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ABSTRACT

The wall-normal gradient of Reynolds shear stress, de-
noted∂T+/∂y+, may be thought of as a momentum source
or sink term (depending on its sign). This quantity represents
a critical driver of the dynamics of wall-turbulence that give
rise to the mean velocity distribution. While there have been
a number of studies concerning the statistics of∂T+/∂y+,
there remains much to discover regarding the flow features
and their interactions that contribute to∂T+/∂y+. The aim
of the present work is to investigate the velocity–vorticity cor-
relations that comprise the Reynolds shear stress gradient.
Results show velocity–vorticity correlations rapidly change
behaviour up to the location of peak Reynolds shear stress.
Beyond this point, the qualitative behaviour remains similar
throughout the turbulent flow. Interestingly, it was found from
two-point correlations that the mean Reynolds stress gradient
at any wall-normal location results from only slight asymme-
try in the velocity–vorticity correlations. This suggeststhat
the mean momentum balance is extremely sensitive to the
structural features and/or interactions that are responsible for
vorticity transport throughout the turbulent layer.

INTRODUCTION

The complexity of the Navier-Stokes equations poses
well-known obstacles to the theoretical and computational
study of fluid dynamics, particularly in the case of wall-
bounded turbulent flows. For the case of turbulent flows over
surfaces, the Reynolds averaged Navier-Stokes equation inthe
streamwise direction, for nominally two-dimensional flow,is
given by,
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where,p is the pressure,ρ is the density of the fluid,(U,V,W )
and (u,v,w) are the mean and fluctuating velocities along
streamwise, wall-normal and spanwise (x,y,z) directions, re-
spectively. This equation reflects the mean differential state-
ment of Newton’s second law. For consistency with recent rel-
evant publications that have explored the properties of (1), we
denote−uv, asT . Together with continuity, (1) can be solved
as a regular boundary value problem if, for example,T (x,y) is
known, or, equivalently, if a supplementary equation that re-
latesT to U can be determined. The challenges to solving (1)
constitute the wall-turbulence version of the broaderclosure
problem of turbulence, and significant research has gone into
developing models forT .

Herein we consider (1) for the case of fully developed
planar channel flow. This equation can be made dimension-
less by normalizing with a velocity scale,Uτ and length scale,
ν/Uτ (whereν is the kinematic viscosity,Uτ =

√

τw/ρ is
the friction velocity andτw is the wall shear stress). Under
the fully developed condition, the left side of (1) is identically
zero, and the mean non-dimensional differential statementof
dynamics becomes,

0 =
1

δ+
+

d2U+

dy+2 +
dT +

dy+
(2)

whereδ is the channel half-height andδ+ is the Kármán num-
ber. Weiet al. (2005) empirically documented and theoret-
ically analysed the properties of (2) using direct numerical
simulation (DNS) data. They revealed the existence of a four-
layer structure, and determined the Reynolds number scaling
properties associated with these layers. This layer structure is
defined using the magnitude ordering of the terms in (2). The
dT+/dy+ term was shown to be of leading order in three of
the four layers.

The wall-normal variation of the position,y+
m , at which

T (= −uv) attains its single maximum value has long been
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the topic of investigation in wall-bounded flows Long &
Chen (1981); Afzal (1982); Sreenivasan & Sahay (1997);
Wei et al. (2005). Of course,dT+/dy+ also passes through
zero at y+

m . Consequently, when viewed as a force, the
dT+/dy+ term acts like a mean momentum source fory+ <
y+

m (wheredT+/dy+ > 0) and a momentum sink fory+ > y+
m

(where dT +/dy+ < 0). These findings support a view of
the mean effect of turbulent inertia that is distinctly different
from the long-held view that essentially any positive valueof
−uv+ contributes to positive momentum transport (also see
Klewicki et al. (2007); Eyink (2008)). A present aim is to
reveal basic attributes of the velocity and vorticity field inter-
actions that underlie the source/sink properties ofdT+/dy+.

