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36 Avenue Guy de Collongues, 69134 Ecully Cedex, France

wouter.bos@ec-lyon.fr

Marie Farge
LMD-IPSL-CNRS

Ecole Normale Supérieure
24 rue Lhomond, 75231 Paris Cedex 5, France

farge@lmd.ens.fr

ABSTRACT

The helical properties of five prototypical turbulent flows
are investigated: statistically steady forced isotropic turbu-
lence, growing sheared turbulence, growing rotating sheared
turbulence with rotation ratio f /S = +0.5, decaying rotating
sheared turbulence with f /S = +5, and decaying rotating tur-
bulence. These five turbulent flows were originally studied
using direct numerical simulations. It was found that flows
with growing turbulent kinetic energy and turbulent motion at
large scales show a maximum in the velocity helicity probabil-
ity distribution functions (PDFs) at hu = 0, corresponding to a
trend to two-dimensionalization of the flow with vorticity and
velocity being perpendicular. Flows with decaying turbulent
kinetic energy and turbulent motion at small scales, however,
show a maximum in the velocity helicity PDFs at hu = ±1,
indicating a preference for helical motion with alignment or
anti-alignment of vorticity and velocity. The PDFs of vortic-
ity helicity hω always assume a maximum at hω =±1 for all
cases. Joint PDFs of relative velocity helicity and relative vor-
ticity helicity show that hu and hω tend to have the same sign
for all flows considered here, indicating that vorticity helicity
diminishes velocity helicity.

INTRODUCTION

Helicity Hu = uuu ···ωωω is defined as the scalar product of ve-
locity uuu and vorticity ωωω === ∇∇∇×××uuu and it is an important topo-
logical quantity to characterize turbulence. Relative helicity
hu = Hu/(|uuu||ωωω |) describes the cosine of the angle between
velocity and vorticity vectors. It allows to distinguish between
helical structures (swirling motion) and non-helical structures.
For helical structures, hu has values of ±1, which correspond
to alignment or anti-alignment of vorticity and velocity, re-
spectively. For non-helical structures, two-dimensionalization
of the flow occurs. When vorticity is perpendicular to veloc-
ity, the velocity helicity hu assumes a value hu = 0.

Helicity is observed in atmospheric flows and it is known
to play an important role in the evolution of tornadoes (Mof-
fatt and Tsinober, 1992). Helicity is also of importance in
the magneto-hydrodynamics of conducting fluids, in partic-
ular for the dynamo effect (Pouquet et al., 1976). Helicity
furthermore plays a crucial role in the problem of relaxation
to magnetostatic equilibrium. This is a problem of central
importance in the context of thermonuclear fusion plasmas
(Moffatt and Tsinober, 1992). Historically, helicity was first
introduced by Betchov (1961), Moreau (1961), and Moffatt
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Figure 1. PDFs of relative velocity helicity hu for the differ-
ent turbulent flows.

(1969). Helicity allows a topological interpretation of the
linkages of vortex lines present in the flow. The mean he-
licity 〈Hu〉 =

∫
Hud3x vanishes if the flow possesses a mirror

symmetry property. Large helicity leads to the reduction of
nonlinearity and consequently to the reduction of dissipation.
The helical properties of isotropic turbulence and their rele-
vance to vortical structures have been examined in the past. A
comprehensive review on helicity can be found in Moffatt and
Tsinober (1992) as well as in Sagaut and Cambon (2008).

Just as energy, the mean velocity helicity 〈Hu〉 satisfies a
balance equation:

d
dt
〈Hu〉=−2ν〈Hω 〉+ 〈F〉 (1)

Here, Hω = ωωω ··· (((∇∇∇×××ωωω))) is the vorticity helicity, F = 2 fff ···ωωω
accounts for the forcing term fff in the momentum equation,
and ν is the kinematic viscosity of the fluid. Contrary to
energy, neither velocity helicity Hu nor vorticity helicity Hω
are positive definite quantities. Therefore, the term involving
vorticity helicity in equation (1) can only be interpreted as a
velocity helicity dissipation term, if 〈Hu〉 and 〈Hω 〉 have the
same sign. Considering isotropic turbulence, Sanada (1993)
conjectured that 〈Hu〉 and 〈Hω 〉 indeed have the same sign and
thus the vorticity helicity term acts as a dissipative mechanism
for velocity helicity. Further evidence supporting Sanada’s
conjecture was given more recently by Galanti and Tsinober
(2006) for isotropic turbulence with helical or non-helical
forcing.

In the present study, the helicity properties of five flows
are investigated: statistically steady forced isotropic turbu-
lence (Vincent and Meneguzzi, 1991), growing sheared tur-
bulence, growing rotating sheared turbulence with rotation ra-
tio f /S = +0.5, decaying rotating sheared turbulence with
f /S = +5 (Jacobitz et al., 2008; Jacobitz et al., 2010), and
decaying rotating turbulence (Liechtenstein et al., 2005). All
these flows were studied using direct numerical simulations
and details can be found in the respective publications. These
flows initially do not contain mean helicity and they remain
free from it. However, this does not concern the local helicity
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Figure 2. PDFs of relative vorticity helicity hω for the dif-
ferent turbulent flows.

and regions with strong helicity can exist in a flow free from
mean helicity.

