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ABSTRACT

The wall-normal gradient of Reynolds shear stress, de-
noteddT+/dy", may be thought of as a momentum source
or sink term (depending on its sign). This quantity repréesen
a critical driver of the dynamics of wall-turbulence thateyi
rise to the mean velocity distribution. While there haverbee
a number of studies concerning the statistic9®f" /dyT,
there remains much to discover regarding the flow features
and their interactions that contribute &3 */dy*. The aim
of the present work is to investigate the velocity—voryicior-
relations that comprise the Reynolds shear stress gradient
Results show velocity—vorticity correlations rapidly oge

behaviour up to the location of peak Reynolds shear stress.

Beyond this point, the qualitative behaviour remains samil
throughout the turbulent flow. Interestingly, it was founolr
two-point correlations that the mean Reynolds stress gnadi

at any wall-normal location results from only slight asymme
try in the velocity—vorticity correlations. This suggesitst

the mean momentum balance is extremely sensitive to the
structural features and/or interactions that are respta&r
vorticity transport throughout the turbulent layer.

INTRODUCTION

The complexity of the Navier-Stokes equations poses
well-known obstacles to the theoretical and computational
study of fluid dynamics, particularly in the case of wall-
bounded turbulent flows. For the case of turbulent flows over
surfaces, the Reynolds averaged Navier-Stokes equatiba in
streamwise direction, for nominally two-dimensional flasy,
given by,
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where,pis the pressure is the density of the fluidU,V,W)

and (u,v,w) are the mean and fluctuating velocities along
streamwise, wall-normal and spanwisey(z) directions, re-
spectively. This equation reflects the mean differentiafest
ment of Newton’s second law. For consistency with recent rel
evant publications that have explored the properties ofx&)
denote—1wv, asT. Together with continuity, (1) can be solved
as aregular boundary value problem if, for exampléx, y) is
known, or, equivalently, if a supplementary equation tleat r
latesT toU can be determined. The challenges to solving (1)
constitute the wall-turbulence version of the broadesure
problem of turbulence, and significant research has gooe int
developing models fof .

Herein we consider (1) for the case of fully developed
planar channel flow. This equation can be made dimension-
less by normalizing with a velocity scald; and length scale,
v/Ur (wherev is the kinematic viscosityJ; = /Tw/p is
the friction velocity andry is the wall shear stress). Under
the fully developed condition, the left side of (1) is ideatiy
zero, and the mean non-dimensional differential statemment
dynamics becomes,
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wheres is the channel half-height ardd” is the Karman num-
ber. Weiet al. (2005) empirically documented and theoret-
ically analysed the properties of (2) using direct numérica
simulation (DNS) data. They revealed the existence of afour
layer structure, and determined the Reynolds number gcalin
properties associated with these layers. This layer streii$
defined using the magnitude ordering of the terms in (2). The
dT*/dy* term was shown to be of leading order in three of
the four layers.

The wall-normal variation of the positiow;,, at which
T(= —0v) attains its single maximum value has long been

0= )



the topic of investigation in wall-bounded flows Long &
Chen (1981); Afzal (1982); Sreenivasan & Sahay (1997);
Wei et al. (2005). Of coursedT/dy" also passes through
zero atyy. Consequently, when viewed as a force, the
dT*/dy* term acts like a mean momentum sourceyfor<
Vi (WheredT* /dy* > 0) and a momentum sink for™ >y,
(wheredT ™ /dy"™ < 0). These findings support a view of
the mean effect of turbulent inertia that is distinctly difént
from the long-held view that essentially any positive vabfie
—Tv™ contributes to positive momentum transport (also see
Klewicki et al. (2007); Eyink (2008)). A present aim is to
reveal basic attributes of the velocity and vorticity fiahtier-
actions that underlie the source/sink propertiedf /dy™.

