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ABSTRACT
Lagrangian mean evolution of a developing zero pres-

sure gradient turbulent boundary layer (Reθ = 730 to 1954)
is investigated using data from a direct numerical simulation
performed by Wu & Moin (2010). Conditional mean tra-
jectories (CMTs) for the evolution of the invariants of the
velocity gradient tensor (VGT) are calculated based on the
mean rate of change of the invariants, conditioned on their
location in the (RA,QA) invariants plane. Following Chong
et al. (1990) the location in this plane distinguish the focal or
non-focal nature of flow at that point, such that CMTs rep-
resent the mean topological evolution of points in the flow.
In the present case CMTs for strong gradients in all regions
of the boundary layer pass around a focus at the origin and
asymptote towards the right-hand side of a saddle point lo-
cated near the of the line dividing unstable focal and unstable
nodal structures. Closer to the origin weaker gradients follow
an almost periodic clockwise spiralling evolution from stable-
focus stretching to unstable-focus contraction, unstable-node
saddle/saddle and stable-node saddle/saddle topology. In-
creasing time-scales are observed for both the strong and
weak gradient trajectories further above the wall. Mean time-
scales associated with the spiralling evolution in terms of in-
ner scales are 67.9 ν/u2

τ in the viscous layer, 151 ν/u2
τ in the

buffer layer and 658 ν/u2
τ in the log and wake region or 1.25

estimated eddy turnover times.

INTRODUCTION
Reliable modelling or control of wall-bounded turbulent

flows requires an understanding of the mechanisms behind the
evolution and distribution of turbulence near the wall. Studies
involving the temporal evolution of turbulent flows is compli-
cated by the motion of each fluid particle and the dependence
of many fluid properties on the relative motion of the observer.

Figure 1. Three-dimensional local topologies in the
(RA,QA)-plane for incompressible flow. Taken from Soria
et al. (1994).

This is particularly true for wall-bounded flows which involve
significant changes in convection velocity. Such analysis can
be simplified by examining quantities such as the velocity gra-
dient tensor (VGT) which is Galilean invariant and indepen-
dent of a non-accelerating observer, and can be directly related
to quantities such as enstrophy density and dissipation.

Following the topological approach introduced by
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Chong, Perry & Cantwell (1990) the invariants of the VGT
can be used to classify the local topology of any point in the
flow (see figure 1), within a basis of critical point theory. This
approach was first applied to the study of turbulent flow by
Chen et al. (1990), where correlations were observed between
the 2nd and 3rd invariants (QA and RA) of the VGT in com-
pressible and incompressible mixing layers. This behavior
has since been observed in time-developing mixing layers by
Soria et al. (1994), in turbulent channel flows by Blackburn
et al. (1996), in turbulent boundary layers by Chacin et al.
(1996) and in homogeneous isotropic turbulence by Martin
et al. (1998), suggesting that many of these correlations and
geometric flow features are common to all turbulent flows.

Martin et al. (1998) and Ooi et al. (1999) examined the
evolution of flow topology using data from direct numerical
simulations (DNS) of homogeneous isotropic turbulence, in-
volving the conditional averaging of the time rate of change
of the (RA,QA) invariants and determination of conditional
mean trajectories (CMTs) in the (RA,QA)-plane. Points in the
flow were observed to follow a clockwise spiral in this plane
with a stable focus at the origin, indicating a cyclic topolog-
ical change through unstable-node/saddle/saddle (UN/S/S),
stable-node/saddle/saddle (SN/S/S), stable-focus/stretching
(SF/S) to unstable-focus/contracting (UF/C). This cyclic was
approximately periodic, with a characteristic period of 3 τeddy,
where τeddy is the eddy turnover time.

