MEAN TOPOLOGICAL EVOLUTION IN A TURBULENT BOUNDARY LAYER

Callum Atkinson, Julio Soria
Laboratory for Turbulence Research in Aerospace and Combustion
Department of Mechanical and Aerospace Engineering
Monash University
Clayton, Victoria, 3800, Australia
cal.atkinson@gmail.com, julio.soria@monash.edu

Sergei Chumakov, Ivan Bermejo-Moreno
Center for Turbulence Research
Stanford University
California, 94305-3030, USA.
schumakov@gmail.com, ibermejo@stanford.edu

ABSTRACT
Lagrangian mean evolution of a developing zero pressure gradient turbulent boundary layer ($Re_\theta = 730$ to 1954) is investigated using data from a direct numerical simulation performed by Wu & Moin (2010). Conditional mean trajectories (CMTs) for the evolution of the invariants of the velocity gradient tensor (VGT) are calculated based on the mean rate of change of the invariants, conditioned on their location in the (R_A, Q_A) invariants plane. Following Chong et al. (1990) the location in this plane distinguish the focal or non-focal nature of flow at that point, such that CMTs represent the mean topological evolution of points in the flow. In the present case CMTs for strong gradients in all regions of the boundary layer pass around a focus at the origin and asymptote towards the right-hand side of a saddle point located near the of the line dividing unstable focal and unstable nodal structures. Closer to the origin weaker gradients follow an almost periodic clockwise spiralling evolution from stable-focus stretching to unstable-focus contraction, unstable-node saddle/saddle and stable-node saddle/saddle topology. Increasing time-scales are observed for both the strong and weak gradient trajectories further above the wall. Mean time-scales associated with the spiralling evolution in terms of inner scales are $67.9 \nu/u_T^2$ in the viscous layer, $151 \nu/u_T^2$ in the buffer layer and $658 \nu/u_T^2$ in the log and wake region or 1.25 estimated eddy turnover times.

INTRODUCTION
Reliable modelling or control of wall-bounded turbulent flows requires an understanding of the mechanisms behind the evolution and distribution of turbulence near the wall. Studies involving the temporal evolution of turbulent flows is complicated by the motion of each fluid particle and the dependence of many fluid properties on the relative motion of the observer. This is particularly true for wall-bounded flows which involve significant changes in convection velocity. Such analysis can be simplified by examining quantities such as the velocity gradient tensor (VGT) which is Galilean invariant and independent of a non-accelerating observer, and can be directly related to quantities such as enstrophy density and dissipation.

Figure 1. Three-dimensional local topologies in the (R_A, Q_A)-plane for incompressible flow. Taken from Soria et al. (1994).
Chong, Perry & Cantwell (1990) the invariants of the VGT can be used to classify the local topology of any point in the flow (see figure 1), within a basis of critical point theory. This approach was first applied to the study of turbulent flow by Chen et al. (1990), where correlations were observed between the 2nd and 3rd invariants (Q_A and R_A) of the VGT in compressible and incompressible mixing layers. This behavior has since been observed in time-developing mixing layers by Soria et al. (1994), in turbulent channel flows by Blackburn et al. (1996), in turbulent boundary layers by Chacin et al. (1996) and in homogeneous isotropic turbulence by Martin et al. (1998), suggesting that many of these correlations and geometric flow features are common to all turbulent flows.

Martin et al. (1998) and Ooi et al. (1999) examined the evolution of flow topology using data from direct numerical simulations (DNS) of homogeneous isotropic turbulence, involving the conditional averaging of the time rate of change of the (R_A, Q_A) invariants and determination of conditional mean trajectories (CMTs) in the (R_A, Q_A)-plane. Points in the flow were observed to follow a clockwise spiral in this plane with a stable focus at the origin, indicating a cyclic topological change through unstable-node/saddle/saddle (UN/S/S), stable-node/saddle/saddle (SN/S/S), stable-focus/stretching (SF/S) to unstable-focus/contracting (UF/C). This cyclic was approximately periodic, with a characteristic period of $3 \tau_{edd}$, where τ_{edd} is the eddy turnover time.

CMTs for a turbulent boundary were examined by Chacin & Cantwell (2000) using the DNS of Spalart (1988) at $Re_{\theta} = 300$. For most regions of the boundary layer particles were observed to move towards the origin $(R_A, Q_A) = (0, 0)$ following asymptote in the upper left and lower right quadrants, without the spiraling pattern that was observed in homogeneous isotropic turbulence. The only exception to this was in the viscous sublayer $y^+ < 5.6$, however this spiral did not show asymptotic behavior. Using experimental tomographic particle image velocimetry data in a region $88 < y^+ < 240$ wall units Elsinga & Marusic (2010) calculated CMTs for a turbulent boundary layer at $Re_{\theta} = 2460$, where a spiralling similar to that of homogeneous isotropic turbulence was observed. In this case the period was $14.3 \delta/U_\kappa$, $470 \nu/\nu_\kappa$ or $1 \tau_{edd}$ in terms of outer, inner and eddy time-scales, respectively.

