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ABSTRACT 
It has been known for a few decades that pure inner 

scaling does not collapse the characteristic parameters of 
streamwise stress such as peak value and peak position. 
Herein we show that this is also true for the Reynolds shear 
stress and the two other normal stresses. Even more, an 
analysis of the wall values of streamwise skewness and 
flatness indicates Kármán number dependencies of these 
parameters. Employing the alternative mixed scaling, which is 
based on u

2-ue
 instead on u

, these dependencies are 
removed. Based on the general finding that both inner and 
outer scales are relevant throughout the entire wall layer, a 
model for the fluctuations is proposed. From this model all 
stresses and higher-order moments can be built up. 

 
 

INTRODUCTION 
Are there differences between confined and semi-confined 

canonical turbulent flows? Between boundary layers on flat 
plates (ZPG TBL) and flows in straight channels (CHF) or 
circular pipes (PF)? And if so, what are those differences? Is it 
just that some parameters such as peak positions and values of 
Reynolds and normal stresses are different, or are there 
different physical mechanism underlying the dissimilarities? 
To answer these questions is most important for understanding 
wall-bounded flows in general, to find proper scaling laws, 
and to find correct model assumptions that can be applied, e.g. 
in numerical simulations. 

The questions raised above—but not the answers—have 
been known for over a decade (Nieuwstadt & Bradshaw, 
1997), but have attained intensified interest very recently 
(Buschmann & Gad-el-Hak, 2010; Jimenez et al., 2010; 
Marusic et al., 2010). Herein we extend our previous work on 
the subject. Specifically, we are looking for all peak values 
and positions of the stresses of ZPG TBL, and CHF and PF at 
moderate Kármán numbers. For that purpose we have 
compiled an extensive database1  of DNS and experimental 
results.  

                                            
1  For details and the symbol colors employed in Fig. 1, see   

Buschmann & Gad-el-Hak (2010). 

Simple analysis reveals the differences of the flow types 
under consideration. Without claim of completeness, the two 
most distinct disparities are: 

 While confined flows are parallel in the mean, the 
streamlines of ZPG TBL are divergent. 

 Turbulent boundary layers do not experience the 
influence of an opposite wall, and conversely CHF and 
PF do not have a free stream. 

However, there might even be differences between CHF and 
PF. While in CHF, the space for turbulence to be transported 
and to develop is constant along the wall-normal coordinate, 
that space is successively reduced to zero toward the 
centerline in PF. This may lead to more and intense 
interactions between turbulent structures in the latter case. 

 
 

CLASSICAL INNER SCALING 
Figure 1 shows peak positions (left) and peak values 

(right) of Reynolds and normal stresses versus Kármán 
number (+ =  u/). Due to the minute differences to be 
expected we have used only DNS results for precision. 
However, the results that are reported herein are mainly 
confirmed by carefully selected experimental data. Some of 
the plots clearly show two branches, one for ZPG TBL (semi-
confined flow) and one for CHF and PF (both confined flow). 
The separate CHF/PF-branches are nowhere split into two 
sub-branches, which would indicate less significant 
differences between CHF and PF. The identified differences 
are marked with rose arrows or bands. While the arrows 
indicate a growing departure between the two branches, the 
bands indicate a more or less constant difference, independent 
of the Kármán number. Linear-linear, semi-logarithmic and 
log-log plots were tested. In case that one of the plot types 
leads to linearly-ordered data, this special plot was chosen for 
Fig. 1, otherwise semi-log plots were selected. This strategy 
confirmed that the peak positions of the Reynolds shear stress 
(Fig. 1a) and the streamwise stress (Fig. 1d) have a power-law 
dependency on the Kármán number.  
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Figure 1: Peak positions (left) and peak values (right) of turbulent stresses. From top to bottom: Reynolds shear-stress, 
streamwise stress, wall-normal stress, and cross-flow stress. Rose arrows and band indicate regions with increasing 
differences between ZPG TBL and CHF & PF. Those arrows and bands indicate differences between confined and semi-
confined flows. Black bold-line marks lower border of fully-developed turbulent flow at +=200.
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The differences in the stresses should be more visible in 
the v’-fluctuations because of their strong connection with 
wall-normal variation of the mean static pressure. And indeed 
an increasing difference of the peak position of the wall-
normal stress is found in Fig. 1. Interestingly enough the peak 
position of normal-stress is found to be in close local 
coincidence with the outer edge of the logarithmic region of 
the mean-velocity profile. The difference between the vv-peak 
values is nearly Kármán number independent in the analyzed 
+-range (Fig. 1f). The same is true for peak position and 
value of the Reynolds stress (Figs. 1a, b). The only stress that 
does not show any differences in either the peak position or 
peak value is the streamwise stress. This finding is in 
agreement with the results of many groups. The uu-peak 
position is located at y+-value of about 14–15 for all 
geometries. The uu-peak value increases linearly with Kármán 
number. For low +-values, however, transitional ZPG TBL’s 
have to develop to this common curve. Obviously, the 
initiation of the flow defines how this takes place (see Fig. 6 
in Marusic et al., 2010). There is no observed difference 
between the peak positions of the cross-flow stress. However, 
there is a nearly constant displacement between the peak 
values of ZPG TBL and CHF/PF of the ww-stress. That is 
especially surprising because u’- and w’-fluctuations have the 
same degree of freedom and they are not blocked by the wall 
as the v’-fluctuation. 