This aim is furthered by noting that, for the given flow,
dT+/dy+ is exactly expressed as the difference of velocity
vorticity correlations (see Tennekes & Lumley 1972):

dT+

dy+ = vωz
+ −wωy

+ (3)

whereωi (i = x,y,z) denote the fluctuating components of vor-
ticity along (x, y, z) directions. There are a number of intrigu-
ing features associated with (3). Perhaps most notable is that
the mean effect of turbulent inertia is described by the differ-
ence of correlations between field variables that are generally
considered to concentrate at disparate wavenumbers (velocity
and vorticity, respectively) – and increasingly so asδ+ → ∞.
This motivates inquiry into which scales of motion determine
the scaling behaviours of the terms in (3).

Guala, Hommema & Adrian (2006) computed the wall-
normal derivative of theuv co-spectra in a pipe flow across
the outer region (layer IV). From these measurements they
concluded that, in this region, the very-large scale motions
(VLSMs) contribute significantly. Similarly, McKeon &
Sharma (2011) recently developed a critical layer model for
turbulent pipe flow. In this they treat thedT+/dy+ term as an
unknown forcing. The results of their model indicate a linear
relationship between the velocity field response and the non-
linear mechanism of turbulent. They further found that this
model provided some encouragingly realistic descriptionsof
the properties of the turbulent fluctuations – especially those
affiliated with the large-scale motions. While this method
holds promise, the underlying physical mechanisms for mo-
mentum transport (affiliated withdT+/dy+) remain hidden
(embedded).

In apparent contrast to the findings of Guala, Hommema
& Adrian (2006) and McKeon & Sharma (2011), studies that
have directly quantified the velocity-vorticity correlations on
the right of (3) generally indicate that the small-scale (vor-
ticity field) motions are important at essentially all positions
across the layer, and especially so as the wall is approached.
These studies include Klewicki (1989), Crawford and Kar-
niadakis (1997), Rovelstadt (1991) and Ong (1992), all of
which revealed nominally consistent results. Notably, there-
sults of Ong (1992) also indicated that the simultaneously
measured combinations ofωz andωy are statistically consis-
tent with the lifting of hairpin-like vortices. Rajagopalan &
Antonia (1993) studied the structure of velocity field associ-
ated with the spanwise vorticity field and reported cross cor-
relations ofvωz and uωz. They concluded that the velocity
signature is consistent with the presence of internal shearlay-
ers, inclined to the wall. Klewicki, Murray & Falco (1994) in-

vestigated thevωz term in the near wall region and concluded
that the existence of positive spanwise vorticity fory+ > 12,
and that its regular pairing with motions bearing negativeωz

is consistent with the presence of a ring-like eddy, but that
other possibilities exist as well. Klewicki & Hirsch (2004)
analyzed combined hotwire/flow visualisation measurements
near the wall and found thatvωz local to near-wall shear lay-
ers produces contributions to the Reynolds stress gradientthat
are attenuated relative to their local mean values.

The above cited studies indicate that the structure of
the mechanisms involved in the balance of terms in (3) in-
volve complex interactions between quantities that span sig-
nificant wavenumber ranges. The evolution of these interac-
tions with increasingδ+ and increasingy+ (at any givenδ+)
are not well-understood. In connection with this, the bound-
ary layer study of Priyadarshanaet al. (2007) discovered the
existence of ascale-selection phenomena in which the pri-
mary contributions to the resulting correlation comes from
narrow wavenumber ranges centered about the spectral peaks
of the individual participating velocity and vorticity compo-
nents. For the near-wall motions this scale-selection is con-
sistent with the velocity fieldinduced by concentrated vorti-
cal motions. For the motions away from the wall, Priyadar-
shanaet al. (2007) proposed a model, consistent with the ini-
tial observations of Meinhart & Adrian (1995), in which the
approximately uniform momentum zones (affiliated with the
VLSMs) are intermittently segregated by advecting vortical
fissures. Further analyses show that the scale selection phe-
nomena varies in a consistent way with distance from the wall,
and provide evidence that scale separation between the rele-
vant velocity and vorticity components is a well-defined (and
potentially universal) function of the distance from the wall.
The results of Ganapathisubramani (2008) add further insight
in this regard by exploring the spatial structure ofdT+/dy+

