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ABSTRACT
We performed direct numerical simulations of tur-

bulent flow in square and skewed ducts. A second-
order-accurate finite-volume approach was used to dis-
cretize the Navier-Stokes equations in a curvilinear co-
ordinate system. The mean secondary flow field was
observed in all cases; in the skewed ducts, however, the
strength of the secondary flow is weaker compared to
that for the square duct. The flow in the sharper corners
tend to relaminarize and the axis of the secondary flow
shifts toward the corner with wider angle.

1 Introduction
The study of turbulent flows in corners of two solid

boundaries is of great importance, as they are encoun-
tered in many flow devices, such as the wing-body junc-
tion of an aircraft, winglets and tube bundles in heat
exchangers. Due to the significant anisotropy, complex
flow structures are formed in these areas, which can-
not be captured by isotropic eddy-viscosity-based tur-
bulence models (Speziale, 1987; Wallin & Johansson,
2000).

Early measurements of the flow in square ducts per-
formed by Nikuradse (see Schlichting (1979), p. 612)
revealed the existence of the mean secondary flow in
the plane normal to the mean streamwise velocity. This
type of secondary flow is known as “stress-induced
secondary flows” (Bradshaw, 1987) and is due to the
anisotropy of the normal Reynolds stresses. The effect
of the secondary flow is to transport slow-moving fluid
away from the wall at the duct centre, while moving
fast-moving fluid from the duct core towards the corner,
increasing the wall stress there. Further experiments
were conducted by Brundrett & Baines (1964); Gess-
ner & Jones (1965); Gessner (1973), while direct nu-
merical simulations (DNS) were performed by Gavri-
lakis (1992); Huser & Biringen (1993); Uhlmann et al.
(2007); Pinelli et al. (2010). All these works confirm
the presence of two counter-rotating vortices symmet-
rically placed about the diagonals of the cross-section,

and also showed that the turbulent statistics are in very
good agreement with the plane channel data along the
wall bisector. Pinelli and co-workers (Uhlmann et al.,
2007; Pinelli et al., 2010) studied the Reynolds number
dependence of mean flow structures in a square duct for
a range of Reynolds numbers. They showed that the
distribution of mean streamwise vorticity is not due to
the presence of two large vortices, but rather by a higher
probability of the existence of vorticity of a given sign
in the buffer layer. They also showed that the center of
the mean secondary flow remains at a constant location
for large Reynolds numbers.

In this paper we aim to extend the studies men-
tioned above by performing DNS of the flow in skewed
ducts, to determine how shallower or sharper angles af-
fect the flow dynamics. The Reynolds number based
on the bulk velocity and half square root of the area
of the cross section of the duct, Reb, is approximately
2,200, similar to that of other DNS studies by Gavri-
lakis (1992); Pinelli et al. (2010). A square duct and two
skewed ones, with angles of 30 and 60 degrees, were
simulated. In the following we first present the govern-
ing equations and boundary conditions, and describe the
numerical algorithm. We then discuss the numerical re-
sults, and finish with conclusions and recommendations
for future work.

2 Problem formulation
The governing equations are the equations of con-

servation of mass and momentum for an incompressible
fluid. In dimensionless form they are:

∂ui

∂xi
= 0;

∂ui

∂ t
+

∂u jui

∂x j
=− ∂ p

∂xi
+

1
Re

∇
2ui−δi1 f (1)

In the above equations Re is the Reynolds number based
on the average shear velocity, uτ = (τw/ρ)1/2 and Lr,
the square root of the cross-sectional area, p is the pres-
sure divided by density, xi are the Cartesian coordinates
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and ui are the components of the velocity vector.
The Navier-Stokes equations were discretized us-

ing a finite-volume method on a co-located grid ar-
rangement in curvilinear coordinates. A second-order
scheme was used to approximate both the the viscous
and non-linear terms, and a fractional step algorithm
was used to integrate the equations in time using a fully
explicit second-order Adams-Bashforth method (Ma-
hesh et al., 2004; Kim & Moin, 1985). The discretiza-
tion of the Poisson equation in general coordinates re-
sults in a system of linear equations with 19 non-zero di-
agonal terms, solved using an algebraic multi-grid tech-
nique, which treats all the off-diagonal terms implic-
itly to overcome any stability and accuracy issues. This
method ensures that the velocity field is divergence free
up to the machine zero after each time step.

