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ABSTRACT
The scalar fields obtained by Direct Numerical Simula-

tions (DNS) are decomposed into numerous finite size regions
using the dissipation element analysis proposed by Wang &
Peters (2006) providing detailed information about the geom-
etry of turbulent structures - presently for the turbulent chan-
nel flow. Therefore local pairs of minimal and maximal points
in the scalar field φ(x,y,z, t) are detected where ∇φ = 0. Gra-
dient trajectories of finite length starting from every point in
the scalar field in the directions of ascending and descending
scalar gradients will reach a minimum and a maximum point
with ∇φ = 0. The set of all points belonging to the same
pair of extremal points defines a dissipation element (DE).
Hence, the decomposition of the domain into dissipation el-
ements is not arbitrary but follows from the structures of the
flow itself and further is completely space filling. The com-
ponents of the velocity, the vorticity vector, the kinetic energy
and its dissipation could be chosen as such a scalar field φ .
The Euclidian distance ` between the extremal points and the
absolute value of the scalar difference ∆φ at these two points
mark the key parameters to parameterize the geometry and the
field variable structure of the dissipation elements. Although
these spatial structures are irregularly shaped the parameters
mentioned give a deep insight into the length scale and scalar
increment distribution (Wang & Peters (2006)). For the case
of homogeneous shear turbulence the authors in Wang & Pe-
ters (2006) report that the mean DE length is in the order of
the Taylor scale defined as λ = (10νk/ε)1/2. This can be con-
firmed presently for the turbulent channel flow though it is a
statistically inhomogeneous flow in the wall-normal direction
y.

DNS of turbulent channel flow
Wall-bounded turbulent channel flow features some char-

acteristic wall-normal layers namely, viscous sublayer, buffer

layer, logarithmic region and the core/defect region. Corre-
sponding to the respective layers different turbulence phenom-
ena are dominant leading to inhomogeneity in all wall-normal
statistics. This typically applies to the turbulent length scales
as well. While sufficiently far from the wall large scale length
scales (`� η) are widely independent of the influence of vis-
cous forces the latter become very influential approaching the
wall. The anisotropic largest turbulent scales correspond to
the integral length scale which are of the order of channel
height.

A spectral numerical method using Fourier series in
the horizontal streamwise (x) and spanwise (z) directions
and Chebyshev polynomial expansion in the wall-normal
(y) direction is applied to solve the three-dimensional time-
dependent incompressible Navier-Stokes equations in the di-
mensionless form (for details see Lundbladh et al. (1999))

∂u
∂ t

+(u ·∇)u =−∇p+
1

Reτ

∇
2u, (1)

∇ ·u = 0, (2)

where x, t, u and p are respectively the position vector, time,
the velocity vector and pressure. Time integration is per-
formed using a third order Runge-Kutta scheme for the ad-
vective and forcing terms and second order Crank-Nicolson
for the viscous terms. While periodic boundary conditions are
applied in the homogeneous streamwise (x) and spanwise (z)
directions no-slip boundary condition is adopted at the chan-
nel walls where u(x,y=±1,z) = 0. u = (u,v,w) denote the
streamwise, wall-normal and spanwise velocity components.

Presently, the channel flow at two Reynolds numbers
Reτ = uτ h/ν are analyzed, where uτ =

√
τ/ρ is the friction
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velocity, τ is the mean wall-shear stress and ρ is the density
(see table 1). The numerical resolution Nx ×Ny ×Nz reads
512×257×256.

Table 1. Simulation parameters. h denotes the channel half-
height.

- Reτ Lx/h Lz/h

Case 1 180 2π π

Case 2 360 2π π

Dissipation Element statistics
The probability density function (pdf ) depending on the

Euclidian length `, the conditional mean scalar difference
〈∆φ |`〉, and in particular its dependence on the wall dis-
tance y, describing each element will be the main focus of
the present work. The pdf states the distribution of the el-
ement lengths and the latter shows the scaling behavior of
the scalar difference with respect to the length. Hence, rather
generally, the present pdf is a function with the dependencies
P(`,∆φ ,y,Reτ ) satisfying the normalization condition

∫
∞

0
Pd`= 1 . (3)

The mean or expectation value for the DE length is de-
fined as

`m =
∫

∞

0
`Pd` . (4)