In parting, our results show that there are distinct 
differences between zero-pressure-gradient turbulent boundary 
layers and channel/pipe flows. This is in close agreement with 
the conclusions of Mathis et al. (2009) and Monty et al. 
(2009). 

 
 

ALTERNATIVE MIXED SCALING 
The observed dependency of the stresses on the Kármán 

number can be removed to a large extent when shifting to 
mixed scaling. This scaling is based on u

2-ue
, instead of on 

u
. Here, u denotes the friction velocity, and ue is the velocity 

at the outer edge of the boundary layer or at the centerline of a 
channel/pipe flow. Several attempts have been made to 
determine an optimum exponent . The best known was 
presented by DeGraaff & Eaton (2000), who set  equal to 
unity. In general, no physical or mathematical arguments exist 
so far to derive  directly from first principles. Therefore, the 
value of  is empirically determined. Buschmann et al. (2009) 
found from an extensive analysis of DNS and experimental 
results an -value of ½. This value applies successfully to the 
peak values of stresses especially in the streamwise direction. 
To distinguish the scaling based on  = ½ from the mixed 
scaling based on  = 1 by DeGraaff & Eaton (2000), 
Buschmann et al. (2009) named their approach alternative 
mixed scaling. 

One of the objectives of the present study is to show that 
there is a possibility to scale skewness and flatness in such a 
way as to remove the Kármán number dependencies. Figures 
2a and 2c show the wall values of skewness and flatness of the 
streamwise fluctuations from several DNS realizations and 
experiments. A non-monotonically Kármán number 
dependency is clearly discernible. Below +=200, both 

parameters decrease with increasing Kármán number. Above 
this threshold an increase is observed. While the flow in the 
first region may be dominated by low-Reynolds-number 
effects, an influence of outer scales that persists for very high 
Reynolds numbers has to be considered in the second region. 

Once again the idea of alternative mixed scaling is 
employed. In general, the following correction of inner-scaled 
skewness and flatness of the streamwise fluctuations has to be 
applied: 
 

ܵ௨# ൌ ܵ௨ା ቀ
௨
௨
ቁ
ଵ ଶ⁄

#௨ܨ   ൌ ௨ାܨ ቀ
௨
௨
ቁ                (1) 

  
Here, the superscript + denotes classical inner scaling and # 
alternative mixed scaling according to Buschmann et al. 
(2008). Details of the applied scaling are given in Table 1. The 
moments for the two remaining fluctuation components and 
the mixed moments can be derived in a similar manner. 

The achieved improvements with respect to the wall 
values of skewness and flatness are illustrated in Figures 2b 
and 2d, as well as Table 2. The plots reveal that the low-
Reynolds-number effects (below ) are not removed. 
However, above this value the wall values of skewness and 
flatness show nearly constant values of about, respectively, 
Suw

# = 0.216 and Fuw
# = 0.216. The percentage differences 

between first and last wall values of skewness and flatness 
employing classical and alternative mixed scaling are 
compiled in Table 2. The improvement when applying 
alternative mixed scaling is remarkable. That seems to be for 
both confined as well as for semi-confined flows. However, 
one has to note the quite different Kármán number ranges in 
the different data sets, which makes it difficult to compare 
them directly. 
 
MODEL OF FLUCTUTION 

The foregoing results led us to the following three 
hypotheses: 

 Any model for the stresses and higher-order moments 
should reflect both inner and outer scales. 

 Any scaling must start from the fluctuations directly. 

 Mean profiles and the time-averaged moments of the 
fluctuations have to be built up from these fluctuations. 

With our fourth argument we go back to the classical 
integral parameters (displacement thickness, momentum and 
energy lost thickness, etc.). Only the entirety of these 
parameters contains the same amount of information as the 
mean velocity profile itself. Analogously we argue that only 
the entirety of all time-averaged statistical moments contains 
the same amount of information as the fluctuations 
themselves. The consequence is that any validation of a 
fluctuation model has to consider more than just the stresses. 
Higher-order moments should be represented in an equivalent 
quality as the second order moments. 
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Table 1: Scaling of second to fourth moments of streamwise 
fluctuations. 
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Table 2: Percentage difference between first and last value of 
skewness and flatness employing different scaling approaches 
(only values above +=200 are considered). 
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Figure 2: Wall values of skewness and flatness of several DNS 
and experimental results. From top: skewness classical inner 
scaling; skewness alternative mixed scaling; flatness classical 
scaling; and flatness alternative mixed scaling. 
  Jimenéz et al. (2010) ZPG TBL DNS;   Schlatter et al. 
(2009) ZPG TBL DNS;   Hu et al. (2006) CH DNS;   Kim 
et al. (1987) CH DNS ;   Iwamoto et al. (2002) CH DNS;   
Nagano et al. (1992) exp. ZPG TBL;   Bruns et al. (1992) 
exp. ZPG TBL 
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To derive a model2 according to these three hypotheses we 
start with Reynolds decomposition: 

 
ାݑ ൌ   ۄାݑۃ  ݑԢା (2) 
 
where u+ denotes the velocity in the streamwise direction. 
Squared brackets denote time averaging and apostrophe the 
instantaneous part. Our goal is to conduct an asymptotic 
matching of inner eq. (3) and outer expansions eq. (4) to get 
an expression for u+. 
 