using dual-plane PIV measurements. These measurements
were acquired in the outer region of a turbulent boundary
layer (wheredT+/dy+ exhibits its momentum sink-like be-
haviour), and revealed that instantaneous source-like motions
are correlated with elongated low momentum zones that pos-
sess regions of up-wash embedded within it. These motions
appear to be the strongest in areas where the low momen-
tum zones meander in the spanwise direction. Conversely, the
instantaneous momentum sinks appear to be located within
”lower” speed regions that are embedded within larger high
momentum zones. This investigation also revealed a strong
scale dependence with distance from the wall in the motions
that contribute todT+/dy+.

As motivated by the above review, herein we explore the
spatial structure of the terms in (3) in a turbulent channel flow
at δ+ = Reτ = 934. Relative to interpretations of the under-
lying physical and mathematical structure, we draw upon the
attached eddy model of Townsend (Townsend (1976); Perry
& Chong (1982); Perry & Marusic (1995)) and the analy-
ses of (2) by Fife and co-workers (Weiet al. (2005); Fife et
al. (2005, 2009)). Both of these approaches provide a hier-
archy based description of the underlying motions, while the
analyses of Fife et al. draw explicit mathematical connections
between the dynamical self-similarities admitted by (2), the
mean mechanism of turbulent inertia,dT+/dy+, and a hierar-
chical structure that asymptotically scales with distancefrom
the wall.
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Figure 1. Wall-normal profiles of the terms in (3) atδ+ =

934.dT+/dy+, black line;vωz
+, red line;wωy

+, blue line.

RESULTS

In this study, we examine the characteristics of indi-
vidual terms in equation (3) by interrogating the Direct Nu-
merical Simulation (DNS) data of turbulent channel flow at
δ+ = 934 by del Alamoet al. (2004). Figure 1 shows the
terms in (3). As indicated,∂T+/∂y+ exhibits a spatially lo-
calized and large positive peak neary+ = 7, passes through
zero (aty+

m ≈ 60) and exhibits low amplitude negative values
for y+ > y+

m . Relative to interpreting the source and sink con-
tributions of the motions reflected in figure 1, it is important to
keep in mind that the area under thedT +/dy+ profile is zero,
and thus the total source and sink contributions todT +/dy+

are identically equal for allδ+.
The velocity-vorticity correlations of figure 1 display a

number of significant features. Thewωy
+ profile is largely of

a single (negative) sign, exhibiting a distinct peak neary+ =
12 and decaying to an amplitude close to zero fory+ > y+

m .
As y+ → δ+, wωy

+ crosses zero and attains a constant value
close to zero but between zero and 1/δ+. Conversely, the
vωz

+ profile exhibits two distinct peaks (one positive, one
negative) in the near-wall regiony+ < 20. The positive peak
neary+ = 6 is about half the amplitude of the negative peak
neary+ = 19, while the zero-crossing of this profile is near
y+ = 10. This function then decays to a constant negative
value that is close to, but less than 1/δ+ at y+ = δ+. Of
course, as demanded by (3), profiles ofwωy

+ andvωz
+ cross

each other aty+
m .