In this paper we present an investigation of the Lagrangian mean evolution of the invariants of the VGT in different regions of a developing turbulent boundary layer from $730 < Re_{\theta} < 1954$ using data from a DNS of a zero pressure gradient turbulent boundary layer by Wu & Moin (2010). From this the mean time-scales associated with the topological evolution of structures in different regions of a turbulent boundary layer are extracted.

THEORETICAL BACKGROUND

Comprehensive background and derivation of the topological methodology and the relationship between the invariants of the velocity gradient tensor and local flow topology can be found in Chong et al. (1990); Cantwell (1992); Soria et al. (1994) among others. A brief summary, definitions and aspects relating to the present flow are presented below, with further details of models given in Atkinson et al. (2011).

The VGT $A_{ij} = \partial u_i/\partial x_j$ at a point in the flow has the characteristic equation:

$$\lambda_i^3 + P_A \lambda_i^2 + Q_A \lambda_i + R_A = 0,$$

where λ_i are the eigenvalues of A_{ij} and P_A, Q_A and R_A are the first, second and third invariants. For incompressible flows $P_A = -A_{ii} = 0$, meaning the local flow topology can be expressed in terms of the invariants Q_A and R_A, as given by the following expressions:

$$Q_A = -\frac{1}{3} A_{ij} A_{ji},$$

$$R_A = -\frac{1}{4} A_{ij} A_{jk} A_{ki}.$$

Figure 1 shows the two-dimensional representation of the (R_A, Q_A)-plane and the regions associated with the four possible non-degenerate local flow topologies (stable-focus/stretching (SF/S), unstable-focus/contracting (UF/C), stable-node/saddle/saddle (SN/S/S) and unstable-node/saddle/saddle (UNS/S/S)) that can exist in an incompressible flow. The tent-like curve represents the boundary between non-focal, dissipative motions (below the line) and focal, vortical fluid motions (above the line) and corresponds to $D_A = 0$, where D_A is the discriminant of A_{ij}:

$$D_A = \frac{2}{3} R_A^2 + Q_A^3.$$ (4)

Following Cantwell (1992) the evolution equation for A_{ij} in a Lagrangian frame of reference centred on a fluid particle can be obtained by differentiating the incompressible Navier-Stokes equations with respect to x_j:

$$\frac{DA_{ij}}{Dt} + A_{ik} A_{kj} - (A_{km} A_{mk}) \frac{\delta_{ij}}{3} = H_{ij},$$

where D/Dt is the total derivative, δ_{ij} is the Kronecker delta and H_{ij} is a tensor consisting of the non-local anisotropic pressure forces and the viscous diffusion, defined as,

$$H_{ij} = - \left(\frac{\partial^2 p}{\partial x_i \partial x_j} - \frac{\partial^2 p}{\partial x_k \partial x_j} \frac{\delta_{ij}}{3} \right) + v \frac{\partial^2 A_{ij}}{\partial x_k \partial x_l}.$$ (6)

These equations represent a significant reduction in complexity when compared to the full Navier-Stokes equation, explaining the interest in Lagrangian flow models.

Evolution equations are derived from (5) in terms of the invariants Q_A, R_A and the tensor H_{ij} and given as:

$$\frac{DQ_A}{Dt} = -3R_A - A_{ik} H_{ki},$$

$$\frac{DR_A}{Dt} = \frac{2}{3} Q_A^2 - A_{im} A_{mn} H_{mi}.$$ (8)

Similar evolution equations for Q_S, R_S, Q_W are presented by Ooi et al. (1999).
DIRECT NUMERICAL SIMULATION DATABASE

The data used in this investigation was obtained from a DNS of an incompressible, ZPG flat plate boundary layer, performed by Wu & Moin (2010). Flow develops from a Blasius profile (Reθ = 80) at the inlet and achieve a fully turbulent state at Reθ = 730 and continues to grow to Reθ = 1950. Transition was triggered by the periodic addition of patches of homogeneous isotropic turbulence to the freestream, controlled such that the streamwise pressure gradient remained negligible. Detail of the simulation grid and algorithm can be found in Wu & Moin (2009, 2010).