ାݑ  ൌ  
ଵ


  ln ାݕ  ∑ ,ܣ  

ଵ

௬శೕ

 ୀ   (3) 

 

 ܷ ൌ 1     ቂଵ

  ln   ∑ ,   ܣ

 ୀ   ቃ (4) 

 
Here, the subscript i stands for inner and o for outer region. 
The coefficients Ai,j and Ao,j are supposed to be random 
functions of space and time. By asymptotic matching of (3) 
and (4) and time averaging the mean velocity, (5) is obtained. 
The streamwise fluctuation (6) follows by definition from eq. 
(2) by subtracting the mean profile from u+. 
 

ۄାݑۃ  ൌ   ଵ

  ln ାݕ  ∑ ۄ,ܣۃ


ୀ

ଵ

௬శೕ
 ∑ ۄ,ܣۃ


ୀଵ   (5)ߟ

 

Ԣାݑ  ൌ  ∑ Ԣ,ܣ

ୀ

ଵ

௬శೕ
  ∑ ߟ Ԣ,ܣ


ୀଵ  (6) 

 
For the final prediction of stresses and higher-order moments, 
it is argued that inner and outer time scales are different. 
Therefore, the coefficients of eq. (6) are decomposed in 
products of time-independent (ai,j, ao,j) and time-dependent 
(A’i, A’o) factors:  
 
Ԣ,ܣ  ൌ  ܽ, ܣԢ ܣԢ, ൌ  ܽ,ܣԢ  (7) 
 
For simplification the time-independent parts of the first term 
of (6) are substituted by Du, and of the second term by Eu. The 
streamwise stress, the third moment and all higher moments 
then follow from their respective definitions. 
 
ାۄԢଶݑۃ  ൌ   Ԣܣۃ

ଶܦۄ௨ଶ  ௨ܧ௨ܦ ۄԢܣԢܣۃ 2   ܣۃԢଶܧ ۄ௨ (8) 
 
ାۄԢଷݑۃ  ൌ   Ԣܣۃ

ଷܦۄ௨ଷ  Ԣܣۃ 3 
ଶܣԢܦ ۄ௨ଶܧ௨  (9) 

௨ଶܧ௨ܦ ۄԢଶܣԢܣۃ 3   ܣۃԢଷܧܦۄ௨ଷ 
 
Similar approaches lead to formulations for the v- and           
w-fluctuations from which the Reynolds shear stresses are 
obtained. For example u´v´+ follows with: 
  
ାۄ′ݒ′ݑۃ  ൌ   ௩ܦ௨ܦۄ′ܤ′ܣۃ  ܣۃ′ܤ′ܦ ۄ௨ܧ௩   
௩ܦ௨ܧۄ′ܤ′ܣۃ    ܣۃ′ܤ′ܧ ۄ௨ܧ௩ (10) 
 
Here, Bi’ and Bo’ denote the time-dependent factors of the 
decomposition for the v-component of the fluctuation. In each 
equation from (8) to (10) the first term denotes the pure inner 

                                            
2  As an example, the derivation is done here for the streamwise 

component. 

contribution and the last term the pure outer contribution. All 
other terms indicate interactions between inner and outer 
regions. Figure 3 shows an example for the representation of 
the streamwise stress in comparison with experimental results 
(HWA, l+ <10) and figure 4 shows three distributions of third-
order moments in comparison with DNS CH data from Hoyas 
& Jimenéz (2005). In both cases reasonable good agreements 
is achieved.  
 
 
CONCLUSIONS 

In this study scaling and modeling of wall-bounded flows 
are addressed. In the first part, it is demonstrated that classical 
scaling based on inner variables alone is not applicable for any 
of the stresses. In all cases with exception of the peak position 
of the streamwise stress, significant Kármán number 
dependencies remain. An analysis of the wall values of 
streamwise skewness and flatness confirms this disadvantage 
of classical inner scaling for higher-order moments. In 
extending our previous work, we show that these 
dependencies can be removed when an alternative mixed 
scaling is applied. Based on the general finding that 
throughout the entire wall-layer inner and outer scales are of 
importance, a model approach for the fluctuations is 
presented. The agreement of this approach with experiments is 
shown. 

 
 

 
 

 
 

Figure 3: Comparison of streamwise stress experiment (red 
symbols) and proposed model (blue curves).  
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Figure 4: Comparison of higher order moments from DNS 
realization (red symbols) and proposed model (blue curves). 
DNS data from Hoyas & Jimenéz (2005) with Re = 2004. 
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