Relative to its interpretation as a momentum source or
sink, the data of figure 1 indicate that interior to its zero-
crossingvωz

+ represents a source contribution, and for all
greater distances from the wall it acts like a momentum sink.
Conversely,wωy

+ acts like a source out to aboutδ+/4, and
like a sink for greatery+. Physically, one can rationally as-
sociate the positive values ofvωz

+ in and near the viscous
sublayer with the lifting of low speed (positiveωz fluctuation)
streaks. Fory+ & 10 the negativevωz

+ correlation is simi-
larly associated with the outward transport of motions bearing
negativeωz fluctuations – the primary candidate (at least near
the wall) being theheads of hairpin-like vortices. Over the
region in which this profile is negative, thewωy

+ correlation
is consistent with the action by which thelegs of hairpin-like
vortices are stretched as the motion evolves away from the
wall. The veracity of these interpretations is clarified further

via examination of the spatial correlations below.
Per the scaling analysis of Tennekes & Lumley (1972),

one can nominally associate thevωz
+ correlation with the

wall-normal transport ofωz, while thewωy
+ correlation can

be largely associated withchange of scale effects owing to
vortex stretching. In light of the interpretations above, these
scaling arguments would seem to hold some validity. For ex-
ample, both empirical and theoretical analysis of (2) reveals
that for y+ > y+

m (or more precisely, at the onset of layer IV
in the four layer structure described by Weiet al. 2005) the
leading order mean dynamics are increasingly well-described
by a balance between the mean effect of turbulent inertia,
dT+/dy+, and the mean pressure gradient, 1/δ+. As indi-
cated by figure 1, beyond this position is also where|vωz

+|
exceeds|wωy

+|. In accord with both the inviscid attached
eddy model, and the direct analysis of (2), this region is where
the distance-from-the-wall scaling should be most rapidlyap-
proximated. Thus, in connection with the analysis of spatial
structure below, these predict that the correlations should be-
gin to exhibit scale dependence on distance from the wall at
y+ ≃ 2.6

√
δ+ or ≃ 80 at the present Reynolds number.
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Figure 2. Streamwise two-point correlation of wall-normal
velocity and spanwise vorticity.◦, y+ = 5; ◦, y+ = 10; �,
y+ = 16.5; —, y+ = 60;−−, y+ = 324. Solid symbols high-
light value at zero streamwise separation (i.e.,vωz).
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Figure 3. Streamwise two-point correlation of spanwise ve-
locity and wall-normal vorticity. Symbols as in figure 2.

Figures 2 and 3 respectively present the inner-normalized

two-point correlations of Rvωz = ωz(x)v(x+∆x)
+

and
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Figure 4. Contour map of streamwise two-point correlations
of wall-normal velocity and spanwise vorticity for a range of
y+. Dotted lines indicate locations of selected correlations
shown in previous figures.

Rwωy = ωy(x)w(x+∆x)
+

. Very near the wall, theRvωz cor-
relation is strictly positive, and has a nearly symmetric shape
around∆x+ = 0, with the peak value occurring at only a small
positive ∆x. With increasing distance from the wall, how-
ever, this correlation shifts to nearly wholly negative values,
and develops rather strong asymmetries about∆x+ = 0. By
the position ofy+

m these asymmetries are strongly diminished,
rendering the resulting correlation at∆x+ = 0 the result of
a slight shift in the zero-crossing between two well-defined
peaks (negative then positive) at±∆x+ ≃ 15. In contrast, the
sequence of correlation curves in figure 3 all exhibit a similar
shape, that is characterized by a pronounced negative peak at
positive ∆x+. With increasing distance from the wall these
curves gradually develop a distinct positive peak at small neg-
ative∆x+. As with theRvωz correlation, byy+

m theRwωy cor-
relation curve is characterized by positive and negative peaks
spaced about 30∆x+ apart, and displaying only a slight asym-
metry relative to∆x+ = 0. Interestingly, the curves of figures
2 and 3 neary+

m both display shapes that are respectively con-
sistent with the correlation expected from the passage of iso-
lated vortices bearingωz andωy. Beyondy+

m the shape of the
two-point correlations changes only marginally, althoughthe
overall correlation magnitude decreases with increasingy+.

