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ABSTRACT 
Characteristics of curvature and torsion of particle 

trajectories are investigated by using direct numerical 
simulations. Curvature, torsion and their ratio are expected to 
have crucial roles in identification of the vortical structures. 
Curvature and torsion are highly intermittent and their PDFs 
show a rigorous slope in log-log scale which indicates self-
similar power-law behavior. It is well known that extremely 
high curvature comes from nearly zero-velocity event, but for 
the case of torsion it is not clealy explained. We found that the 
magnitude of torsion is determined mainly by the magnitude 
of |a|̇ |a୬||u|⁄ , but detailed physical interpretation of |a|̇ |a୬||u|⁄  is required. Enstrophy-conditional PDF and 
various Stokes number cases for heavy particles are also 
investigated, but they give almost the same shape of PDF, and 
that self-similar characteristics of curvature and torsion are not 
related with turbulent structures.  

 
 

BASIC AND DEFINITION 
We investigate the geometric nature of trajectories of 

Lagrangian fluid and heavy particles in isotropic turbulence. 
The shape of a trajectory can be characterized by three basic 
vectors which are the tangent vector t, the normal vector n, 
and the binormal vector b. In terms of Frenet-Serret formula, 
the time derivatives of each vector are described by a 
combination of curvature and torsion. (Millman  and Parker, 
1977), 
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Here, s is a line element of a trajectory and κ is curvature 

and τ is torsion. Eq. (1) represents that curvature is the rate of 
change of the tangential vector to the normal direction, and 
torsion is the rate of change of the binormal vector to the 
normal direction. Literal meaning of curvature is the ratio of 
change in the angle of tangent that moves over a given arc to 
the length of the arc. The meaning of torsion is the degree of 
departure of a curve from a plane. Thus curvature makes 
curved shape of trajectories, and torsion makes 3-dimensional 
motion of trajectories. For some special cases, constant 
curvature and zero torsion draw a circle in a plane, and 
constant curvature and constant torsion make a helix shape of 
trajectories. Curvature and torsion can be described by 
velocity and acceleration vectors as written in Eq. (2) and (3). 
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For the direct numerical simulation of isotropic turbulence, 
a pseudo-spectral method is used for the spatial discretization, 
and a 3rd order Runge-Kutta method is used for the time 
advancement. To maintain a stationary turbulent flow, a 
random forcing process is used based on the method proposed 
by Eswaran and Pope (1988). For the interpolation for the 
Lagrangian particle, a 4-point 4th order Hermite interpolation 
scheme is used, which guarantees a high accuracy with 
reasonable computational cost (Choi et al, 2004). Detailed 
simulation parameters are listed in a recent paper of Choi et al. 
(2010). 

 
 

PDF OF CURVATURE AND TORSION 
Most distinguishable characteristics of curvature and 

torsion are self-similar behavior. The probability density 
function of curvature and torsion shows a strong exponent tail 
as shown in Figure 1 (cited from Choi et al, 2010). Each plot 
is normalized by their mean absolute value (plot of torsion is 
shifted by 1/10, and that of curvature is shifted by 1/1000 for 
clarity). Exponent of -5/2 of curvature is observed both 
numerically and experimentally (Braun et al, 2006; Xu et al, 
2007; Scagliarini, 2009). An order of -2 exponent is observed 
in a forced two-dimensional simulation (Kadoch et al, 2010). 
Normalized PDF of geometric variables are not sensitive to 
the Reynolds number although their mean values differ 
substantially as shown in Table. 1. Fig. 1 shows two Reynolds 
number cases of numerical simulation, but they are nearly 
identical. From this result we can infer that the exponential 
behaviour of curvature and torsion is not coming from 
turbulent characteristics. Previous study showed that 
extremely high curvature (larger than hundreds times of the 
mean value) is caused by nearly zero-velocity event. With the 
assumption of a Gaussian distribution of velocity components, 
-5/2 slope of curvature is clearly explained. However, for the 
case of torsion, it is difficult to tell clearly which statistics is 

responsible for the high or low torsion. Thus we investigate 
the correlation of the magnitude of torsion and other statistics.  

 
JOINT PDF OF TORSION AND OTHER STATISTICS 

As written above, high curvature is originated by small 
magnitude of velocity, which indicates change of the direction 
of a particle path. At that point, acceleration remains at finite 
value, and distribution of curvature is determined by velocity 
only. In Fig. 2, we can observe a certain negative slope at high 

 

 
 
Figure 2.  Joint PDF of curvature and velocity(upper) , 
curvature and normal acceleration(bottom).  

