively exchange between flow and structure. Recently, since
IB method (Peskin, 1981; Fadlun et al.,2000) in the flow com-
putation is capable of dealing with any moving structures, a
keen issue needing to be solved in the FSI problem includ-
ing the large deformation structures, concentrates to the de-
velopment of the stable structure computation. In the present
study, we pay attention to develop the stable scheme for struc-
ture computation, and propose the weak-coupling method in
which for the elastic body the rigorous equations of motion
are discretized with finite volume method (FVM); for the flow
computation, the finite difference method (FDM)is used and
the elastic body is reproduced via immersed boundary method
(Fadlun et al.,2000). Using the proposed scheme, DNS of
turbulent channel flow with a elastic cantilever is conducted.
The modification of turbulent flow due to the elastic motion is
demonstrated through the visualization of instantaneous and
time-averaged mean flow fields.

Finite volume method for elastic body
The dynamics of elastic body based on the continuum

model can be written by the conservation law of mass and
momentum:

dρ
dt

= −ρ
∂ui

∂xi
(1)

ρ
dui

dt
=

∂σi j

∂x j
(2)
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whereρ is the density,ui is velocity component
In the present study, constitutive equations are assumed

to be a Hookean elastic body:

σi j = si j − pδi j −qi j (3)

dJsi j

dt
= G(ε̇i j −

1
3

tr (ε̇)δi j ) (4)

ε̇i j =

(
∂ui

∂x j
+

∂u j

∂xi

)
(5)

dp
dt

= −K tr(ε̇) (6)

wheresi j is the stress deviator tensorεi j strain tensor anḋεi j
the rate of strain.G is the modulus of elasticityK the bulk
modulusqi j artificial viscosity tensor andp pressure.tr(ε̇) is
the trace of the tensoṙε:

tr (ε̇) =
(

∂ui

∂xi
+

∂u j

∂x j
+

∂uk

∂xk

)
(7)

G and K are written by the Young’s modulusE and the Pois-
son ratioγ:

G=
E

2(1+ γ)
,K =

E
3(1−2γ)

(8)

In order to consider the large deformation of elastic body, the

rate of stressd
Jsi j

dt is introduced.d
Jsi j

dt is called as the Jaumann
derivative which means the rate of stress tensor in a reference
frame being corrected according to the rotational effect:

dJsi j

dt
= ṡi j +sikΩk j +sk jΩik (9)

whereΩi j is an antisymetric rotation tensor:

Ωi j =

(
∂u j

∂xi
− ∂ui

∂x j

)
(10)

The governing equations are discretized using the hexahedron
element proposed in a classical FVM (Mark,2006). The ve-
locity and the displacement are defined at the grid points con-
structing the hexahedron element, and the stress is at the cen-
ter of the element. The temporal discretization is as follows
(Mark, 2006);

εn+1/2
i j =

[(
∂ui

∂x j

)n+1/2

+

(
∂u j

∂xi

)n+1/2
]

∆t (11)

sn+1
i j = sn

i j +G

[
εn+1/2

i j − 1
3

tr
(

ε̇n+1/2
)

δi j

]
∆t

−
[
sn
ikΩn

k j +sn
k jΩ

n
ik

]
∆t (12)
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Figure 1. Computational domain and coordinate system of a
cantilever

0 1000 2000

−0.05

0

0.05

t
*

D
is

pl
ac

em
en

t

Figure 2. Time evolution of tip displacement for the free-
vibrating cantilever
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Dynamic of three-dimensional cantilever
In order to evaluate the validation of simulation code,

vibration analysis of a fixed-free cantilever is examined. In
the present study, the shape of cantilever is shown in Fig.1.
The dimension of cantilever is 5L×2L×L, and the grid size
is nx×ny×nz = 52×22×12. The end of cantilever is fixed
atx= 0 and the another end is free. The free end of cantilever
is displaced 1/20L in z direction at initial instant, and then
the cantilever continues to freely oscillate. Figure 2 shows
the time evolution of the tip displacement of cantilever inz
direction. Since the Hookean elastic model is assumed, the
amplitude of oscillation is constant as well as the periods of
oscillation. Table 1 shows the comparison of the theoretical
value and the present results as for the natural frequency The
theoretical value,f ∗T is as follows (Harris, 1961):

f ∗T =
λ
2π

1
L2

√
EI
ρA

(16)

