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ABSTRACT
We presently show that the infinite set of multi-point cor-

relation equations, which are direct statistical consequences
of the Navier-Stokes equations, admit a rather large set of Lie
symmetry groups. This set is considerable extended compared
to the set of groups which are implied from the original set
of equations of fluid mechanics. Specifically a new scaling
group and translational groups of the correlation vectors and
all independent variables have been discovered. These new
statistical groups have important consequences on our under-
standing of turbulent scaling laws to be exemplarily revealed
by two examples. Firstly, one of the key foundations of sta-
tistical turbulence theory is the universal law of the wall with
its essential ingredient is the logarithmic law. We demonstrate
that the log-law fundamentally relies on one of the new trans-
lational groups. Furthermore, we consider a rotating channel
flow, whose scaling behavior can only be described using the
new statistical symmetries. It can be seen that the direction of
rotation axes plays an important role, because different axes
result in very different scaling laws.

1 Introduction
The special importance of turbulence is determined by

its ubiquity in innumerable natural and technical systems. Ex-
amples for natural turbulent flows are atmospheric flow and
oceanic current which to calculate is a crucial point in climate
research. Only with the advent of super computers it became
apparent that the Navier-Stokes equations provide a very good
continuum mechanical model for turbulent flows. Still, the ex-
clusive and direct application of the Navier-Stokes equations
to practical flow problems at high Reynolds numbers without
invoking any additional assumptions is still several decades
away.

However, in most applications it is not at all necessary
to know all the detailed fluctuations of velocity and pressure
present in turbulent flows but for the most part statistical mea-
sures are sufficient.

This was in fact the key idea of O. Reynolds who was
the first to suggest a statistical description of turbulence.
The Navier-Stokes equations, however, constitute a non-linear

and, due to the pressure Poisson equation, a non-local set of
equations. As an immediate consequence of this the equations
for the mean or expectation values for velocity and pressure
leads to an infinite set of statistical equations, or, if truncated
at some level of statistics, an un-closed system is generated.

In order to obtain a much deeper insight into the statisti-
cal behavior of turbulence we presently apply Lie symmetry
group theory to the full infinite set of statistical equations in-
vestigating two canonical turbulent flow situations.

This work presents the most important results from Ober-
lack & Rosteck (2010), extended by new developments con-
cerning the extension of the set of symmetries in Rosteck &
Oberlack (2011) and applications to various rotating channel
flows.

2 Equations of statistical turbulence theory
2.1 Navier-Stokes equations

The initial point of the entire analysis to follow is based
on the three dimensional Navier-Stokes equations for an in-
compressible fluid under the assumption of a Newtonian ma-
terial with constant density and viscosity. In Cartesian tensor
notation we have the continuity equation

∂Uk

∂xk
= 0 (1)

and the momentum equation writes

∂Ui

∂ t
+Uk

∂Ui

∂xk
=− 1

ρ

∂P
∂xi

+ν
∂ 2Ui

∂xk∂xk
, i = 1,2,3 . (2)

t ∈R+, x∈R3, U =U(x, t) and P = P(x, t) represent time, po-
sition vector, instantaneous velocity vector and pressure. The
density ρ and the viscosity ν are positive constants. Further-
more pressure can be normalized with the constant density.
The new pressure term reduces to P∗ = P

ρ
which, inserted into

(2), leads to a modified momentum equation and the asterisk
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is omitted from here on

Mi(x) =
∂Ui

∂ t
+Uk

∂Ui

∂xk
+

∂P
∂xi
−ν

∂ 2Ui

∂xk∂xk
= 0 , (3)

i = 1,2,3, where all terms have been collected on one side.

2.2 Reynolds averaged transport equations
After U and P are decomposed according to the Reynolds

decomposition, i.e. U = Ū + u and P = P̄ + p, we gain an
averaged versions of the continuity equation

∂Ūk

∂xk
= 0 , (4)

and the momentum equations

∂Ūi

∂ t
+Ūk

∂Ūi

∂xk
=− ∂ P̄

∂xi
+ν

∂ 2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i = 1,2,3. (5)

At this point we observe the well-known closure problem
of turbulence since, compared to the original set of equations,
the unknown Reynolds stress tensor uiuk appeared. However,
rather different from the classical approach we will not pro-
ceed with deriving the Reynolds stress tensor transport equa-
tion which contains additional four unclosed tensors. Instead
the multi-point correlation approach is put forward the reason
being twofold.