 

Table 1. Numerical parameters and mean values  
 Re஛ k୫ୟ୶η <κ> <τ> <τ/κ> 

47 1.24 2.21 5.08 31.7 
70 1.5 2.70 6.41 39.0 

 

 
 
Figure 1. Probability Density functions of curvature, 
torsion and their ratio (Choi et al, 2010).  
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curvature. For low curvature case, acceleration must be small 
and distribution of curvature is determined by acceleration 
only. It is obvious that the normal acceleration and curvature 
are positively correlated with each other when the curvature is 
low. We can easily observe the exponential relation among 
curvature, velocity, and acceleration in the joint PDF in log-
log scale. Likewise, we investigated joint PDF of torsion and 
the other statistics. As shown in Eq. 2, torsion is determined 
by the combination of velocity, acceleration, material 
derivative of acceleration, and curvature. Fig. 3 shows joint 
PDF of torsion and other statistics. Unlike the plot of 
curvature, an exponential relation is not observed in the joint 
PDF of torsion especially at high value of torsion. These 
results imply that the magnitude of torsion is not simply 
determined by just one variable. Thus we rearrange Eq. 2 as 
Eq. 4, in order to find out more detailed characteristics of 
torsion. 
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We assume that |a| |a୬|⁄ ~1, then the magnitude of torsion 
is reduced to Eq. 5 where θ  is the angle between velocity 
vector and (a × ȧ) vector, and ϕ is the angle between a and ȧ. 

 
 | || |~ cos sin

| || |n

t q fa
a u
&  (5) 

If the angles between the vectors are randomly distributed, 
then the magnitude of torsion is mainly determined by |a|̇ |a୬||u|⁄ . Thus we investigate the correlation between |a|̇ |a୬||u|⁄  and torsion. Unlike the other variables, |a|̇ |a୬||u|⁄  
possesses a strong correlation with torsion. Fig. 4 is the joint 
PDF between torsion and |a|̇ |a୬||u|⁄  in log-log scale. It 
clearly shows a positive correlation between torsion and |a|̇ |a୬||u|⁄ . Further we investigate the PDF of |a|̇ |a୬||u|⁄  and 

 
 
Figure 4. Joint PDF between torsion and  |𝐚|̇ |𝐚𝐧||𝐮|⁄  in 
log-log scale. 

 
 
Figure 5. Probability density function of |𝐚|̇ |𝐚𝐧||𝐮|⁄ .  

 
 
Figure 3. Joint PDF of torsion and velocity, torsion and acceleration, torsion and derivation of acceleration. 
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the result is shown in Fig. 5, indicating that  PDF of |𝐚|̇ |𝐚𝐧||𝐮|⁄  possesses a tail with a slope of -3 in log-log plot, 
and it corresponds to the slope of PDF of torsion. From Fig. 4 
and Fig. 5, it can be concluded that the behaviour of torsion is 
determined by |𝐚|̇ |𝐚𝐧||𝐮|⁄ . Although the newly defined 
variable |𝐚|̇ |𝐚𝐧||𝐮|⁄  can explain the characteristic of torsion 
very well, |𝐚|̇ |𝐚𝐧||𝐮|⁄  has no (known) physical meaning at all. 
Further investigation is required to find out the physical 
interpretation of |𝐚|̇ |𝐚𝐧||𝐮|⁄ . 

 
 

ENSTROPHY CONDITIONAL STATISTICS 
Geometric nature of Lagrangian particle trajectory is 

intuitively thought to be associated with rotation of fluid. Thus 
the enstrophy-conditioned statistics are investigated as shown 
in Fig. 7. Enstrophy is defined as ଵଶω୧ω୧  and it represents the 
rotation of fluid. Conditional PDFs are obtained when local 
enstrophy is greater than 1, 3, 5 and 10 factors of the mean 
enstrophy for curvature and torsion. Even when the 
conditional factor is 10, the slope of PDF is not changed. 
Oscillatory behaviour of PDF conditional on Ω > 10<Ω>  is 
just due to the lack of data (less than 0.3% of total event). It 
means that a self-similar power law still governs the behaviour 
of geometric variables, and it is strong evidence supporting 
that the exponent decay of PDF for curvature and torsion is 
coming from Gaussian statistics. This phenomenon is also 
observed in two-dimensional simulation (Kadoch et al., 2010). 