CMTs for a turbulent boundary were examined by
Chacin & Cantwell (2000) using the DNS of Spalart (1988) at
Reθ = 300. For most regions of the boundary layer particles
were observed to move towards the origin (RA,QA) = (0,0)
following asymptotes in the upper left and lower right quad-
rants, without the spiraling pattern that was observed in ho-
mogeneous isotropic turbulence. The only exception to this
was in the viscous sublayer y+ < 5.6, however this spiral-
ing did not show asymptotic behavior. Using experimen-
tal tomographic particle image velocimetry data in a region
88 < y+ < 240 wall units Elsinga & Marusic (2010) calcu-
lated CMTs for a turbulent boundary layer at Reθ = 2460,
where a spiralling similar to that of homogeneous isotropic
turbulence was observed. In this case the period was 14.3
δ/Ue, 470 ν/u2

τ or 1 τeddy in terms of outer, inner and eddy
time-scales, respectively.

In this paper we present an investigation of the La-
grangian mean evolution of the invariants of the VGT in dif-
ferent regions of a developing turbulent boundary layer from
730 < Reθ < 1954 using data from a DNS of a zero pres-
sure gradient turbulent boundary layer by Wu & Moin (2010).
From this the mean time-scales associated with the topolog-
ical evolution of structures in different regions of a turbulent
boundary layer are extracted.

THEORETICAL BACKGROUND
Comprehensive background and derivation of the topo-

logical methodology and the relationship between the invari-
ants of the velocity gradient tensor and local flow topology
can be found in Chong et al. (1990); Cantwell (1992); Soria
et al. (1994) among others. A brief summary, definitions and
aspects relating to the present flow are presented below, with
further details of models given in Atkinson et al. (2011).

The VGT Ai j = ∂ui/∂x j at a point in the flow has the

characteristic equation:

λ
3
i +PAλ

2
i +QAλi +RA = 0, (1)

where λi are the eigenvalues of Ai j and PA,QA and RA are the
first, second and third invariants. For incompressible flows
PA = −Aii = 0, meaning the local flow topology can be ex-
pressed in terms of the invariants QA and RA, as given by the
following expressions:

QA = − 1
2 Ai jA ji, (2)

RA = − 1
3 Ai jA jkAki. (3)

Figure 1 shows the two-dimensional representation of
the (RA,QA)-plane and the regions associated with
the four possible non-degenerate local flow topologies
(stable-focus/stretching (SF/S), unstable-focus/contracting
(UF/C), stable-node/saddle/saddle (SN/S/S) and unstable-
node/saddle/saddle (UN/S/S)) that can exist in an incom-
pressible flow. The tent-like curve represents the boundary
between non-focal, dissipative motions (below the line) and
focal, vortical fluid motions (above the line) and corresponds
to DA = 0, where DA is the discriminant of Ai j:

DA = 27
4 R2

A +Q3
A. (4)

Following Cantwell (1992) the evolution equation for Ai j
in a Lagrangian frame of reference centred on a fluid particle
can be obtained by differentiating the incompressible Navier-
Stokes equations with respect to x j:

DAi j

Dt
+AikAk j− (AkmAmk)

δi j

3
= Hi j, (5)

where D/Dt is the total derivative, δi j is the Kronecker delta
and Hi j is a tensor consisting of the non local anisotropic pres-
sure forces and the viscous diffusion, defined as,

Hi j =−
(

∂ 2 p
∂xi∂x j

− ∂ 2 p
∂xk∂xk

δi j

3

)
+ν

∂ 2Ai j

∂xk∂xk
(6)

These equations represent a significant reduction in complex-
ity when compare to the full Navier-Stokes equation, explain-
ing the interest in Lagrangian flow models.

Evolution equations are derived from (5) in terms of the
invariants QA,RA and the tensor Hi j and given as:

DQA

Dt
= −3RA−AikHki, (7)

DRA

Dt
= 2

3 Q2
A−AinAnmHmi. (8)

Similar evolution equations for QS,RS,QW are presented by
Ooi et al. (1999).
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Region y+ Datapoints (nx,ny,nz) 〈QW 〉l /〈QW 〉total
Viscous layer < 5 5520, 10, 256 69.4

Buffer layer 5 to 40 5520, 45, 256 12.6

Log and wake layer 40 to 1100 5520, 227, 256 0.28

Table 1. Turbulent boundary layer regions and the number of grid points in each region for a single snapshot of the DNS database.