First, if the infinite set of correlation equations is consid-
ered the closure problem is somewhat bypassed. Second, the
multi-point correlation delivers additional information on the
turbulence statistics such as length scale information which
may not be gained from the Reynolds stress tensor, which is a
single-point approach.

For this we need the equations for the fluctuating quan-
tities u and p which are derived by taking the differences
between the averaged and the non-averaged equations, i.e.
(1)/(4) and (3)/(5). The resulting fluctuation equations read

∂uk

∂xk
= 0 , (6)

and

Ni(x) =
D̄ui

D̄t
+uk

∂Ūi

∂xk
− ∂uiuk

∂xk
+

∂uiuk

∂xk
+

∂ p
∂xi

−ν
∂ 2ui

∂xk∂xk
= 0 (7)

with i = 1,2,3.

2.3 Multi-point correlation equations
The idea of two- and multi-point correlation equations

in turbulence was presumably first established by Keller &

Friedmann (1924). At the time it was assumed that all corre-
lation equations of orders higher than two may be neglected.
Theoretical considerations led to the result that all higher cor-
relations have to be taken into account. Consequently, all
multi-point correlation equations have to be considered in the
symmetry analysis to follow.

Two different sets of multi-point correlation (MPC)
equations will be derived below. The first is based on the
instantaneous values of U and P while the second one is in
accordance with the classical notation based on the fluctuat-
ing quantities u and p.

2.3.1 MPC equations: instantaneous ap-
proach In order to write the MPC equations in a very com-
pact form, we introduce the following notation. The multi-
point velocity correlation tensor of order n + 1 is defined as
follows:

Hi{n+1} = Hi(0)i(1)...i(n) = Ui(0)(x(0)) · . . . ·Ui(n)(x(n)) , (8)

where the first index of the H tensor defines the tensor charac-
ter of the term and the second index in braces denotes the order
of the tensor. The curly brackets point out that not an index of
a tensor but an enumeration is meant. It is important to men-
tion that the indices start with 0 which is an advantage when
introducing a new coordinate system based on the Euclidean
distance of two space points. The value in curly brackets is the
actual order of the tensor and takes into account that counting
starts at zero. Apparently we have the connection to the mean
velocity according to Hi{1} = Hi(0) = Ūi.

In some cases the list of indices is interrupted by one
or more other indices which is pointed out by attaching the
replaced value in brackets to the index

Hi{n+1}[i(l) 7→k(l)] = Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))·

·Uk(l)
(x(l))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) . (9)

This is further extended by

Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)] =

Ui(0)(x(0)) · . . . ·Ui(n)(x(n))Uk(l)
(x(l)) , (10)

where not only that index i(n+1) is replaced by k(l), but also
that the independent variable x(n+1) is replaced by x(l). If in-
dices are missing e.g. between i(l−1) and i(l+1) we define

Hi{n}[i(l) 7→ /0] =

Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) .
(11)

Finally, if the pressure is involved we write

Ii{n}[l] =

Ui(0)(x(0)) · . . . ·Ui(l−1)(x(l−1))P(x(l))Ui(l+1)(x(l+1)) · . . . ·Ui(n)(x(n)) ,
(12)
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which is, considering all the above definitions, sufficient to
derive the MPC equations from the equations of instantaneous
velocity and pressure i.e. equation (1) and (3).

Applying the Reynolds averaging operator according to
the sum below

Si{n+1}(x(0), . . . ,x(n)) =

Mi(0)(x(0))Ui(1)(x(1)) · . . . ·Ui(n)(x(n))

+Ui(0)(x(0))Mi(1)(x(1))Ui(2)(x(2)) · . . . ·Ui(n)(x(n))

+ . . .