However, in physical sense, curvature must contain the 
structure information because it represents the rotation of 
particle trajectories. Since curvature is only defined by 
velocity and acceleration, it can be easily obtained in the 
Eulerian frame. In Fig. 6, colour contour on iso-surfaces 
represent curvature when its value is around the peak of the 
PDF. Compared to the black surfaces which represent vortical 
structure, they seem to have some correlation with each other. 
As we can see from Fig. 7, the peak of PDF of curvature is 

shifted to right with conditional factor increasing. It is 
obvious that extremely high curvature is originated by 
Gaussian characteristics but there is some chance that the 
peak event of curvature is related with turbulent structures. 
Intermittency of acceleration near the structure is well known 
(Lee C. et al, 2005; Lee S. et al, 2005), thus it is expected 
that acceleration and curvature have some relation. 
 
 
CURVATURE AND TORSION OF HEAVY PARTICLE 

Simulations of turbulence with heavy particles are also 
performed to investigate the inertial effect. Inertia of a 
particle is characterized by the Stokes number which is 
defined as the ratio of characteristic time scale of a particle 
and that of fluid. Typically Kolmogorov’s time scale is used 
for the characteristic time scale of fluid. Characteristic time 

 

 
 
Figure 7. Conditional PDF of curvature (upper) and torsion 
(bottom) where Ω is enstrophy. 

 
 

 
 
Figure 6. Vortical structure (black) and iso-surface of 
curvature (color). Color contour represents the magnitude of 
enstrophy on an iso-curvature surface. 
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scale for a heavy particle consists of the density of the particle, 
radius of the particle and fluid viscosity. Thus, the Stokes 
number is defined as below. 
 

 
22 1

9
p pa

St
h h

t r
t m t

º =  (6) 

 
Here ρ୮ is the density of a solid particle, a is radius of a 

particle and μ is the viscosity of the fluid. Small Stokes 
number particles have small inertia and they easily follow the 
motion of fluid. But high Stokes number particles hardly 
change their motion due to high inertia (Jung et al. 2008). 
Sample trajectories near a vortical structure for various Stokes 
numbers are presented in Fig. 8. Stokes number 0 represents 
fluid tracer, and as mentioned above it can be observed that a 
small Stokes number (St=0.1) particle follows the motion of 
fluid while a high Stokes (St=10) particle does not.  Thus it is 
obvious that different Stokes number has different geometric 
characteristics. High curvature represents a steep change of 
the direction of particle motion, and it is clearly shown in Fig. 
8. As the Stokes number increases, the mean value of 
curvature decreases (Table 2) because high Stokes number 
particles change their direction very slowly. Interestingly 
enough, normalized PDFs of various Stokes numbers give 

almost the same distribution  as shown in Fig. 9. As we can 
see in Fig. 8, trajectories of heavy particles are clearly 
different, and normalizing factor is also different, but the 
normalized PDF is not distinguishable. It can be evidence 
supporting that self-similarity of curvature and torsion is 
coming from Gaussian characteristics, not from turbulent 
gradient.  
 
 
SUMMARY AND CONCLUSION 

Characteristics of curvature and torsion are investigated by 
using direct numerical simulation of particle-laden isotropic 
turbulence. PDF of curvature and torsion show rigorous 
exponential tail which indicate self similar behavior. Using a 
Gaussian approximation of the velocity components, -2.5 
slope of curvature can be explained, but there is no plausable 

 
 
Figure 8. Vortical structure (green) and trajectories of 
heavy particle for Stokes number 0 (fluid) to 10. 

 

 
 
Figure 9. PDF of curvature (upper) and torsion (bottom) 
for variou Stokes numbers. 

 

Table 2. Mean value of curvature and torsion for various 
Stokes number 

 
St <|κ|> <|τ|> 

0(fluid) 3.54 1.90 
0.1 3.51 1.85 
1 3.33 1.66 
10 2.42 2.12 
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explanation for torsion’s behavior. Thus we focus on the 
analysis of torsion, and find that the magnitude of torsion is 
mainly determined by the magnitude of |a|̇ |a୬||u|⁄ . But this 
analysis still defies a physical interpretation of torsion. 
Enstrophy conditional PDF and various Stokes number cases 
are also investigated, but they give almost the same result as 
unconditional and Lagrangian fluid cases, and that self-similar 
characteristics of curvature and torsion are not directly related 
with turbulent structures. For heavy particle simulations, we 
obtained the same shape of PDF although normalization 
factors are changed with the Stokes number. From these 
results we can infer that the rigorous exponent behavior of 
curvature and torsion is coming from Gaussian characteristics 
of velocity component. 
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