ρ ; density ,E; Young’s modulus
I ; moment of inertia in the plane or second moment of area
L; length of cantilever
A; cross sectional area of cantileverλ ; Eigen value
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Table 1. Comparison of computational value with theoreti-
cal value

Frequency Error

Theoretical Value 0.01110 -

Computational value 0.01070 3.8%

(a) t∗ = 0 (b) t∗ = 1

(c) t∗ = 2 (d) t∗ = 3

(e) t∗ = 4 (f) t∗ = 5

Figure 3. Contours of normal stressσxx of the large-
deformed cantilever

In this calculation,λ = 3.52 is selected as the first bending
mode (Harris, 1961). From Table 1, the computational results
are good agreement with the theoretical value suggesting the
computational code is established. In order to investigate
whether the improved FVM scheme is able to reproduce the
behavior of large deformation, the cantilever is deformed by
adding the strong external force. As the test case, previous
mentioned cantilever shown in Fig.1 is deformed by a strong
force adding at the free end of cantilever. Figures 3 show the
surface distribution of normal stressσxx. In the figures, the
red and blue color correspond to the tensile and the compres-
sion stress, respectively. When the large deformation occurs
in Fig.3(c), the strong stress distribute around the root of can-
tilever, demonstrating that the fairly large deformation are re-
produced through the stable computation.the.

Numerical scheme for FSI problem
In the present study, we propose the weak-coupling

method for FSI. therefore the numerical scheme should be
prepared for each of structure and flow field. For the flow
computation, the governing equation for unsteady incom-
pressible viscous flow in Cartesian coordinates system are as

Figure 4. Schematic of interpolation scheme for velocity

Figure 5. Schematic of interpolation scheme for pressure

follows:

∂ui

∂xi
= 0 (17)

∂ui

∂ t
+

∂uiu j

∂x j
= − 1

ρ
∂ p
∂xi

+
1
Re

∂ 2ui

∂x j ∂x j
(18)

where,Re is Reynolds number. The momentum equations
are discretized using the Crank-Nicolson method for the vis-
cous term and the second-order Adams-Bashforth method for
convective terms. The discretization is performed with the
fractional-step method (Kim et al., 1985):

ûi −un
i

∆t
=

3
2

Hn
i −

1
2

Hn−1
i −∇pn+

1
2Re

∇2 (ûi +un
i ) (19)

where the superscript ‘n’ means the index of time step and
ûi is the intermediate velocity component.Hi represents the
convective terms

Introducing∆ûi = ûi −un
i , the momentum equations can

be written as:

(
1− ∆t

2Re
∇2

)
∆ûi = ∆t

{
3
2

Hn
i −

1
2

Hn−1
i −∇pn+

1
Re

∇2un
i

}
(20)

To satisfy the continuity equation,∇ ·un+1
i = 0 should be es-

tablished. thus

∇ ·
(

∇φn+1
)
=

1
∆t

∇ · ûi (21)

un+1
i = ûi −∆t∇φn+1 (22)

pn+1 = pn+φn+1− ∆t
2Re

∇2φn+1 (23)
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Figure 6. Computational domain of a channel flow
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Figure 7. Time evolution of tip displacement of the elastic
cantilever in the uniform inflow.