DIRECT NUMERICAL SIMULATION DATABASE
The data used in this investigation was obtained from a

DNS of an incompressible, ZPG flat plate boundary layer, per-
formed by Wu & Moin (2010). Flow develops from a Blasius
profile (Reθ = 80) at the inlet and achieve a fully turbulent
state at Reθ = 730 and continues to grow to Reθ = 1950.
Transition was triggered by the periodic addition of patches
of homogeneous isotropic turbulence to the freestream, con-
trolled such that the streamwise pressure gradient remained
negligible. Detail of the simulation grid and algorithm can be
found in Wu & Moin (2009, 2010).

The present study was performed by considering the en-
semble of the VGT and pressure Hessian at points in the fully
turbulent zone from Reθ = 730 to 1954. Three regions of
throughout the boundary layer were examined as indicated in
table 1. The height above the wall of each region was de-
termined based on the mean skin friction and friction veloc-
ity over the fully turbulent domain. Over the length of the
turbulent region the change in skin friction correspond to a
change in height about the mean of ±1, 3, and 5 grid point
for the viscous, buffer and log layers, respectively. Six instan-
taneous statistically independent snapshots were considered.
The contribution of each point to the statistics of that region,
is weighted by the cell volume in order to remove bias associ-
ated with the concentration of points closer to the wall.

CONDITIONAL MEAN TRAJECTORIES
The mean temporal rate of change of the velocity gradi-

ent invariants can be determined by ensemble averaging the
rate of change of the invariants, conditional on their location
in the (RA,QA)-plane. The rates of change of the invariants
were evaluated using (7) and (8), based on the instantaneous
VGT and pressure Hessian from the 6 DNS snapshots, at each
point in the flow. To condition the averages of DQ/Dt and
DR/Dt on the values of the invariant pair (R,Q), being invari-
ants of the Ai j, Si j or Wi j, the (R,Q)-plane is first divided into
NR,NQ bins in the R and Q directions, such that there are an
even number of bins in each direction over the region of in-
terest. Following Ooi et al. (1999) the mean rate of change
of the invariants in each bin is computed using the following
discrete formulae:〈

DR
Dt

(R = R0,Q = Q0)
〉

=
1
N

R0+∆R/2

∑
R0−∆R/2

Q0+∆Q/2

∑
Q0−∆Q/2

DR
Dt

(R,Q), (9)

〈
DQ
Dt

(R = R0,Q = Q0)
〉

=
1
N

R0+∆R/2

∑
R0−∆R/2

Q0+∆Q/2

∑
Q0−∆Q/2

DQ
Dt

(R,Q), (10)

where ∆R and ∆Q are the discrete bin widths in Q and R
variable, and N is the number of samples in the bin span-
ning R0 − ∆R/2 < R < R0 + ∆R/2 and Q0 − ∆Q/2 < Q <
Q0 + ∆Q/2. The result is the conditional rates of change for
both variables at each point in the plane, representing a condi-
tional mean vector field (DR/Dt(R,Q),DQ/Dt(R,Q)). This
vector field is then used to calculate CMTs, representing the
mean path followed by a point in the (R,Q)-plane as it evolves
in time.

Resolution of the mean conditional vector fields and
CMTs depend on the bin size. Smaller bin sizes increasing
the resolution but do so at the expenses of the number of sam-
ples in the bin, as a finite number of points in the flow are
distributed across an increasing number of bins. This can lead
to wild fluctuations in the CMTs if statistical convergence is
not achieved. In the viscous layer statistical convergence is
achieved at (0.005,0.02) in the normalised (RA,QA)-plane,
located near the spiralling region of interest in the viscous
layer, after approximately 7000 samples per bin, with con-
vergence after 3000 per bin in the buffer layer at (0.005,0.02)
and 20000 samples in log layers at (0.02,1.0). The effect of
bin size on the mean conditional rate of change and the CMTs
was investigated as detailed in Atkinson et al. (2011).