+Ui(0)(x(0)) · . . . ·Ui(n−2)(x(n−2))Mi(n−1)(x(n−1))Ui(n)(x(n))

+Ui(0)(x(0)) · . . . ·Ui(n−1)(x(n−1))Mi(n)(x(n)) , (13)

we obtain the S -equation which writes

Si{n+1} =
∂Hi{n+1}

∂ t
+

n

∑
l=0

[
∂Hi{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

+
∂ Ii{n}[l]

∂xi(l)
−ν

∂ 2Hi{n+1}

∂xk(l)
∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (14)

Loosely speaking equation (14) implies the full multi-point
statistical information of the Navier-Stokes equations at the
expense to deal with an infinite dimensional chain of differ-
ential equations starting with order 2 i.e. n = 1. The rather
remarkable consequence of the derivation is that (14) is a lin-
ear equation which considerably simplifies the finding of Lie
symmetries to be pointed out below.

From equation (1) a continuity equation for Hi{n+1} and
Ii{n}[l] can be derived. This leads to

∂Hi{n+1}[i(l) 7→k(l)]

∂xk(l)

= 0 for l = 0, . . . ,n (15)

and

∂ Ii{n}[k][i(l) 7→m(l)]

∂xm(l)

= 0 for k, l = 0, . . . ,n and k 6= l . (16)

At this point we adopt the classic notation of distance
vectors. Accordingly the usual position vector x is employed
and the remaining independent spatial variables are expressed
as the difference of two position vectors x(l) and x(0). The
coordinate transformation are

x = x(0) , r(l) = x(l)− x(0) with l = 1, . . . ,n . (17)

2.3.2 MPC equations: fluctuation ap-
proach In the present subsection we adopt the classical
approach i.e. all correlation functions are based on the fluctu-
ating quantities u and p as introduced by Reynolds and not on

the full instantaneous quantities as in the previous sub-section.
Hence, similar to (8) we have the multi-point correlation for
the fluctuation velocity

Ri{n+1} = Ri(0)i(1)...i(n) = ui(0)(x(0)) · . . . ·ui(n)(x(n)) . (18)

Further, all other correlations defined in sub-section
2.3.1 are defined accordingly i.e. equivalent to the def-
initions (9)-(12) we respectively define Ri{n+1}[i(l) 7→k(l)],
Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)], Ri{n}[i(l) 7→ /0] and Pi{n}[l].

Finally, we define the correlation equation in analogy to
(13) where Mi is replaced by the equation for the fluctuations
(7) denoted by Ni and Ui and P are substituted by ui and p.
The resulting equation is denoted by Ti{n+1}

Ti{n+1} =
∂Ri{n+1}

∂ t
+

n

∑
l=0

[
Ūk(l)

(x(l))
∂Ri{n+1}

∂xk(l)

+Ri{n+1}[i(l) 7→k(l)]
∂Ūi(l)(x(l))

∂xk(l)

+
∂Pi{n}[l]

∂xi(l)

−ν
∂ 2Ri{n+1}

∂xk(l)
∂xk(l)

−Ri{n}[i(l) 7→ /0]
∂ui(l) uk(l)

(x(l))

∂xk(l)

+
∂Ri{n+2}[i(n+1) 7→k(l)][x(n+1) 7→ x(l)]

∂xk(l)

]
= 0

for n = 1, . . . ,∞ . (19)

The first tensor equation of this infinite chain propagates Ri{2}
which has a close link to the Reynolds stress tensor, i.e.

lim
x(k)→x(l)

Ri{2} = lim
x(k)→x(l)

Ri(0)i(1) = ui(0) ui(1)(x(l)) mit k 6= l ,

(20)
which is the key unclosed quantity in the Reynolds stress
transport equation (5). Here x(k) and x(l) can be arbitrary vec-
tors out of x(0), . . . ,x(n).

Also equation (19) implies all statistical information of
the Navier-Stokes equations. However, apart from the lat-
ter simple relation to the Reynolds stress tensor it possesses
the key disadvantage of being a non-linear infinite dimen-
sional system of differential equations which make the ex-
traction of Lie symmetries from this equation rather cumber-
some. There are two essential sources of non-linearity in these
equations. One is the known convection non-linearity which
links the mean velocity to all correlation equations. The sec-
ond source of non-linearity originates from the second row of
equation (19). It is based on the fact that the gradient of the
Reynolds stress tensor is contained in the equations of fluctu-
ation. Hence, considering the following identity, this term is
not equal to zero for turbulent flows and for multi-point cor-
relation tensors of order higher than two

Ri{1}[i(l) 7→ /0] = 0 . (21)

As a direct consequence all multi-point correlation equations
of order n > 1 are coupled to the two-point correlation equa-
tion.
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From equation (6) a continuity equation for Ri{n+1} and
Pi{n}[l] can be derived. They have identical form to (15) and
(16) for Hi{n+1} and Ii{n} and hence will be omitted for brevity.