Periodic boundary conditions are used in the
streamwise direction, and no-slip boundary conditions
are applied at the solid boundaries. It is also assumed
that the flow is fully developed in the duct, and a con-
stant mean pressure gradient f is applied to drive the
flow in the periodic streamwise direction: τwP/A = f ,
where P and A are the perimeter and the cross sectional
area of the duct respectively and τw is the mean wall
shear stress.

The dimension of the computational domain for the
flow in a square duct is 12× 2× 2 in streamwise and
cross stream directions respectively. For the skewed
duct, the cross stream length of the domain was scaled
to fix the Reynolds number based on the average shear
velocity to 150 for all cases. The length of the sides
of the duct is given by L = 2h = 2/(sinα)1/2, which
fixes the cross sectional area of the duct and the average
wall shear stress. Therefore, the Reynolds number de-
fined based on this scales will be constant for the flow
in square and skewed ducts if the constant pressure gra-
dient used to drive the flow is also scaled by P/A.

For the square duct, simulations were carried out
on two grids: a coarse one that used 241× 121×
121 grid points, and a finer with 361 × 181 × 181
points. The resolution of the first simulation was ∆x+ =
7.5, ∆y+,∆z+ < 4.2, while for the second ∆x+ = 5,
∆y+,∆z+ < 2.0. For the skewed-duct cases we used
361× 241× 241 grid points in streamwise and cross-
stream directions respectively, to discretize a domain of
length 12 and sides L (defined above). An example of
the grid for the α = 30o case is shown in Figure 1.

In all simulations, the time step size was limited to
ensure CFL < 0.3. It should be noted that for DNS of
turbulent flows the viscous stability limit of time-step
size is less restrictive than the accuracy and convec-
tive time-step limitation for Re >> 1; therefore, a fully
explicit scheme can be used. In all cases the govern-
ing equations were integrated for a dimensionless time
tuτ/Lr = 55 after a statistically stationary state had been
reached. The statistics were also averaged over quad-
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Figure 1. Grid for the α = 30o case.

Figure 2. Mean streamwise velocity contours and stream-
lines of the mean secondary flow.

rants to increase the sample size. In the following, mean
quantities will be denoted by angle brackets 〈·〉, while a
prime will denote the turbulent fluctuations.

3 Results
In order to validate the computational code, the re-

sults of the Reb = 2236 simulation of the square duct
were examined. First, we verified that grid conver-
gence had been achieved by comparing the results on
the coarse and fine meshes, which were found to dif-
fer by less than 3%. Secondly, we compared the re-
sults with those obtained by Pinelli et al. (2010), who
performed DNS of the square duct at various Reynolds
numbers using a pseudo-spectral method. Excellent
agreement was obtained for first- and second-order mo-
ments.

The mean streamwise velocity and streamlines of
the secondary flow are presented in Figure 2. The pat-
tern of the secondary flow is similar in all cases: two
counter rotating vortices are observed at each corner,
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Figure 3. Mean streamwise vorticity contours and stream-
lines of the mean secondary flow.

with the secondary flow directed towards the corners.
For the skewed ducts, the pattern is highly asymmetric;
the vortex closer to the acute angle being more elon-
gated than the other. Also, the vortex center moves
away from the acute corner. This is due to a quasi-
laminarization of the flow in the smaller corner that
will be discussed later. Although the secondary vortices
are quite asymmetric, the maximum vorticity is nearly
equal, as shown in Figure 3. The shear generated at the
wall to satisfy the no-slip condition is almost twice as
large as the vorticity due to the rotational motion.

Figure 4 shows the distribution of the streamwise
and lateral components of the wall stress,

τw,x =
1

Re
∂U
∂ z

and τw,z =
1

Re
∂V
∂ z

. (2)

Note that the lateral stress is 10% of the streamwise one,
while the maximum cross-stream velocity is only 5% of
the mean streamwise one. This is another indication
that the secondary flow, although weak, has a signifi-
cant effect on the momentum transfer. Also notice how
in the skewed ducts the region of strong lateral stress
almost disappears near the acute angle, and the only re-
gion where a significant lateral stress occurs is near the
obtuse angle.