Th spatial discretization is performed with a second-order
central difference scheme. The staggered grid system is
employed. In the flow computation, the interface between
fluid and structure is tracked using immersed boundary(IB)
method. In the IB method, to represent the boundary on the
Eulerian grid, the external force is imposed at the boundary
in the flow field so that the boundary velocity is a specified
value. The original concept was proposed by Paskin (1981).
However, it is well-known the shortcoming, in which the time
step should be considerable small compared to the usual one
being decided by a CFL condition (Fadlun et al., 2000). To
avoid this problem, Fadlun et al. (2000) proposed the im-
proved IB method called as ’Direct forcing method’. In the
present study, in order to easily express an object of arbitrar-
ily shape, the material point is introduced. As shown Fig.4, for
the two-dimensional problem, the velocity at the grid point in
the vicinity of the wall,ui j is approximated with both the wall
velocity,Uo and the velocity at the slightly distance from the
wall, ui+1, jandui, j+1.Thus the relation between these points
is as follows:

un+1
i, j = aUO+bun+1

i+1, j +cn+1
i, j+1 (24)

where the coefficients are geometrically-determined.

a =
1

dx−δx
dx + dy−δy

dy +1

b =
dx−δx

dx
dx−δx

dx + dy−δy
dy +1

c =

dy−δy
dy

dx−δx
dx + dy−δy

dy +1

The approximated relation obtained for the intermediate ve-

(a) Velocity vector plots inx−z plane

(b) Contour of pressure inx−z plane

(c) Iso-surface of Q criteria

Figure 8. Instantaneous flow field around the elastic can-
tilever in a uniform flow.

locity,

∆ûi, j −b∆ûi+1, j −c∆ûi, j+1

= aUO−un
i, j +bun

i+1, j +cun
i, j+1 (25)

is incorporated into the implicit treatment of viscous diffusion
term (Fadlun et al., 2000).

As shown in Fig.5, the pressure at the structure grid,
pwall is linearly interpolated from the pressure at the fluid
computational grid located around the structure grid. For the
structure computation, the external force is estimated using
Pwall . The above-mentioned procedure is summarized as fol-
lows:

1. The flow computation is conducted using finite differ-
ence method to satisfy the interface boundary condition
using IB method (Fig.4).

2. The pressure at the interface obtained from flow compu-
tation is interpolated from the flow field to the structure
grid (Fig.5).

3. The structure computation is conducted using finite vol-
ume method to satisfy the interface boundary condition.

Through the step 1∼ 3 are sequentially repeated, FSI problem
will be solved
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Figure 9. Time evolution of the tip displacement of elastic
cantilever in the turbulent channel low.

(a) elastic

(b) rigid

Figure 10. Isosurface of Q criteria in a fully-developed tur-
bulent flow.

FSI for three-dimensional problem
The computational volume is embedded with two-

parallel walls shown in Fig.6. The wall condition is en-
forced on the both upper and lower boundary. The can-
tilever is placed on the lower boundary. As inflow condi-
tions, laminar and turbulent flow are examined. As the lami-
nar flow, a uniform flowU0 is imposed on the left side bound-
ary and a convective outflow boundary is used on the right
side boundary. Periodicity is enforced in spanwise direc-
tion. The grid size isnx × ny × nz = 128× 80× 128 in x,
y andz directions. The dimension of computational domain
is Hx ×Hy ×Hz = 2L× 3.14L× 4L. The Reynolds number
is Re= U0L/ν = 3000. As the fully-developed turbulent in-
flow, a computation of turbulent channel flow having its com-
putational volume, 2.0L×3.14L×6.28 and its grid number,
nx×ny×nz = 128×128×100 is conducted. The Reynolds

number defined with the friction velocity,wτ
(
=
√

ν ∂w
∂y |y=0

)
is Reτ =(wτ h/ν)= 150. The cantilever is equipped at the dis-
tance 0.25Hz from inlet, and its dimension isL×0.4L×0.1L
and its grid number, 52×22×10.

Dynamics of a cantilever in a uniform flow
Figure 7 shows the time evolution of tip displacement of

the elastic cantilever. After the start of simulation, the can-

(a) elastic

(b) rigid

Figure 11. Vector plots of mean velocity (left:inx−zplane;
right: in x−y plane)

(a) elastic

(b) rigid

Figure 12. Contour of turbulent kinetic energy (left:inx− z
plane; right: inx−y plane)

tilever continues to deform untilt ≈ 3, and then maintains the
deformed profile without the oscillation. Also the spanwise
deformation does not occur at all.