The present study was performed by considering the ensemble of the VGT and pressure Hessian at points in the fully turbulent zone from Reθ = 730 to 1954. Three regions of the boundary layer were examined as indicated in table 1. The height above the wall of each region was determined based on the mean skin friction and friction velocity over the fully turbulent domain. Over the length of the turbulent region the change in skin friction correspond to a change in height about the mean of ±005. From Wu & Moin (2010) the tear drop be-

<table>
<thead>
<tr>
<th>Region</th>
<th>y⁺</th>
<th>Datapoints (nx,ny,nz)</th>
<th>⟨Qₓ⟩/⟨Qₓ⟩total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscous layer</td>
<td>< 5</td>
<td>5520, 10, 256</td>
<td>69.4</td>
</tr>
<tr>
<td>Buffer layer</td>
<td>5 to 40</td>
<td>5520, 45, 256</td>
<td>12.6</td>
</tr>
<tr>
<td>Log and wake layer</td>
<td>40 to 1100</td>
<td>5520, 227, 256</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 1. Turbulent boundary layer regions and the number of grid points in each region for a single snapshot of the DNS database.

RESULTS AND DISCUSSION

Figures 2 shows the two-dimensional JPDFs of the invariants of the full velocity gradient tensor in (Rₓ, Qₓ) -space for the viscous, buffer and log layer and wake regions. In each case the invariants have been normalised in terms ⟨Qₓ⟩, representing the local mean value of Qₓ in that region. JPDFs indicate that the boundary layer consist of mostly small gradients located at the origin, with contour levels typically possessing a self-similar shape, which indicates a tendency for points in the flow to be clustered around the Dₓ = 0 line and have mostly a SF/S or UN/SS topology. As in channel flow at Reτ = 395 (Blackburn et al., 1996) and ZPG turbulent boundary layer at Reθ = 670 (Chong et al., 1998) the tear drop becomes more closely orientated with the right-hand side of the Dₓ = 0 line further from the wall and approaches the topology of homogeneous isotropic turbulence. Further from the wall points are distributed over a large portion of the (Rₓ, Qₓ) -plane relative to the local mean Qₓ, which is proportional to the local mean enstrophy. In terms of the total mean Qₓ in the boundary layer (see table 1), the distribution is widest in the buffer layer indicating the largest range of scales, decreas-
Figure 2. JPDF of the invariants \(R_A \) vs. \(Q_A \) for: (a) viscous layer; (b) buffer layer and (c) log and wake layers of a turbulent boundary layer from \(\text{Re}_\theta = 730 \) to 1954. The difference between each contour line is one decade, with the exponents of the decade lines indicated. The tent line represents the zero discriminant lines \(D_A \) for the VGT and strain rate tensor, respectively.

Figure 3. CMT in the \((R_A, Q_A) \)-plane over a domain spanning approximately 5 decades of the JPDFs for: (a) viscous layer; (b) buffer layer and (c) log and wake layers of a turbulent boundary layer from \(\text{Re}_\theta = 730 \) to 1954. The tent line represents the zero discriminant lines \(D_A \) for the VGT.

...
has significantly decreased, CMTs for the buffer and log layers show trajectories separating from a line on the left-hand side and converging on the right-hand side. This is similar to the LMSE model with a larger time-scale and is consistent with a smaller relative contribution from the viscous diffusion term in (6) or increasing pressure Hessian terms. Unlike the LMSE model trajectories are not attracted to the $D_A = 0$ line exactly. In the buffer layer points separate and converge slightly above the above $D_A = 0$ line, suggesting a mean evolution from SF/S to UF/C, either directly or via a transition from SF/S, SN/S/S, UN/S/S to UF/C. In the log and wake regions this divergence on the left-hand side occurs below $D_A = 0$ and converges slightly above, suggesting a mean evolution from SN/S/S to UF/C.

In the viscous layer the evolution of most points directly towards the origin, or in the buffer and log layer to remain remain focal or non-focal, is associated with the larger gradients, which the JPDF shows to represent only a small percentage of the flow. Most of the flow is clustered much closer to the origin of the (R_A, Q_A) plane and as shown in figure 4 follows a spiralling pattern, similar to that observed in homogeneous isotropic turbulence by Martin et al. (1998). This involves a clockwise cycle that appears to originate at a saddle point corresponding to a local UN/S/S flow topology then undergoes a transition to SN/S/S, SF/S, UF/C. The spiral appears to have a focus slightly above the origin in the SF/S zone. This behaviour is not captured by the LMSE and is therefore thought to be associated with terms in the pressure Hessian.

CMTs produced by Elsinga & Marusic (2010) for a turbulent boundary layer at $Re_\theta = 2460$ show a similar clockwise spiralling centred around the origin for a region $88 < y^+ < 240$ largely situated in the log layer. The shape of this spiral is similar to that observed in the log and wake region in the current simulation, yet show no signs of the asymptotes observed in the present simulation at larger gradients. This is likely the result of the measurement noise, and spatial filtering that is typically involved in experimental tomographic PIV measurements (Atkinson et al., 2010), which filters out the strong local flow gradients and small-scale structures.