The purpose of this study is to answer three questions:
First, what are the helical properties of the five turbulent flows
and are the helical properties related to the fate, growth or de-
cay, of the turbulence? Second, do helical properties vary with
the scale of the turbulent motion? This question is addressed
using a wavelet-based decomposition of the turbulent motion
into different scales as proposed in Yoshimatsu et al. (2009).
Third, does vorticity helicity hω act to diminish velocity he-
licity hu?

RESULTS
In this section, the helical properties of statistically

steady forced isotropic turbulence, growing sheared turbu-
lence, growing rotating sheared turbulence with rotation ra-
tio f /S = +0.5, decaying rotating sheared turbulence with
f /S = +5, and decaying rotating turbulence are presented
first. An overview of the different flows is given in table 1. All
flows were studied using direct numerical simulations based
on a Fourier-pseudospectral method at a resolution of 2563

grid points. Then, a wavelet-based scale-dependent analysis
considers helicity at different scales of turbulent motion. Fi-
nally, the role of vorticity helicity as a dissipative mechanism
for velocity helicity is investigated.

Helical Properties of the Flows
Figure 1 shows the probability distribution functions

(PDFs; estimated from a histogram with 100 equidistant bins)
of relative velocity helicity hu for the five flows. The two cases
with growing turbulent kinetic energy, sheared turbulence and
rotating sheared turbulence with f /S = +0.5, exhibit a max-
imum at hu = 0, corresponding to a preference for velocity
and vorticity to be perpendicular, i.e., two-dimensionalization
of the flows. The two cases of statistically steady forced
isotropic turbulence and decaying rotating sheared turbulence
with f /S = +5 are characterized by maxima at hu =±1, cor-
responding to a preference for alignment or anti-alignment of
velocity and vorticity, i.e., helical motion. The decaying rotat-
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Figure 3. Scale-dependent PDFs of velocity helicity hu j (left column) and PDFs of vorticity helicity hω j (right column) for forced
isotropic turbulence (1st row), sheared turbulence (2nd row), growing sheared rotating turbulence with f /S = +0.5 (3rd row),
decaying sheared rotating turbulence with f /S = +5 (4th row), and rotating turbulence (5th row).
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Table 1. Properties of the turbulent flows considered in this study.

Case Source Reλ K Z fate

Forced Isotropic Turbulence Vincent and Meneguzzi (1991) 150 1.35813224 151.630432 steady

Sheared Turbulence Jacobitz et al. (2008) 72 1.15730989 175.995407 growth

Rotating Sheared f/S = +0.5 Jacobitz et al. (2008) 100 1.78920579 217.145401 growth

Rotating Sheared f/S = +5 Jacobitz et al. (2008) 35 0.228543386 28.3713894 decay

Rotating Turbulence Liechtenstein et al. (2005) 50 0.0620917268 2.37317228 decay
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Figure 4. PDFs of the product of velocity uuu and bi-vorticity
∇∇∇×××∇∇∇×××uuu for the different turbulent flows.

ing turbulence case shows an approximately even distribution
of relative velocity helicity. It appears that growing turbulence
has a tendency to two-dimensionalization of the flow, while
decaying turbulence is characterized by helical motion.

The corresponding PDFs of relative vorticity helicity hω
are given in figure 2. In contrast to the relative velocity he-
licity hu, the relative vorticity helicity hω shows pronounced
maxima at hω =±1 for all five flows and does not aid with a
further classification of the fate of the flows.

Scale-Dependent Analysis
The scale-dependent velocity helicity, proposed in

Yoshimatsu et al. (2009), is defined as Hu j = u j ·ωωω j , where
u j and ωωω j are velocity and vorticity at scale 2− j , respectively.
For j 6= 0, Hu j is a property of the flow which is invariant to
Galilean transformations, though Hu itself is not. The scale
contributions of velocity u j (and similarly for vorticity and
its curl) are obtained by decomposing u = (u1,u2,u3), given
at resolution N = 23J with J = 8, into an orthogonal wavelet
series

u(x) = ∑
λ

ũλ ψλ (x) (2)

where the multi-index λ = ( j, i,µ) denotes scale j (with 0 ≤
j ≤ J− 1), spatial position i (with 23 j values for each j and

µ) and seven spatial directions µ = 1, ...,7 of each wavelet
ψλ (Farge, 1992). Orthogonality implies that the wavelet co-
efficients are given by ũλ = 〈u,ψλ 〉, where 〈·, ·〉 denotes the
L2-inner product. The coefficients measure fluctuations of u
at scale 2− j and around position i/2 j for each of the 7 possible
directions. Fixing j and summing only over i and µ in eq.(2)
the contribution of u at scale j is obtained and by construction
we have u = ∑ j u j .