RESULTS AND DISCUSSION
Figures 2 shows the two-dimensional JPDFs of the in-

variants of the full velocity gradient tensor in (RA,QA)-space
for the viscous, buffer and log layer and wake regions. In each
case the invariants have been normalised in terms 〈QW 〉l , rep-
resenting the local mean value of QW in that region. JPDFs
indicate that the boundary layer consist of mostly small gra-
dients located at the origin, with contour levels typically pos-
sessing a self-similar shape, which indicates a tendency for
points in the flow to be clustered around the DA = 0 line and
have mostly a SF/S or UN/S/S topology. As in channel flow at
Reτ = 395 (Blackburn et al., 1996) and ZPG turbulent bound-
ary layer at Reθ = 670 (Chong et al., 1998) the tear drop be-
comes more closely orientated with the right-hand side of the
DA = 0 line further from the wall and approaches the topol-
ogy of homogeneous isotropic turbulence. Further from the
wall points are distributed over a large portion of the (RA,QA)-
plane relative to the local mean QW , which is proportional to
the local mean enstrophy. In terms of the total mean QW in
the boundary layer (see table 1), the distribution is widest in
the buffer layer indicating the largest range of scales, decreas-
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Figure 2. JPDF of the invariants RA vs. QA for: (a) viscous
layer; (b) buffer layer and (c) log and wake layers of a turbu-
lent boundary layer from Reθ = 730 to 1954. The difference
between each contour line is one decade, with the exponents
of the decade lines indicated. The tent like line represents the
zero discriminant lines DA for the VGT and strain rate tensor,
respectively.

ing significantly in the log and wake regions where only the
gradients are present.

Figure 3 shows CMTs for the different regions of the
boundary layer in the (RA,QA)-plane, over domains corre-
sponding to the 5 decades of the JPDFs of (RA,QA). CMTs
for the viscous layer show an attraction towards smaller gra-
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Figure 3. CMT in the (RA,QA)-plane over a domain span-
ning approximately 5 decades of the JPDFs for: (a) viscous
layer; (b) buffer layer and (c) log and wake layers of a turbu-
lent boundary layer from Reθ = 730 to 1954. The tent like
line represents the zero discriminant lines DA for the VGT.

dients at the origin with a similar node and saddle point ar-
rangement to those of the LMSE model (Dopazo et al., 1993),
where the viscous diffusion term in equation 6 is modelled
using a linear mean square estimation and the pressure Hes-
sian contribution is assumed to be negligible. This suggests
that the LMSE model might be a reasonable model for large
gradients, or small scale structures near the wall.

Further from the wall where the local mean enstrophy
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〈QW 〉l has significantly decreased, CMTs for the buffer and
log layers show trajectories separating from a line on the left-
hand side and converging on the right-hand side. This is sim-
ilar to the LMSE model with a larger time-scale and is con-
sistent with a smaller relative contribution from the viscous
diffusion term in (6) or increasing pressure Hessian terms.
Unlike the LMSE model trajectories are not attracted to the
DA = 0 line exactly. In the buffer layer points separate and
converge slightly the above DA = 0 line, suggesting a mean
evolution from SF/S to UF/C, either directly or via a tran-
sition from SF/S, SN/S/S, UN/S/S to UF/C. In the log and
wake regions this divergence on the left-hand side occurs be-
low DA = 0 and converges slightly above, suggesting a mean
evolution from SN/S/S to UF/C.

In the viscous layer the evolution of most points directly
towards the origin, or in the buffer and log layer to remain
remain focal or non-focal, is associated with the larger gra-
dients, which the JPDF shows to represent only a small per-
centage of the flow. Most of the flow is clustered much closer
to the origin of the (RA,QA)-plane and as shown in figure 4
follows a spiralling pattern, similar to that observed in homo-
geneous isotropic turbulence by Martin et al. (1998). This
involves a clockwise cycle that appears to originate at a sad-
dle point corresponding to a local UN/S/S flow topology then
undergoes a transition to SN/S/S, SF/S, UF/C. The spiral ap-
pears to have a focus slightly above the origin in the SF/S
zone. This behaviour is not captured by the LMSE and is
therefore thought to be associated with terms in the pressure
Hessian.