The mean evolution time-scales for each region of the turbulent boundary layer are presented in table 2 in terms of the inner and outer units and the eddy turnover time, estimated as $\tau_{eddy} = \delta/w_{rms}$ where w_{rms} is taken from the middle of the boundary layer. Time-scales increase with height above the wall, which could be related to increasing eddy sizes and an increasing turbulent length scale away from the wall. In the log and wake region the time-scale corresponds to $1.25 \delta/w_{rms}$ or $1.25 \tau_{eddy}$, which is slightly larger than the $1 \tau_{eddy}$ observed by Elsinga & Marusic (2010) in the log layer alone. The longer time-scale in the present investigation maybe associated with the inclusion of the wake layer, where the time-scale is expected to be closer to $3 \tau_{eddy}$ observed by Martin et al. (1998) in homogeneous isotropic turbulence.

Variation in the time-scale and the percentage of the cycle spent in each region of the (R_A, Q_A)-plane are examined further in Atkinson et al. (2011).

Figure 4. CMT in the (R_A, Q_A)-plane near the origin for: (a) viscous layer; (b) buffer layer and (c) log and wake layers of a turbulent boundary layer from $Re_\theta = 730$ to 1954. The tent like line represents the zero discriminant lines D_A for the VGT. Inserts show the spiral pattern around the origin.

CONCLUSIONS

Lagrangian evolution of points in the viscous layer, buffer layer and log and wake layer of a turbulent boundary layer at $Re_\theta = 730$ to 1954 are investigated in terms of invariants of the VGT and the conditional mean evolution trajectories in the (R_A, Q_A)-plane. CMTs for strong gradients (large values of (R_A, Q_A)) show a separation from the left-hand side of the boundary between focal and non-focal structures and an
attraction to the right-hand side with a focus at the origin and a saddle near the right-hand side, similar to the LMSE model for the evolution of the VGT when the anisotropic terms in the pressure Hessian are negligible. As the height above the wall increases comparisons with the LMSE model suggest a weaker contribution from the viscous diffusion terms in the wall increases comparisons with the LMSE model the pressure Hessian are negligible. As the height above the wall increases comparisons with the LMSE model suggest a weaker contribution from the viscous diffusion terms in the VGT evolution equation.

CMTs change significantly near the origin of the \((R_A, Q_4)\)-plane, where an almost periodic clockwise spiralling evolution from SF/S to UF/C, UN/S/S, SN/SS is observed for these weaker gradients at all stations through the boundary layer. The shape of the trajectories changes with height above the wall, transitioning from a largely oval trajectory where most of the time is spent with focal topology, to a more tear drop trajectory where the majority of time is spent as UNS/S. Similar CMTs are observed for lower resolution log layer data by Elsinga & Marusic (2010), suggesting that this spiralling evolution represents the mean life-cycle of large scale structures in the flow. The mean time-scales associated with this evolution are 67.9 \(v/u_2^2\) in the viscous layer, 151 \(v/u_2^2\) in the buffer layer and 658 \(v/u_2^2\) in the log and wake region or 1.25 estimated eddy turnover times.

ACKNOWLEDGEMENTS

The authors would like to thank Associate Professor Xiaohua Wu for graciously providing the DNS data that was used in this study. This research was instigated as part of a Center for Turbulence Research (CTR) Summer Program grant and was supported by a grant from the Australian Research Council, both of which are gratefully acknowledged. C.A. was supported by an Australian Postgraduate Award while undertaking this investigation.

REFERENCES

Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to \(Re = 1410\). *J. Fluid Mech.* 187, 61–98.

Table 2

Mean evolution time-scales associated with spiralling CMTs in each region of the boundary layer, where \(\langle Q_w^2 \rangle^{1/2}\) is proportional to the mean local enstrophy in that region of the boundary layer, \(v/u_2^2\) is the inner time-scale, \(\delta/U_c\) is the outer unit time-scale and \(\delta/u_{rms}\) is the estimated eddy-turnover time.

<table>
<thead>
<tr>
<th>Region</th>
<th>(v\langle Q_w^2 \rangle^{1/2})</th>
<th>(t/(v/u_2^2))</th>
<th>(t/(\delta/U_c))</th>
<th>(t/(\delta/u_{rms}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscous layer</td>
<td>36.5</td>
<td>67.9</td>
<td>2.10</td>
<td>0.130</td>
</tr>
<tr>
<td>Buffer layer</td>
<td>34.5</td>
<td>151</td>
<td>4.65</td>
<td>0.288</td>
</tr>
<tr>
<td>Log and wake layer</td>
<td>22.4</td>
<td>658</td>
<td>20.3</td>
<td>1.26</td>
</tr>
</tbody>
</table>