Figure 5 shows instantaneous flow visualizations
for the three cases. The most notable difference be-
tween the three cases is the quiescent nature of the flow
in the acute corner, which is highlighted by the ab-

Figure 4. Profile of the wall stress. (a) Streamwise compo-
nent; (b) spanwise component.

sence of vortical structures and by the disappearance of
the near-wall streaks (Figure 5(a)). Furthermore, while
near the obtuse corner the wall stress is predominantly
larger than the mean (whose value is unity because of
the normalization used), near the acute corner it is neg-
ligibe. A similar phenomenon had been observed in the
flow over riblets by Choi et al. (1993). However, in
their case the distance between the riblet tips was either
40 or 20 wall units, and the quasi-streamwise vortices,
whose average size is d+ ' 30, could not penetrate the
space between the riblets. In our case we observe no
quasi-streamwise vortices in regions were the distance
between the walls is much larger, of the order of 50 wall
units. It is as yet unclear why the vortices do not pene-
trate further into the acute angle.

Pinelli et al. (2010) have recently shown that sec-
ondary flow in a square duct is governed by the buffer
layer structures and is due to the preferred positioning
of the high speed streaks in the near-wall region. They
presented the probability density function of streak lo-
cations and its correlation with the wall shear distribu-
tion as the supporting evidence. In a square duct, there
is a high probability of hosting a high speed-streak near
the corner regions where a peak in the wall shear dis-
tribution is observed. We repeated the same study here
using the data obtained for the skewed ducts. The re-
sults are plotted in figure 6. It shows that there is a
much higher probability of high-speed streak near the
obtuse angle, while in the regions near the acute angle
the flow is more quiescent.

The contours of Reynolds stresses for the α = 30o

case are shown in Figure 7. The stress tensor is rotated
to a coordinate system aligned with the diagonals of the
duct. The streamwise normal stress, 〈u′1u′1〉 is nearly
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(a)

(b)

Figure 5. Isosurfaces of Q and (a) contours of u′ on a plane at y+ = 7.5, (b) contours of the streamwise component of the wall
stress.
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Figure 6. Probability density function of streak locations along the duct side; (a) square duct, (b) D60 duct, (c) D30 duct;
high-speed streaks; low-speed streaks.

Figure 7. Mean Reynolds-stress contours for the α = 30o case.
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Figure 8. Profiles of mean velocity and Reynolds stresses along the duct diagonals. α = 90o; α = 60o, long diagonal;
α = 60o, short diagonal; α = 30o, long diagonal; α = 30o, short diagonal.

uniform in the direction parallel to the walls, and de-
pends mainly on distance from the nearest wall. The
other two normal stresses, 〈u′2u′2〉 and 〈u′3w′3〉, tend to
concentrate in the obtuse corner region. The main shear
components, 〈u′1u′2〉 and 〈u′1u′3〉, peak in the upwash re-
gion between the vortices. This is also the region where
the wall stress is maximum.

We observe a significant decrease of the cross-
stream normal stresses in the sharp corner, and also a
decrease of the shear stresses, which are responsible for
the production of turbulent kinetic energy. In this re-
gion, the predominance of viscous dissipation over the
production seems to be responsible for the relaminariza-
tion. An analysis of the Reynolds-stress budgets, how-
ever, is required to identify whether turbulent diffusion
and pressure also play a part. The strong anisotropy of
the Reynolds stresses is also evidenced.

Figure 8 shows the profiles of mean velocity and
Reynolds stresses along the two diagonals of the ducts.
Here, ld is the length of the diagonal. The tendency to
relaminarization in the acute corners can be seen very
clearly: the velocity profile changes concavity near the
corner, where the fluid slows down considerably due
to the increased viscous stress. While the streamwise
stress does not change appreciably, the two cross-stream
components decrease significantly in the sharp corner.
The shear components of the Reynolds stress tensor

are also significantly decreased in the corner, especially
〈u′1u′2〉 and 〈u′2u′3〉 (〈u′2u′3〉 does not contribute to the
transport of streamwise momentum). The lack of cross-
stream turbulent transport indicates that in this area tur-
bulence may become “inactive”, as the shear stresses
decrease more rapidly than the turbulent kinetic energy
itself. The residual turbulent motions are then mostly
advected, and no production takes place. Note also that
the secondary shear stress 〈u′2u′3〉 has a magnitude com-
parable to that of the primary one, 〈u′1u′2〉, despite the
fact that the maximum velocity of the secondary flow is
much smaller than the streamwise velocity.