For the analysis of DE we investigate three scalar field
variables, the fluctuation of the streamwise velocity compo-
nent u, the turbulent kinetic energy k and its dissipation rate ε ,
which is highly intermittent, at two Reynolds numbers being
a factor of two apart. The latter two are defined as

k =
1
2

(
u2 + v2 +w2

)
, (5)

ε =
1
2

ν

(
∂ui

∂x j
+

∂u j

∂xi

)2
, (6)

where ν is the kinematic viscosity.
The figures in 1 illustrate the dependence of the marginal

pdf of the Euclidian DE length on (a) Reynolds number and
(b) different scalar variables. Here, P̃ = `mP and ˜̀= `

`m
are

invariants where `m is the mean DE length defined in equation
(4). All pdf feature a clearly non-Gaussian distribution. For

P̃

˜̀

P̃

˜̀
Figure 1. Comparison of the overall pdf of the entire chan-
nel for different (a) Reynolds numbers and (b) scalar vari-
ables.

small DE the curves show a very steep rise before reaching a
maximum at around `≈ 0.6`m marking the highest probability
for DE length scales. With further increasing DE length an
exponential decay becomes evident which can be seen even
better in the small inset figures. Figure 1 (a) reveals a very
interesting insensitivity with respect to Reynolds number for
the scalar of k as an example. Despite the relatively big gap
between both Re their pdf coincide almost perfectly. The same
conclusion applies to the dependency regarding to the choice
of the scalar variable as can be observed in figure 1 (b). All
three curves exhibit a very good agreement with each other
almost throughout the entire spectrum of DE length scales.
Only around the maximum and in the far-tail of the pdf one
can see small deviations.

At this point pdf for k and ε seem to be closer than the
velocity component u which decays faster as displayed in the
semi-logarithmic illustration. Nevertheless, the obvious in-
sensitivity with respect to the choice of the scalar variable im-
plies a pronounced DE isotropy for all DE spectrum.

In figure 2 (a) the linear length of DE averaged over the
horizontal directions x,z is plotted as a function of the wall-
normal direction from the wall (y/h = 0) up to the centerline
of the channel (y/h = 1) again for the three scalar variables.
All curves display a characteristic linear behavior in the same
wall-normal region. This means that DE size grows linearly

2



in this region such as

`m ∼ y+ c . (7)

This relation applies to the region 0.2≤ y/h≤ 0.8 which con-
sists of the logarithmic layer and most of the defect layer
only excluding the viscosity dominated near-wall layer and
the very center region (central core). Above this, DE size ap-
pears to remain constant in the center of the channel which
might be due to the low shear occurring here. This is more
obvious for u and k but applies to ε as well. On the contrary,
no clear tendency can be detected for the near-wall region in-
cluding viscous and buffer regions.

Additionally, one recognizes the differences with respect
to the mean DE length for different scalar variables. This is
due to the different number of extremal points that are cre-
ated by turbulence which of course depends on the choice of
the scalar. Since the DE length is defined by the distance of
the corresponding minimum and maximum points the size of
DE will be smaller on average if the number of the points in-
creases. Accordingly, picture 2 (a) shows that for the scalar
variables considered here the ε field features the smallest el-
ements indicating a higher number of extremal points, which
has been evaluated (not shown here), followed by k and u.
Given the fact that, unlike classical turbulent length scales,
DE are space filling, hence, occupy the whole flow field the
number of DE must decrease towards the center of the chan-
nel due to the increase of the element size (see equation (7)).

In figure 2 (b) the relation between the DE and the Taylor
length scales `m/λ as a function of y/h is highlighted expos-
ing that for a wide range of wall-normal direction `m scales
excellent with the Taylor length scale λ , in other words

`m ∼ λ . (8)

For reasons mentioned above the proportionality con-
stant varies depending on the scalar variable, i.e. `m ≈ λ for ε ,
`m ≈ 2λ for k and `m ≈ 3λ for u. Whereas this relationship
holds true even for the channel center it is clearly broken near
the wall.