This aim is furthered by noting that, for the given flow,
dT*/dy" is exactly expressed as the difference of velocity
vorticity correlations (see Tennekes & Lumley 1972):

dT+

dy*
wherec (i = x, Y, 2) denote the fluctuating components of vor-
ticity along , y, 2) directions. There are a number of intrigu-
ing features associated with (3). Perhaps most notablais th
the mean effect of turbulent inertia is described by theediff
ence of correlations between field variables that are giiyera
considered to concentrate at disparate wavenumbers ifyeloc
and vorticity, respectively) — and increasingly sodas— o.
This motivates inquiry into which scales of motion deterenin
the scaling behaviours of the terms in (3).

Guala, Hommema & Adrian (2006) computed the wall-
normal derivative of thewv co-spectra in a pipe flow across
the outer region (layer IV). From these measurements they
concluded that, in this region, the very-large scale mation
(VLSMs) contribute significantly. ~ Similarly, McKeon &
Sharma (2011) recently developed a critical layer model for
turbulent pipe flow. In this they treat i + /dy™ term as an
unknown forcing. The results of their model indicate a linea
relationship between the velocity field response and the non
linear mechanism of turbulent. They further found that this
model provided some encouragingly realistic descriptioins
the properties of the turbulent fluctuations — especialbséh
affiliated with the large-scale motions. While this method
holds promise, the underlying physical mechanisms for mo-
mentum transport (affiliated witdT+/dy™) remain hidden
(embedded).

In apparent contrast to the findings of Guala, Hommema
& Adrian (2006) and McKeon & Sharma (2011), studies that
have directly quantified the velocity-vorticity correlatis on
the right of (3) generally indicate that the small-scaler{vo
ticity field) motions are important at essentially all pasits
across the layer, and especially so as the wall is approached
These studies include Klewicki (1989), Crawford and Kar-
niadakis (1997), Rovelstadt (1991) and Ong (1992), all of
which revealed nominally consistent results. Notably,rire
sults of Ong (1992) also indicated that the simultaneously
measured combinations af, and wy are statistically consis-
tent with the lifting of hairpin-like vortices. Rajagopala
Antonia (1993) studied the structure of velocity field agsoc
ated with the spanwise vorticity field and reported cross cor
relations ofva, anduw,. They concluded that the velocity
signature is consistent with the presence of internal dagar
ers, inclined to the wall. Klewicki, Murray & Falco (1994)-in

= Vo, " — Wy " 3)

vestigated th&w, term in the near wall region and concluded
that the existence of positive spanwise vorticity §or > 12,

and that its regular pairing with motions bearing negatiye

is consistent with the presence of a ring-like eddy, but that
other possibilities exist as well. Klewicki & Hirsch (2004)
analyzed combined hotwire/flow visualisation measuresent
near the wall and found thatu, local to near-wall shear lay-
ers produces contributions to the Reynolds stress graitiiant
are attenuated relative to their local mean values.

The above cited studies indicate that the structure of
the mechanisms involved in the balance of terms in (3) in-
volve complex interactions between quantities that spgn si
nificant wavenumber ranges. The evolution of these interac-
tions with increasing™ and increasing™ (at any givend™)
are not well-understood. In connection with this, the beund
ary layer study of Priyadarshaefal. (2007) discovered the
existence of ascale-selection phenomena in which the pri-
mary contributions to the resulting correlation comes from
narrow wavenumber ranges centered about the spectral peaks
of the individual participating velocity and vorticity cgu-
nents. For the near-wall motions this scale-selection is co
sistent with the velocity fieldnduced by concentrated vorti-
cal motions. For the motions away from the wall, Priyadar-
shaneet al. (2007) proposed a model, consistent with the ini-
tial observations of Meinhart & Adrian (1995), in which the
approximately uniform momentum zones (affiliated with the
VLSMs) are intermittently segregated by advecting vottica
fissures. Further analyses show that the scale selection phe
nomena varies in a consistent way with distance from the wall
and provide evidence that scale separation between the rele
vant velocity and vorticity components is a well-defineddan
potentially universal) function of the distance from thellwa
The results of Ganapathisubramani (2008) add furtherfisig
in this regard by exploring the spatial structuredd®* /dy™
using dual-plane PIV measurements. These measurements
were acquired in the outer region of a turbulent boundary
layer (wheredT ™ /dy™ exhibits its momentum sink-like be-
haviour), and revealed that instantaneous source-lik@msot
are correlated with elongated low momentum zones that pos-
sess regions of up-wash embedded within it. These motions
appear to be the strongest in areas where the low momen-
tum zones meander in the spanwise direction. Conversely, th
instantaneous momentum sinks appear to be located within
"lower” speed regions that are embedded within larger high
momentum zones. This investigation also revealed a strong
scale dependence with distance from the wall in the motions
that contribute ta@T ™ /dy™.