An over-arching attribute of all of the correlations in fig-
ures 2 and 3 is that the value at∆x+ = 0 (i.e., the value that
contributes to the net dynamical effect in equation 2) is less
than, and regularly significantly less than, the values of the
maximal value of the spatially delayed correlation. This is
taken to indicate that, in a statistical sense, significantly dis-
tinct dynamical states can be generated by only small mod-
ifications to the underlying velocity and vorticity field inter-
actions. This notion would seem to find support from re-
cent findings in polymer drag reduced channel flows (Kim et
al. 2007; White et al. 2011).

The wall-normal variation of the streamwise correlation
can be further explored by stacking the correlations across
all accessible wall-normal locations. Figures 4 and 5 show
contour maps ofRvωz(∆x+,y+) andRwωy(∆x+,y+), respec-
tively. The above-mentioned asymmetries in the correla-
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Figure 5. Contour map of streamwise two-point correlations
of spanwise velocity and wall-normal vorticity.
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Figure 6. Spanwise two-point correlation of wall-normal ve-
locity and spanwise vorticity. Symbols as in figure 2.

tions can be clearly seen in these figures. Figure 4 shows
that the correlation remains positive across the entire stream-
wise length near the wall and becomes negative for the entire
streamwise length beyondy+ ≈ 15. The correlation remains
negative along the entire length up to a wall-normal location
of y+ ≈ 30 beyond which the correlation for∆x+ > 0 starts
to becomes positive. Beyond this location, the correlations
is positive for∆x > 0 and negative for∆x < 0. This feature
is also apparent inRwωy correlation where the correlation is
negative for∆x > 0 and is positive for∆x < 0 beyondy+ ≈ 30.
This is consistent with the passage of a isolated vortices bear-
ing ωz and ωy. This signature becomes relatively stronger
(increasing peak values) and larger (extends to larger stream-
wise distances) with increasing distance from the wall. This
is consistent with Townsend’s attached eddy hypothesis.

Figures 6 and 7 respectively present the inner-normalized
two-point correlations in the spanwise direction ofRvωz =

ωz(z)v(z+∆z)
+

andRwωy = ωy(z)w(z+∆z)
+

. At y+ = 5,
the Rvωz is positive at the origin and falls off to a negative
value, crossing zero at∆z+ ≈ 20 and reaching a minimum
value (whose magnitude is approximately half of the magni-
tude at the origin) at∆z+ ≈ 30. The correlation is symmet-
ric about∆z+ = 0. With increasing distance from the wall,
the correlation retains its symmetry about∆z+ = 0, however,
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Figure 7. Spanwise two-point correlation of spanwise veloc-
ity and wall-normal vorticity. Symbols as in figure 2.

the shape of the correlation curves is significantly altered. At
y+ = 10, the correlation has 5 local maxima/minima. This in-
cludes a negative local peak at the origin, a local positive peak
at ∆z+ ≃±15 and a local negative peak again at∆z+ ≃±40.
This suggests rapid velocity-vorticity interaction at this wall-
normal location with multiple sign changes in the value of
the correlation. Farther away from the wall, correlation at
the origin remains negative, however, there are only two other
positive peaks. The spanwise distance between these positive
peaks increases with increasing wall-normal distance suggest-
ing a scale growth in the spanwise direction with wall-normal
location.

As dictated by the 1-D nature of the mean flow, the two-
point correlations in the spanwise direction are in figures 6
and 7 are symmetric about∆z+ = 0. Overall, it also revealed
that the spanwise extent of the velocity vorticity correlations is
significantly smaller than their streamwise extent. Consistent
with the wall-normal transport of positiveωz from the sub-
layer (as affiliated with the lifting of streaks), theRvωz(z+∆z)
correlation neary+ = 5 exhibits a large positve peak near
∆z+ = 0 that is symmetrically flanked by negative correla-
tion peak near∆z+ = ±50. When lifted from the wall, posi-
tive ωzmotions in the sublayer rapidly become negative fluc-
tuations owing to the precipitous drop in the mean vorticity
profile with increasingy+. These (or similar) physics explain
the loss of positive correlation near∆z+ = 0, while the rapid
development of a negative peak centered about∆z+ = 0 and
flanked by weaker positive peaks is consistent with the out-
ward motion of the heads of hairpin-like vortices. The neg-
ative peak weakens considerably with wall-normal distance,
while the flanking positive peaks weaken and spread. As in
figure 3, the near-wall profiles of figure 7 are largely consis-
tent with the flow field local to a wall-normal oriented vortex
bearing either positive or negativeωy. By y+