It is apparent that there is a unique relation between
the instantaneous (H, I) and the fluctuation approach (R, P)
though the actual crossover is somewhat cumbersome in par-
ticular with increasing tensor order because they may only be
given in recursive form. Since needed later we give the first
relations

Hi(0) = Ūi(0) (22)

Hi(0)i(1) = Ūi(0)Ūi(1) +Ri(0)i(1) (23)

Hi(0)i(1)i(2) = Ūi(0)Ūi(1)Ūi(2) +Ri(0)i(1)Ūi(2)

+Ri(0)i(2)Ūi(1) +Ri(1)i(2)Ūi(0) +Ri(0)i(1)i(2) (24)

...
...

where the indices also refer to the spatial points as indicated.
With the identities (22)-(24) and alike equations it be-

comes apparent that the rather compact H-notation in equa-
tion (14) leads to a highly non-linear and complex version of
the MPC equation if written in R-notation i.e. based on the
mean and fluctuating quantities.

As a special case of the equations (19) we consider n = 1
including the (x,r)-coordinate system (17) and we derive the
equation for the two-point correlation tensor. To abbreviate
the notation we introduce the following nomenclature:

Ri{2} = Rii(1) = Ri j . (25)

In this case equation (19) reduces to

Ti{2} =
D̄Ri j

D̄t
+Rk j

∂Ūi(x, t)
∂xk

+Rik
∂Ū j(x, t)

∂xk

∣∣∣∣
x+r

+[Ūk (x+ r, t)−Ūk (x, t)]
∂Ri j

∂ rk
+

∂ pu j

∂xi
−

∂ pu j

∂ ri

+
∂ui p
∂ r j
−ν

[
∂ 2Ri j

∂xk∂xk
−2

∂ 2Ri j

∂xk∂ rk
+2

∂ 2Ri j

∂ rk∂ rk

]

+
∂R(ik) j

∂xk
− ∂

∂ rk

[
R(ik) j−Ri( jk)

]
= 0 . (26)

The vectors pu j and ui p are special cases of Pi{n}[k] and
defined as

pu j(x,r, t) = p(x(0), t)u j(x(1), t)

ui p(x,r, t) = ui(x(0), t) p(x(1), t) . (27)

For the two-point case the continuity equations take the
form

∂Ri j

∂xi
−

∂Ri j

∂ ri
= 0 ,

∂Ri j

∂ r j
= 0 (28)

and

∂ pui
∂ ri

= 0 ,
∂u j p
∂x j

−
∂u j p
∂ r j

= 0. (29)

The non-locality of the two- and multi-point correlation equa-
tions is most obvious when we use the commutation of
the two-point correlation tensor. Given ui(x(0))u j(x(1)) =
u j(x(1))ui(x(0)) with equation (17) leads to the functional re-
lations

Ri j(x,r; t) = R ji(x+ r,−r; t) (30)

and

pu j(x,r; t) = u j p(x+ r,−r; t) . (31)

Analogous identities can be derived for all other two- and
multi-point correlation tensors.

3 Symmetries of statistical transport equa-
tions
In the present section we first revisit the Lie symmetries

of the Euler and Navier-Stokes equations. In turn they will
all be transferred to its corresponding ones for the MPC equa-
tions. In the second part we show that the MPC equations
admit even more Lie symmetries which are not reflected in
the original Euler and Navier-Stokes equations.

Both sets of symmetries will finally be employed in sec-
tion 4 to show that classical and new scaling laws may not
be determined from the classical symmetries alone but essen-
tially rely on the new symmetries which we will call statistical
symmetries.

In order to appreciate the analysis on Lie symmetries be-
low we will define its basic concepts including that of invari-
ant solutions which in the fluid mechanics community is usu-
ally referred to as self-similar solution though this in principle
is limited to invariant solutions with certain scaling properties
involved. In the turbulence community these types of solu-
tions are usually denoted turbulent scaling laws though there
they are in most cases not solutions of equations derived from
first principles.