As motivated by the above review, herein we explore the
spatial structure of the terms in (3) in a turbulent chanrmsV fl
at " = Re; = 934. Relative to interpretations of the under-
lying physical and mathematical structure, we draw upon the
attached eddy model of Townsend (Townsend (1976); Perry
& Chong (1982); Perry & Marusic (1995)) and the analy-
ses of (2) by Fife and co-workers (Weti al. (2005); Fife et
al. (2005, 2009)). Both of these approaches provide a hier-
archy based description of the underlying motions, whige th
analyses of Fife et al. draw explicit mathematical conmei
between the dynamical self-similarities admitted by (Bg t
mean mechanism of turbulent inertéff, * /dy™, and a hierar-
chical structure that asymptotically scales with distainom
the wall.
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Figure 1. Wall-normal profiles of the terms in (3) &t =
934.dT*/dy™, black line;vey, ™, red line;was, ™, blue line.

RESULTS

In this study, we examine the characteristics of indi-
vidual terms in equation (3) by interrogating the Direct Nu-
merical Simulation (DNS) data of turbulent channel flow at
0" = 934 by del Alamoet al. (2004). Figure 1 shows the
terms in (3). As indicateddT " /dy" exhibits a spatially lo-
calized and large positive peak ngar = 7, passes through
zero (aty;, ~ 60) and exhibits low amplitude negative values
fory* > yi.. Relative to interpreting the source and sink con-
tributions of the motions reflected in figure 1, it is impottem
keep in mind that the area under g™ /dy™ profile is zero,
and thus the total source and sink contributionsTo™ /dy™
are identically equal for alb™.

The velocity-vorticity correlations of figure 1 display a
number of significant features. Tlm+ profile is largely of
a single (negative) sign, exhibiting a distinct peak nglar=
12 and decaying to an amplitude close to zeroyfor> y;,.
Asy" — 5, Wy, " crosses zero and attains a constant value
close to zero but between zero an@1. Conversely, the
v, profile exhibits two distinct peaks (one positive, one
negative) in the near-wall regign” < 20. The positive peak
neary™ = 6 is about half the amplitude of the negative peak
neary"t = 19, while the zero-crossing of this profile is near
yt = 10. This function then decays to a constant negative
value that is close to, but less thajidl” aty™ = 6+. Of
course, as demanded by (3), profileswed, ™ andvey, © cross
each other ay;,.

Relative to its interpretation as a momentum source or
sink, the data of figure 1 indicate that interior to its zero-
crossingvay, " represents a source contribution, and for all
greater distances from the wall it acts like a momentum sink.
Converselyway, ™ acts like a source out to abodt /4, and
like a sink for greateyt. Physically, one can rationally as-
sociate the positive values 8to,™ in and near the viscous
sublayer with the lifting of low speed (positive, fluctuation)
streaks. Foy'™ > 10 the negativay, ™ correlation is simi-
larly associated with the outward transport of motions inggar
negativew; fluctuations — the primary candidate (at least near
the wall) being theheads of hairpin-like vortices. Over the
region in which this profile is negative, thrT)y+ correlation
is consistent with the action by which thegs of hairpin-like

vortices are stretched as the motion evolves away from the

wall. The veracity of these interpretations is clarifiectifier

via examination of the spatial correlations below.