Figures 8 show the instantaneous flow field around the
elastic cantilever. From Fig.8(a)(b), the flow along the surface
of cantilever and the large-scale recirculation behind the can-
tilever are found; the contour lines of pressure penetrate nor-
mal to the surface of cantilever, suggesting that the IB method
well represents the shape of cantilever. Figure 8(c) shows the
isosurfaces of the second invariance of velocity gradient ten-
sor, Q criteria which identifies vortical structures. The vortical
structures (gray color) extends on the strong shear around the
corner of cantilever, and the tube-like structures are generated
further downstream.

Dynamics of cantilevers in a fully developed
turbulent flow

In order to investigate effects of elasticity, a rigid or elas-
tic cantilever is placed in the turbulent channel flow. Figure
9 shows the time evolution of tip displacement of the elastic
cantilever. As well as the uniform inflow condition, after the
start of simulation, the cantilever continues to deform without
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Figure 13. Time evolution of drag force

the spanwsie deformation. However, differently to that of uni-
form flow, the cantilever oscillates with no definite frequency.

Figures 10 show the instantaneous view of vortical struc-
tures around the cantilever. The flow phenomena in which
quasi-streamwise vortices over the upper wall are formed, are
exactly the same in both cases suggesting that the usual near-
wall turbulence structures of channel flow are maintained up-
per wall. For the rigid case, a large number of fine-scale vor-
tices are formed in the wake of cantilever, while for the elastic
case the existence of hairpin vortices can be found.

Figures 11 show vector plots of mean flow velocity aver-
aged int = 5∼ 20. In the Fig. the color means the magnitude
of velocity vector. In both figures, the high speed region ex-
tends over the cantilever because of the contraction due to the
cantilever, and the recirculation region behind the cantilever
are formed. The dimension of the wake of the elastic case
shrinks due to the deformation than that of rigid case. Figures
12 show contour of turbulent kinetic energy. Although the
peaks of TKE appears at the vicinity of the wall of the usual-
turbulent channel, the TKE of the current cases markedly is
enhanced in the wake.

The drag of cantilever,FD is approximated using the
streamwise momentum equation.

FD ≈ −
∫ ∫ [

ww+
1
ρ

p−ν
∂w
∂z

]z=Hz

z=0
dxdy (26)

+

∫ ∫
1
ρ

[
τwall

]x=Hx

x=0
dydz

Figure 13 shows the time evolution of wall-shear stress,τwall
and the drag of cantilever including both the profile and fric-
tion drag,FD. Compared to the wall-shear stress of the usual
channel (as indicated by broken line), a large increase in the
present results does not occur, and the difference of wall-shear
between the rigid and the elastic case is a little, while the
drag of cantilever is largely different between both cases. Al-
though the projected area of elastic cantilever to the flow re-
duces about 70 percent of rigid cases, the drag reduction of the

elastic case to the rigid one is about 50 percent. The reason of
this finding is that the large deformation of elastic cantilever
induces the shrinking of the wake region.
Conclusions

We propose the weak coupling method: FVM for the
structure computation, FDM for the flow computation and
both scheme are connected by IB method. The large- de-
formed elastic body are simulated using the proposed scheme.
Conclusions are as follows:

1. The classical FVM is capable of stably simulating the
large deformation of structures; the flow induced by the
large deformation of elastic cantilever is reproduced by
IB method in the flow computation. Thus we confirm
that the proposed weak-coupling method is useful for the
FSI problem.

2. The FSI problem between turbulent field and elastic body
is stably solved, demonstrating that the proposed scheme
is capable of treating the three-dimensional realistic flow,
in addition it is found that the peculiar flow phenom-
ena induced by the large-deformation of elastic body ap-
pears.
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