CMTs produced by Elsinga & Marusic (2010) for a tur-
bulent boundary layer at Reθ = 2460 show a similar clock-
wise spiralling centred around the origin for a region 88 <
y+ < 240 largely situated in the log layer. The shape of this
spiral is similar to that observed in the log and wake region
in the current simulation, yet show no signs of the asymptotes
observed in the present simulation at larger gradients. This
is likely the result of the measurement noise, and spatial fil-
tering that is typically involved in experimental tomographic
PIV measurements (Atkinson et al., 2010), which filters out
the strong local flow gradients and small-scale structures.

The mean evolution time-scales for each region of the
turbulent boundary layer are presented in table 2 in terms of
the inner and outer units and the eddy turnover time, estimated
as τeddy = δ/urms where urms is taken from the middle of
the boundary layer. Time-scales increase with height above
the wall, which could be related to increasing eddy sizes and
an increasing turbulent length scale away from the wall. In
the log and wake region the time-scale corresponds to 1.25
δ/urms or 1.25 τeddy, which is slight larger than the 1 τeddy
observed by Elsinga & Marusic (2010) in the log layer alone.
The longer time-scale in the present investigation maybe as-
sociated with the inclusion of the wake layer, where the time-
scale is expected to be closer to 3 τeddy observed by Martin
et al. (1998) in homogeneous isotropic turbulence.

Variation in the time-scale and the percentage of the cy-
cle spent in each region of the (RA,QA)-plane are examined
further in Atkinson et al. (2011).
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Figure 4. CMT in the (RA,QA)-plane near the origin for: (a)
viscous layer; (b) buffer layer and (c) log and wake layers
of a turbulent boundary layer from Reθ = 730 to 1954. The
tent like line represents the zero discriminant lines DA for the
VGT. Inserts show the spiral pattern around the origin.

CONCLUSIONS
Lagrangian evolution of points in the viscous layer,

buffer layer and log and wake layer of a turbulent boundary
layer at Reθ = 730 to 1954 are investigated in terms of invari-
ants of the VGT and the conditional mean evolution trajecto-
ries in the (RA,QA)-plane. CMTs for strong gradients (large
values of (RA,QA)) show a separation from the left-hand side
of the boundary between focal and non-focal structures and an
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Region t/〈QW 〉1/2
l t/(ν/u2

τ) t/(δ/Ue) t/(δ/urms)

Viscous layer 36.5 67.9 2.10 0.130

Buffer layer 34.5 151 4.65 0.288

Log and wake layer 22.4 658 20.3 1.26

Table 2. Mean evolution time-scales associated with spiralling CMTs in each region of the boundary layer, where 〈QW 〉
1/2
l is

proportional to the mean local enstrophy in that region of the boundary layer, ν/u2
τ is the inner time-scale, δ/Ue is the outer unit

time-scale and δ/urms is the estimated eddy-turnover time.

attraction to the right-hand side with a focus at the origin and
a saddle near the right-hand side, similar to the LMSE model
for the evolution of the VGT when the anisotropic terms in
the pressure Hessian are negligible. As the height above the
wall increases comparisons with the LMSE model suggest a
weaker contribution form the viscous diffusion terms in the
VGT evolution equation.

CMTs change significantly near the origin of the
(RA,QA)-plane, where an almost periodic clockwise spiralling
evolution from SF/S to UF/C, UN/S/S, SN/SS is observed for
these weaker gradients at all stations through the boundary
layer. The shape of the trajectories changes with height above
the wall, transitioning from a largely oval trajectory where
most of the time is spent with focal topology, to a more tear
drop trajectory where the majority of time is spent as UN/S/S.
Similar CMTs are observed for lower resolution log layer data
by Elsinga & Marusic (2010), suggesting that this spiralling
evolution represents the mean life-cycle of large scale struc-
tures in the flow. The mean time-scales associated with this
evolution are 67.9 ν/u2

τ in the viscous layer, 151 ν/u2
τ in the

buffer layer and 658 ν/u2
τ in the log and wake region or 1.25

estimated eddy turnover times.
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