Suppose the system of partial differential equations un-
der investigation is given by

F(y,z,z(1),z(2), . . .) = 0, (32)

where y and z are the independent and the dependent variables
respectively and z(n) refers to all nth-order derivatives of any
component of z with respect to any component of y. A trans-
formation

y = φ(y∗,z∗) and z = ψ(y∗,z∗) (33)
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is called a symmetry or symmetry transformation of the equa-
tion (32) if the following equivalence holds

F(y,z,z(1), . . .) = 0 ⇔ F(y∗,z∗,z∗(1), . . .) = 0, (34)

i.e. the transformation (33) substituted into (32) does not
change the form of equation (32) if written in the new vari-
ables y∗ and z∗.

In order to make this concept more coming alive we con-
sider the 1D heat equation

∂T
∂ t

=
∂ 2T
∂x2 (35)

which, beside other symmetries, admits the scaling symmetry

t∗ = e2α1 t, x∗ = eα1 x, T ∗ = eα2 T, (36)

with the two independent group parameter (α1,α2) ∈ R. For
brevity the underlying two symmetries are presently com-
bined into one transformation (36). It is rather apparent that
condition (34) is fulfilled since the implementation of (36)
into (35) leaves the equation invariant if written in the new
variables denoted by ∗.

A second concept which will be heavily relied on is that
of an invariant. It refers to quantities that do not change struc-
ture under a given symmetry i. e.

I(y,z) = I(φ(y∗,z∗),ψ(y∗,z∗)) = I(y∗,z∗) (37)

or in other words the form of I is invariant under the transfor-
mation. This may easily be clarified using the two-parameter
symmetry (36). Beside others, in fact infinitely many, we may
define and easily prove the existence of the two subsequent
invariants

δ =
x√
t

=
x∗√
t∗

, ∆ =
T

t
α2
2α1

=
T ∗

t∗
α2
2α1

. (38)

The final concept in this context is that of an invariant
solution. It designates to the remarkable finding that the in-
variants may be taken as new dependent and independent vari-
ables which in turn leads to a reduction of the number of the
independent variables often referred to as symmetry reduc-
tion. It is exactly this property of self-similar solutions which
is profitable for some further analysis since less dimensions
are involved.

For the example of the heat equation above we introduce
δ and ∆ as new independent variables, i.e. we implement its
definitions (38) into (35) and obtain the reduced differential
equation

d2∆

dδ 2 +
1
2

δ
d∆

dδ
− α2

2α1
∆ = 0. (39)

It should be noted that the actual computation of the sym-
metries, the invariants and the invariant solutions is extremely
simplified if the infinitesimal form is invoked (see Bluman
et al., 2009), which has been left out in the present contri-
bution.

3.1 Symmetries of the Euler and Navier-
Stokes equations

The Euler equations, i.e. equation (1) and (3) with ν = 0
admit a ten-parameter symmetry group,

T1 : t∗ = t +a1, x∗ = x, U∗ = U , P∗ = P,

T2 : t∗ = t, x∗ = ea2 x, U∗ = ea2U , P∗ = e2a2 P,

T3 : t∗ = ea3 t, x∗ = x, U∗ = e−a3U , P∗ = e−2a3 P,

T4−T6 : t∗ = t, x∗ = a · x, U∗ = a ·U , P∗ = P,

T7−T9 : t∗ = t, x∗ = x+ f (t), U∗ = U +
d f
dt

,

P∗ = P− x · d
2 f

dt2 ,

T10 : t∗ = t, x∗ = x, U∗ = U , P∗ = P+ f4(t) , (40)

where a1-a3 are independent group-parameters, a denotes a
constant rotation matrix with the properties a ·aT = aT ·a = I
and |a|= 1. Moreover f (t) = ( f1(t), f2(t), f3(t))T with twice
differentiable functions f1- f3 and f4(t) may have arbitrary
time dependence.