Figure 9 presents the scaling of the streamwise ve-
locity component at the wall bisector. For all cases
there exists a logarithmic region where the velocity
scales with the average shear velocity, uτ , i.e. U+ =
3.2log(z+)+ 4 for the square duct. However, the con-
stants of the logarithmic fit are different from their val-
ues for turbulent flows near solid boundaries where
there is no secondary motion (i.e plain turbulent channel
flow). The deviation from the square duct for the case
of the 30 degree duct, indicates a stronger influence of
the secondary motion on mean streamwise velocity.
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Figure 9. Profile of the mean streamwise velocity at the wall
bisector, α = 90o; α = 60o; α = 30o;

logarithmic fit.

4 Conclusion
Direct numerical simulation of fully developed tur-

bulent flows through ducts at a bulk Reynolds number
of 2236 have been performed. The mean secondary
flow was observed all cases; the maximum magnitude
of the velocity of the mean secondary flow in the cross-
stream plane is about 5% of the mean streamwise veloc-
ity. The secondary flow, however, results in increases
of up to 50% in the wall stress, strong anisotropy of the
Reynolds stresses, and secondary shear stresses, that are
as large as the primary ones.

The secondary flow highly skews the distribution
of the wall shear stress. A secondary wall stress, in
the cross-stream direction, is also generated. The flow
in the corner tends to relaminarize in the sharper cor-
ner for the two skewed ducts; this phenomenon is es-
pecially strong in the α = 30o case. While the stream-
wise stresses 〈u′u′〉 are not very significantly altered, the
fluctuations in the cross-plane are much reduced. This
results in a reduction of the shear stresses, and, hence,
decreased production; the “inactive” turbulence is ad-
vected only, and does not participate actively to the tur-
bulence generation.

Further studies of the vorticity and Reynolds stress
budgets are ongoing to elucidate better the transport
mechanisms. Also, simulations at higher Reynolds
number are planned, to limit transitional effects.

Acknowledgments
The authors thank the High Performance Com-

puting Virtual Laboratory (HPCVL), Queen’s Univer-
sity site, for the computational support. This re-
search was partly supported by NSERC and Bom-
bardier Aerospace. UP acknowledges the support of the
Canada Research Chairs Programme; AP the support of
the Queen’s Research Chairs Programme.

REFERENCES
Bradshaw, P. 1987 Turbulent secondary flows. Annu.

Rev. Fluid Mech. 19 (1), 53–74.

Brundrett, E. & Baines, W. D. 1964 The production and
diffusion of vorticity in a square duct. J. Fluid Mech.
19, 375–394.

Choi, H., Moin, P. & Kim, J. 1993 Direct numeri-
cal simulation of turbulent flow over riblets. J. Fluid
Mech. 255, 503–539.

Gavrilakis, S. 1992 Numerical simulation of low-
Reynolds-number turbulent flow through a straight
square duct. J. Fluid Mech. 244, 101–129.

Gessner, F. B. 1973 The origin of secondary flow in a
turbulent flow along a corner. J. Fluid Mech. 58 (1),
1–25.

Gessner, F. B. & Jones, J. B. 1965 On some aspects of
fully developed turbulent flow in rectangular chan-
nels. J. Fluid Mech. 23 (4), 689–713.

Huser, A. & Biringen, S. 1993 Direct numerical simula-
tion of turbulent flow in a square duct. J. Fluid Mech.
257, 65–95.

Kim, J. & Moin, P. 1985 Application of a fractional step
method to incompressible Navier-Stokes equations.
J. Comput. Phys. 59, 308–323.

Mahesh, K., Constantinescu, G. S. & Moin, P. 2004 A
numerical method for large-eddy simulation in com-
plex geometries. J. Comput. Phys. 197 (1), 215–240.

Pinelli, A., Uhlmann, M., Sekimoto, A. & Kuwahara,
K. 2010 Reynolds number dependence of mean flow
structure in square duct turbulence. J. Fluid Mech.
644, 107–122.

Schlichting, H. 1979 Boundary-Layer Theory. New
York: McGraw-Hill.

Speziale, C. G. 1987 On nonlinear K−` and K−ε mod-
els of turbulence. J. Fluid Mech. 178 (459–478).

Uhlmann, M., Pinelli, A., Kawahara, G. & Sekimoto,
A. 2007 Marginally turbulent flow in a square duct.
J. Fluid Mech. 588, 153–162.

Wallin, S. & Johansson, A. V. 2000 An explicit alge-
braic Reynolds stress model for incompressible and
compressible turbulent flows. J. Fluid Mech. 403,
89–132.

6