m , however, the
qualitative behavior of the correlation changes; losing both its
strong negative peak near∆z+ = 0 and its positive flanks.

All of the data examined thus far are consistent with the
region interior toy+

m being populated with organized vortical
motions that arise out of thereservior of spanwise vorticity
that exists in the regiony+ . 10. As evidenced by the relative
magnitudes of thevωz

+ andwωy
+ contributions todT+/dy+,

this region is marked by intense vortex stretching ofωy in
concert with the outward transport ofωz. As mentioned pre-

viously, these observations are consistent with the dynamical
evolution of hairpin-like vortices (i.e., the outward transport is
affiliated with the hairpin vortex heads and the stretching with
their legs). With the crossing of thevωz

+ andwωy
+ profiles

aty+
m , the qualitative behaviors of the momentum and vorticity

field mechanisms qualitatively change. Namely, there is a cor-
respondence between the emergence of the vorticity transport
contribution in (3) simultaneous with the loss of the viscous
force as a dominant order term in (2).

Under the condition of an inertially dominated mean
flow, the attached eddy model predicts (e.g., see Perry &
Chong (1982); Perry & Marusic (1995)) a distance from
the wall scale dependence in the underlying motions. Addi-
tionally, multi-scale analysis (e.g., Fife et al. (2009) shows
that (2) admits an invariant (universal) form when scaled bya
characteristic length that explicitly depends on the decayrate
of dT+/dy+. This length scale becomes an increasingly lin-
ear function ofy asδ+ → ∞. From the two-point correlation
data it is possible to define length scales. A streamwise length
scale was determined as the spacing of the two-point correla-
tion crossing the thresholds of±0.33 multiplied by the peak
correlation value at a given wall-normal location. A spanwise
length scale was determined as the spacing between the two-
point correlations as they cross the threshold of 0.33 multi-
plied by the minimum correlation value. The results are plot-
ted in figure . The streamwise length scales indicate a clear
linear dependence on wall-distance in both lamb vector com-
ponents. In the spanwise direction, the picture is not quiteso
clear, however, it is difficult to uniquely determine a length
scale in this direction since the shapes of the two-point cor-
relations are complex and vary rapidly. Also, there is less
overall correlation in the spanwise direction compared with
the streamwise direction for large wall-distances. In any case,
it is evident that the spanwise extent of contributions to the
velocity–vorticity correlations increases withy+ in a roughly
linear manner.

Conclusions

In this paper, velocity-vorticity correlations are exam-
ined in a turbulent channel flow to understand the influence
of turbulent inertia on the mean-momentum balance. Re-
sults show that the correlations between spanwise velocityand
wall-normal vorticity and between wall-normal velocity and
spanwise vorticity, rapidly change behaviour up to the loca-
tion of peak Reynolds shear stress. Beyond this point, the
qualitative behaviour remains similar. The velocity–vorticity
two-point correlations in the streamwise direction revealonly
a slight asymmetry about∆x+ = 0. This suggests that the
mean Reynolds stress gradient at any wall-normal location is
a direct result of a slight asymmetry in the characteristic vorti-
cal motions of the flow. This suggests that the mean momen-
tum balance is sensitive to the structural features and/or in-
teractions that are responsible for vorticity transport through-
out the turbulent layer. From a flow control perspective, this
is a significant result as it implies that a small change to the
asymmetry of the velocity–vorticity correlations could result
in large changes in the mean flow field, particularly close to
the wall.
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