Per the scaling analysis of Tennekes & Lumley (1972),
one can nominally associate tive,™ correlation with the
wall-normal transport oto,, while theWes,* correlation can
be largely associated witthange of scale effects owing to
vortex stretching. In light of the interpretations abovegde
scaling arguments would seem to hold some validity. For ex-
ample, both empirical and theoretical analysis of (2) risvea
that fory™ >y, (or more precisely, at the onset of layer IV
in the four layer structure described by Watial. 2005) the
leading order mean dynamics are increasingly well-desdrib
by a balance between the mean effect of turbulent inertia,
dT*/dy™, and the mean pressure gradientdt. As indi-
cated by figure 1, beyond this position is also whgte; |
exceedsWay, T|. In accord with both the inviscid attached
eddy model, and the direct analysis of (2), this region isrehe
the distance-from-the-wall scaling should be most rapégtly
proximated. Thus, in connection with the analysis of spatia
structure below, these predict that the correlations shbat
gin to exhibit scale dependence on distance from the wall at
yt ~ 2.6yt or~ 80 at the present Reynolds number.
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Figure 2. Streamwise two-point correlation of wall-normal

velocity and spanwise vorticityo, y© =5; o, yt = 10; 0,

yt =165, — yt =60; ——, yt = 324. Solid symbols high-

light value at zero streamwise separation (vVex,).
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Figure 3. Streamwise two-point correlation of spanwise ve-

locity and wall-normal vorticity. Symbols as in figure 2.

Figures 2 and 3 respectively present the inner-normalized

two-point correlations of Zyg, = ool(x)v(x+Ax)+ and
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Figure 4.  Contour map of streamwise two-point correlations  Figure 5. Contour map of streamwise two-point correlations
of wall-normal velocity and spanwise vorticity for a range o of spanwise velocity and wall-normal vorticity.

y*. Dotted lines indicate locations of selected correlations
shown in previous figures.
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Py, = w,(X)W(x+1x)" . Very near the wall, theZy,, cor- 0.008
relation is strictly positive, and has a nearly symmetriagh Opa—e—r=F-g-o. g
aroundAx™ = 0, with the peak value occurring at only a small & -o00s}

positive Ax. With increasing distance from the wall, how- s

ever, this correlation shifts to nearly wholly negativeues, N oo

and develops rather strong asymmetries atfodt = 0. By 0015}
the position ofy;, these asymmetries are strongly diminished,

-0.02
rendering the resulting correlation Akt = 0 the result of

a slight shift in the zero-crossing between two well-defined 0025
peaks (negative then positive)-af\x™ ~ 15. In contrast, the 003 . e o a0
sequence of correlation curves in figure 3 all exhibit a gimil A7

shape, that is characterized by a pronounced negative peak a
positive Ax™. With increasing distance from the wall these
curves gradually develop a distinct positive peak at snegtn
ativeAx". As with theZ\,, correlation, byy, the,%,mj cor-
relation curve is characterized by positive and negatiakpe tions can be clearly seen in these figures. Figure 4 shows
spaced about 3t apart, and displaying only a slight asym-  that the correlation remains positive across the entiesastr
metry relative toAxt = 0. Interestingly, the curves of figures ~ wise length near the wall and becomes negative for the entire
2 and 3 neay;, both display shapes that are respectively con-  streamwise length beyond” ~ 15. The correlation remains
sistent with the correlation expected from the passageoef is ~ negative along the entire length up to a wall-normal locatio
lated vortices bearing;, andw,. Beyondy;; the shape of the ~ of y" ~ 30 beyond which the correlation fdx* > 0 starts