The scale-dependent relative velocity helicity is defined
by hu j = Hu j /(|u j||ω j|). Analogously, the scale-dependent
vorticity helicity Hω j = ωωω j · (∇×ωωω) j and the correspond-
ing relative quantity hω j can be obtained. The above scale-
dependent quantities will help to gain a better understanding
of geometrical statistics at different scales of motion and in
the following we analyze the different turbulent flows.

PDFs of scale-dependent relative velocity helicity hu j

(left column) and relative vorticity helicity hω j (right column)
are presented in figure 3 for the different turbulent flows stud-
ied here. Note that scales j = 1 and j = 2 are not shown due
to the small number of wavelet modes at those scales.

For growing sheared turbulence, the scale-dependent rel-
ative velocity helicity PDFs of the larger scales with j = 3,4,
and 5 show a maximum at hu j = 0, corresponding to a trend
to two-dimensionalization of the flow at large scales. The
smaller scales with j = 6 and 7 have maxima at hu j = ±1,
corresponding to a trend to helical motion at small scales.
For growing rotating sheared turbulence with f /S = +0.5 and
for statistically steady isotropic turbulence, an identical re-
sult is obtained, but the preference for two-dimensionalization
at large scales and helical motion at small scales is even
more pronounced for strongly growing rotating sheared tur-
bulence and less pronounced for statistically steady forced
isotropic turbulence. The scale-dependent relative vorticity
helicity PDFs of these three cases also yield a maximum at
hω j = 0 for the larger scales with j = 3,4 and 5 and maxima
at hω j = ±1 at the smaller scales j = 6 and 7. For decaying
rotating turbulence and decaying rotating sheared turbulence
with f /S = +5, the scale-dependent velocity helicity PDFs
show maxima for hu j = ±1 at all scales j > 3. Similarly, the
scale-dependent relative vorticity helicity PDFs yield maxima
for hω j =±1 for all scales considered.

Dissipation of Velocity Helicity
For isotropic turbulence, Sanada (1993) discussed the

balance equation for total helicity (1) and conjectured that
the dissipation of total velocity helicity is determined by total
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vorticity helicity. As neither total velocity helicity nor total
vorticity helicity are positive definite, it is required that both
quantities assume the same sign for this to be true. Thus this
sign correlation strongly impacts the dynamics of helicity.

As shown in figure 4, the PDF of the cosine of the an-
gle between velocity uuu and −−−∇∇∇222uuu === ∇∇∇×××∇∇∇××× uuu indicates a
much larger probability that the two vectors are aligned. This
can also be directly seen from the fact that the mean value
is positive −〈uuu ···∇∇∇222uuu〉 = 〈ωωω ···ωωω〉 > 0. This implies the ten-
dency that Hu = uuu ···ωωω and Hω = −−−∇∇∇222uuu ···ωωω have the same
sign (Sanada, 1993). This tendency also holds for the relative
helicities (Galanti and Tsinober, 2006).

To verify this conjecture for the five different flows con-
sidered here, the joint PDFs of relative velocity helicity hu
with relative vorticity helicity hω are shown in figure 5. For
all cases a strong correlation of the signs of the two helicities
is indeed observed. This sign correlation thus supports that
vorticity helicity diminishes velocity helicity. In addition, the
joint PDFs are approximately symmetric along their diagonal
axis for all cases with decaying turbulent kinetic energy. This
symmetry is broken for the cases with growing turbulent ki-
netic energy.

CONCLUSIONS
To summarize, helical properties of five prototypical tur-

bulent flows were investigated. For the PDFs of velocity
helicity hu, a maximum at hu = 0 was observed for cases
with growing turbulent kinetic energy, while a maximum at
hu = ±1 was found for decaying cases. Thus, for grow-
ing cases, the PDFs of velocity helicity hu indicate a larger
probability that velocity and vorticity are perpendicular, corre-
sponding to two-dimensionalization of the flow. For decaying
cases, the PDFs of velocity helicity hu show a preference for
the alignment or anti-alignment of velocity and vorticity, cor-
responding to helical flow. For all cases, however, the PDF of
vorticity helicity hω always assumes a maximum at hω =±1.

Scale-dependent PDFs of velocity helicity show that
large scales tend to have a maximum at hu j = 0, correspond-
ing to two-dimensionalization of the flows, while small scales
tend to show a maximum at hu j =±1, corresponding to heli-
cal motion. These observations hold for all types of turbulent
flows considered in this study.

Joint PDFs of relative velocity helicity and relative vor-
ticity helicity show a high probability that hu and hω have the
same sign even locally. Thus, vorticity helicity tends to dimin-
ish velocity helicity for the different homogeneous turbulent
flows studied here.
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Figure 5. Joint PDFs of velocity helicity hu and vorticity helicity hω for forced isotropic turbulence (top left), sheared turbulence
(top right), growing rotating sheared turbulence with f /S = +0.5 (center left), decaying rotating sheared turbulence with f /S = +5
(center right), rotating turbulence (bottom left), and random fields (bottom right).
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