Each of the symmetries has a distinct physical meaning.
T1 means time translation i.e. any physical experiment is inde-
pendent of the actual starting point. T4-T6 designate rotation
invariance which refers to the possibility to let an experiment
undergo a fixed rotation without changing physics. Note, that
this does mean moving into a rotating system since this does
significantly change physics and hence is not a symmetry. The
symmetries T7-T9 comprise translational invariance in space
for constant f1- f3 as well as the classical Galilei group if f1-
f3 are linear in time. These are key properties of classical me-
chanics referring to the fact that physics is independent of the
location or if moved at a constant speed. In its rather general
form T7-T9 and T10 are direct consequences of an incompress-
ible flow and do not have a counterpart in the case of com-
pressible flows. The complete record of all point-symmetries
(40) was first published by Pukhnachev Pukhnachev (1972).

Invoking a formal transfer from Euler to the Navier-
Stokes equations symmetry properties change and a recom-
bination of the two scaling symmetries T2 and T3 is observed

TNaSt : t∗ = e2a4 t, x∗ = ea4 x, U∗ = e−a4U , P∗ = e−2a4 P,
(41)

while the remaining groups stay unaltered.
It should be noted that additional symmetries exist for

dimensional restricted cases such as plane or axisymmetric
flows (see Andreev & Rodionov, 1988; Cantwell, 1978).

3.2 Symmetries of the MPC implied by Euler
and Navier-Stokes symmetries

Adopting the classical Reynolds notation first, where the
instantaneous quantities are split into mean and fluctuating
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values, we may directly derive from (40)

T̄1 : t∗ = t +a1, x∗ = x, r∗(l) = r(l), Ū∗ = Ū ,

P̄∗ = P̄, R∗{n} = R{n}, P∗{n} = P{n},

T̄2 : t∗ = t, x∗ = ea2 x, r∗(l) = ea2 r(l), Ū∗ = ea2Ū ,

P̄∗ = e2a2 P̄, R∗{n} = ena2R{n},P
∗
{n} = e(n+2)a2P{n},

T̄3 : t∗ = ea3 t, x∗ = x, r∗(l) = r(l), Ū∗ = e−a3Ū ,

P̄∗ = e−2a3 P̄, R∗{n} = e−na3R{n},

P∗{n} = e−(n+2)a3P{n},

T̄4−T̄6 : t∗ = t, x∗ = a · x, r∗(l) = r(l), Ū∗ = a ·Ū , P̄∗ = P̄,

R∗{n} = A{n}⊗R{n}, P∗{n} = A{n}⊗P{n},

T̄7−T̄9 : t∗ = t, x∗ = x+ f (t), r∗(l) = r(l), Ū∗ = Ū +
d f
dt

,

P̄∗ = P̄− x · d
2 f

dt2 , R∗{n} = R{n}, P∗{n} = P{n},

T̄10 : t∗ = t , x∗ = x, r∗(l) = r(l), Ū∗ = Ū ,

P̄∗ = P̄+ f4(t), R∗{n} = R{n}, P∗{n} = P{n}, (42)

where all function and parameter definitions are adopted
from 3.1 and A is a concatenation of rotation matrices as
Ai(0) j(0)i(1) j(1)...i(n) j(n) = ai(0) j(0) ai(1) j(1) . . .ai(n) j(n) .

The latter symmetries may also be transformed into the
H-notation. This will be omitted for briefness and also be-
cause the turbulent scaling laws to be derived and discussed
below are rarely considered in this notation.

3.3 Statistical symmetries of the MPC equa-
tions

First hints towards a considerably extended set of sym-
metries for the MPC equation in the form (14) or (19) may
e.g. be taken from Oberlack (2000) and Khujadze & Oberlack
(2004). Its importance was not observed therein - rather it was
stated that they may be mathematical artifacts of the averag-
ing process and probably physically irrelevant. The set of new
symmetries was first presented and its key importance for tur-
bulence recognized in Oberlack & Rosteck (2010) and later
extended in Rosteck & Oberlack (2011).

The actual finding of symmetries of the non-rotating
MPC is rather difficult since an infinite system of equations
has to be analyzed. For this task, however, it is considerably
easier to investigate the linear H-I-system (14)-(16) rather
than the non-linear R-P-system (19) extended by its corre-
sponding continuity equations. However, since the latter for-
mulation is more common, the symmetries will finally be re-
written in this notation.