Figure 6. Spanwise two-point correlation of wall-normal ve
locity and spanwise vorticity. Symbols as in figure 2.

two-point correlations changes only marginally, althotigé to becomes positive. Beyond this location, the correlation
overall correlation magnitude decreases with increaging is positive forAx > 0 and negative foAx < 0. This feature
An over-arching attribute of all of the correlations in fig- IS @lso apparent ifZw., correlation where the correlation is

ures 2 and 3 is that the value &x* = 0 (i.e., the value that negative fordx > 0 and is positive foAx < 0 beyondy™ ~ 30.
contributes to the net dynamical effect in equation 2) is les This is consistent with the passage of a isolated vorticas be
than, and regularly significantly less than, the values ef th  INg w; and wy. This signature becomes relatively stronger
maximal value of the spatially delayed correlation. This is (increasing peak values) and larger (extends to largearstre

taken to indicate thatY in a statistical sense, S|gn|f|gamg_ wise distances) with ianeaSing distance from the wall.sThi
tinct dynamical states can be generated by only small mod- IS consistent with Townsend’s attached eddy hypothesis.
ifications to the underlying velocity and vorticity field &t Figures 6 and 7 respectively present the inner-normalized

actions. This notion would seem to find support from re- two-point correlations in the spanwise direction %, =
cent findings in polymer drag reduced channel flows (Kim et ¢y, (z)v(z+ Az)+ and Zww, = wy(z)w(z+Az)+. Aty" =5,
al. 2007; White etal. 2011). the Z\vq, is positive at the origin and falls off to a negative
The wall-normal variation of the streamwise correlation  value, crossing zero diz" ~ 20 and reaching a minimum
can be further explored by stacking the correlations across value (whose magnitude is approximately half of the magni-
all accessible wall-normal locations. Figures 4 and 5 show tude at the origin) ahz"™ ~ 30. The correlation is symmet-
contour maps 0f2yw,(AX",y") and Zwe, (AX",y"), respec- ric aboutAzt = 0. With increasing distance from the wall,
tively. The above-mentioned asymmetries in the correla- the correlation retains its symmetry abdwut™ = 0, however,

4



0.02f
0.01f
oFFT=s=5
-0.01

-0.02-

%W(Q/

-0.03F

-0.041-

-0.051

-0.061

-0.07p

-200 -150 -100 -50 50 100 150 200

0
AZ"
Figure 7. Spanwise two-point correlation of spanwise veloc
ity and wall-normal vorticity. Symbols as in figure 2.

the shape of the correlation curves is significantly alteAgd
y* = 10, the correlation has 5 local maxima/minima. This in-
cludes a negative local peak at the origin, a local posit@akp
atAz" ~ +15 and a local negative peak agaimat ~ +40.
This suggests rapid velocity-vorticity interaction atstivall-
normal location with multiple sign changes in the value of
the correlation. Farther away from the wall, correlation at
the origin remains negative, however, there are only tweroth
positive peaks. The spanwise distance between thesevpositi
peaks increases with increasing wall-normal distanceestgg
ing a scale growth in the spanwise direction with wall-ndrma
location.

As dictated by the 1-D nature of the mean flow, the two-
point correlations in the spanwise direction are in figures 6
and 7 are symmetric abofz™ = 0. Overall, it also revealed
that the spanwise extent of the velocity vorticity corrielas is
significantly smaller than their streamwise extent. Cdesis
with the wall-normal transport of positive), from the sub-
layer (as affiliated with the lifting of streaks), tRye, (z+ Az)
correlation neay™ = 5 exhibits a large positve peak near
Azt = 0 that is symmetrically flanked by negative correla-
tion peak neanz" = +50. When lifted from the wall, posi-
tive wymotions in the sublayer rapidly become negative fluc-
tuations owing to the precipitous drop in the mean vorticity
profile with increasing/™. These (or similar) physics explain
the loss of positive correlation neAzt = 0, while the rapid
development of a negative peak centered alatit= 0 and
flanked by weaker positive peaks is consistent with the out-
ward motion of the heads of hairpin-like vortices. The neg-
ative peak weakens considerably with wall-normal distance
while the flanking positive peaks weaken and spread. As in
figure 3, the near-wall profiles of figure 7 are largely consis-
tent with the flow field local to a wall-normal oriented vortex
bearing either positive or negativs,. By v, however, the
qualitative behavior of the correlation changes; losintlits
strong negative peak near" = 0 and its positive flanks.