In figures 3 pdf of DE length have been investigated for
three characteristic wall-normal layers of a turbulent channel
flow exemplarily for the case of k to explore the influence of
the distance from the wall. The very thin viscous sublayer has
been excluded to avoid ambiguity of the DE definition at the
wall. The layers defined in terms of the wall distance are as
follows.

buffer region: 5 < y+ < 30
log region: y+ ≥ 30, y/h < 0.3
core region: 0.3≥ y/h < 1

where y+ = yuτ/ν .
The pdf in figure 3 (a) are normalized only according to

equation (3) while in figure 3 (b) the length scale has also
been normalized by the corresponding local mean length `m
of the channel layer. As can be seen, without re-scaling of the
pdf figure 3 (a) features huge deviations indicating a strong

`m

y/h

`m/λ

y/h

Figure 2. (a) Mean DE length along wall-normal direction.
(b) Mean DE length normalized by the Taylor length scale λ .

impact of the wall distance on the pdf. The pdf closer to the
wall exhibit a narrower shape while at the same time the max-
imum peak moves towards smaller element lengths. Thus,
one can conclude that smaller elements can be encountered
near the wall whereas larger elements are mostly located in
the far-wall regions. This is in agreement with the observa-
tions on the basis of figure 2 where the DE length distribution
illustrates the the influence of the wall distance. Furthermore,
with its broader shape pdf for the core region reveals that this
layer consists of a wider spectrum of length scales than the
logarithmic and the buffer regions.

On the other hand, the pdf curves exhibit an evident sim-
ilarity if ` is normalized with the according mean length, i.e.
˜̀ = `/`m. Thus, the rescaled similarity variable P̃ = `mP is
plotted in figure 3 (b). An almost complete collapse of the pdf
is displayed for the logarithmic and the core regions which
together amount to more than 90% of the entire channel. In
contrast, pdf for the near-wall buffer region is substantially
different from others as a result of predominant wall and vis-
cous effects. The lack of linear scaling of the mean DE length
in the buffer layer which was observed in the far-wall regions
is certainly the reason for this deviation.

In the next step we analyze the conditional mean scalar
differences between the values at the extremal points con-
ditioned on the length of the corresponding dissipation ele-
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Figure 3. pdf for characteristic wall-normal layers where in
(a) ` is not normalized while in (b) ` is normalized with `m.

ment for the instantaneous turbulent kinetic energy k. There-
fore, the first order conditional moment is investigated to mea-
sure its scaling along wall-normal distance. The first moment
based on gradient trajectories is non-zero since the value of
the turbulent kinetic energy increases per definition monoton-
ically along a trajectory from the minimum to the maximum
point.

Hence, in figure 4 conditional mean scalar difference is
plotted for different wall-normal layers. In (a) we focus on a
restricted region in the very center region (central core) cor-
responding to 0.8 ≤ y/h ≤ 1 featuring the highest degree of
isotropy and the weakest shear in present flow regime. For
sufficiently large DE the logarithmic plot reveals a scaling ex-
ponent of 2/3 which is known from Kolmogorov’s law. Ap-
proaching the wall, of course, this scaling is likely to break
under the influence of shear induced anisotropy as can be con-
firmed by the semi-logarithmic plots. In the near-wall buffer
layer and the logarithmic layer where turbulent kinetic energy
scales as u2

τ we observe a ln(`) law equivalent to the classical
K−1 law (Perry et al. (1986)). In the buffer layer this behavior
is extended to an even wider spectrum of elements.

Conclusion
We applied the Dissipation Element (DE) method to the

wall-bounded turbulent channel flow to analyze its geometri-

〈 ∆
k
|∆

k|
|`
〉

`

∼ `2/3

〈 ∆
k
|∆

k|
|`
〉

`

∼ ln(600`)

∼ ln(15`)

Figure 4. Conditional mean scalar differences for differ-
ent wall-normal channel layers. (a) logarithmic, (b) semi-
logarithmic.

cal structure. Different statistics such as the probability den-
sity function (pdf) for different turbulent scalar variables, the
conditional mean scalar difference of the turbulent kinetic en-
ergy and the DE length have been subject of the present work.
The dependency of this statistics on the wall-normal distance
in terms of characteristic wall-normal regions (buffer, loga-
rithmic and core regions) has been investigated. Generally,
strong influence of the wall could be observed in all statistics
except for rescaled pdf for different channel layers yielding
invariant forms of the pdf. Mean DE size was found to have
clear linear scaling with respect to the distance from the wall
as well as the conditional mean scalar differences between the
extremal points of DE. For the latter, it could be shown that
in the very center of the channel Kolmogorov’s 2/3 scaling
holds whereas layers closer to wall feature a logarithmic law
rather than a power law. As future prospects we aim to extend
our findings to higher Reynolds numbers and to more scalar
variables to serve a more complete picture of the geometrical
structure of turbulence.
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