All of the data examined thus far are consistent with the
region interior toy;, being populated with organized vortical
motions that arise out of theeservior of spanwise vorticity
that exists in the regioyr™ < 10. As evidenced by the relative
magnitudes of th@ay, ™ andWas, ™ contributions tal T+ /dy™,
this region is marked by intense vortex stretchingagfin
concert with the outward transport af. As mentioned pre-

viously, these observations are consistent with the dycaimi
evolution of hairpin-like vortices (i.e., the outward tegort is
affiliated with the hairpin vortex heads and the stretchirity w
their legs). With the crossing of th@y,* andway,* profiles
aty, the qualitative behaviors of the momentum and vorticity
field mechanisms qualitatively change. Namely, there iga co
respondence between the emergence of the vorticity transpo
contribution in (3) simultaneous with the loss of the vissou
force as a dominant order term in (2).

Under the condition of an inertially dominated mean
flow, the attached eddy model predicts (e.g., see Perry &
Chong (1982); Perry & Marusic (1995)) a distance from
the wall scale dependence in the underlying motions. Addi-
tionally, multi-scale analysis (e.g., Fife et al. (2009pwis
that (2) admits an invariant (universal) form when scale@by
characteristic length that explicitly depends on the deesy
of dT ™ /dy™. This length scale becomes an increasingly lin-
ear function ofy asd* — . From the two-point correlation
data it is possible to define length scales. A streamwiseteng
scale was determined as the spacing of the two-point cerrela
tion crossing the thresholds &f0.33 multiplied by the peak
correlation value at a given wall-normal location. A spasevi
length scale was determined as the spacing between the two-
point correlations as they cross the threshold of 0.33 multi
plied by the minimum correlation value. The results are-plot
ted in figure . The streamwise length scales indicate a clear
linear dependence on wall-distance in both lamb vector com-
ponents. In the spanwise direction, the picture is not (gote
clear, however, it is difficult to uniquely determine a leémgt
scale in this direction since the shapes of the two-point cor
relations are complex and vary rapidly. Also, there is less
overall correlation in the spanwise direction comparechwit
the streamwise direction for large wall-distances. In aase¢
it is evident that the spanwise extent of contributions ® th
velocity—vorticity correlations increases wigtt in a roughly
linear manner.

Conclusions

In this paper, velocity-vorticity correlations are exam-
ined in a turbulent channel flow to understand the influence
of turbulent inertia on the mean-momentum balance. Re-
sults show that the correlations between spanwise velanity
wall-normal vorticity and between wall-normal velocitydan
spanwise vorticity, rapidly change behaviour up to the foca
tion of peak Reynolds shear stress. Beyond this point, the
qualitative behaviour remains similar. The velocity—iaity
two-point correlations in the streamwise direction revady
a slight asymmetry aboutx™ = 0. This suggests that the
mean Reynolds stress gradient at any wall-normal locasion i
a direct result of a slight asymmetry in the characteristitiv
cal motions of the flow. This suggests that the mean momen-
tum balance is sensitive to the structural features and/or i
teractions that are responsible for vorticity transporbtigh-
out the turbulent layer. From a flow control perspectives thi
is a significant result as it implies that a small change to the
asymmetry of the velocity—vorticity correlations couldué
in large changes in the mean flow field, particularly close to
the wall.
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