This entire new set of symmetries for the H-I-system

T̄ ′1 : t∗ = t, x∗ = x, r∗(l) = r(l) +a(l),

H∗{n} = H{n}, I∗{n} = I{n}, (43)

T̄ ′2{n} : t∗ = t, x∗ = x, r∗(l) = r(l),

H∗{n} = H{n}+C{n}, I∗{n} = I{n}+D{n}, (44)

T̄ ′s : t∗ = t, x∗ = x, r∗(l) = r(l),

H∗{n} = easH{n}, I∗{n} = eas I{n}, (45)

can be seperated in three sets of symmetries. In the translation
of the relative coordinates (43) a(l) represents the related set
of group parameters. Note that this group is not related to the
classical translation group in usual x-space (here T7 − T9 in
equation (40) with f = const.).

The second set of statistical symmetries was in fact al-
ready partially identified in Oberlack (2000), however, falsely
taken for the Galilean group, where C{n} and D{n} refer to
group parameters. These symmetries have been extended in
Rosteck & Oberlack (2011), so that C{n} is a function of time
and then a derivative of C{n} appears also for I∗{n}.

It is essentially a part of this latter new group that is one
of the key ingredients for he logarithmic law of the wall which
in fact constitutes a solution of the infinite set of MPC equa-
tions to be shown below.

The third statistical group (45) that has been identified
denotes simple scaling of all MPC tensors.

Furthermore there exists at least one more symmetry,
which consists of a combination of multi-point velocity and
of pressure-velocity correlations (see Rosteck & Oberlack,
2011). Its concrete form is omitted at this point because it
is not needed for the further considerations.

It should be finally added that due to the linearity of the
MPC equation (14) another rather generic symmetry is admit-
ted. This is in fact featured by all linear differential equations
(see Bluman et al., 2009). It merely reflects the super-position
principle of linear differential equations though usually can-
not directly be adopted for the practical derivation of group
invariant solutions.

Transforming (43)-(45) into classical notation we have

T̄ ′1 : t∗ = t, x∗ = x, r∗(l) = r(l) +a(l), Ū∗ = Ū ,

P̄∗ = P̄, R∗{n} = R{n}, P∗{n} = P{n}, (46)

T̄ ′2{1} : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗i(0)
= Ūi(0) +Ci(0) ,

R∗i(0)i(1)
= Ri(0)i(1) +Ūi(0)Ūi(1)−(

Ūi(0) +Ci(0)

)(
Ūi(1) +Ci(1)

)
, · · · (47)

T̄ ′2{2} : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗i(0)
= Ūi(0) ,

R∗i(0)i(1)
= Ri(0)i(1) +Ci(0)i(1) , · · · (48)

T̄ ′s : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗i(0)
= easŪi(0) ,

R∗i(0)i(1)
= eas

[
Ri(0)i(1) +(1− eas)Ūi(0)Ūi(1)

]
, · · · ,

(49)

where for the translation symmetry (44) only n = 1 and n = 2
were considered because despite of the fact that each of these
groups appear to be almost trivial, since they are simple trans-
lational groups in the dependent coordinates, they exhibit an
increasingly complexity with increasing tensor order if writ-
ten in the (Ū ,R) formulation.
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4 Turbulent scaling laws
The rather old idea of a turbulent scaling law (see Pope,

2000) usually refers to two distinct facts:

(i) Introducing a certain set of parameters to non-
dimensionalize statistical turbulence variables such as
the mean velocity leads to a collapse of data if one ex-
ternal parameter is varied such as the Reynolds number.

(ii) An explicit mathematical function is given for statis-
tical turbulence variables such as the mean velocity,
Reynolds stresses, etc..

Presently we primarily contemplate with the second def-
inition while the normalization according to (i) will be intro-
duced on dimensional reasons as well as employing classical
arguments. In order to rigorously derive such laws directly
from the MPC equations we employ the previously defined
idea of a group invariant solution.

This appears to be the driving mechanism for statistical
turbulence quantities which have the strong tendency to es-
tablish invariant solutions of the MPC equations while at the
same time maximizing the number of involved symmetries be-
ing only limited by the boundary condtion.

In the remaining two subsections we adopt the latter con-
dition for the derivation of the accordant invariant solution al-
ternatively later also named turbulent scaling laws, which is
the usual phrase in the turbulence literature.

4.1 Stationary wall-bounded turbulent shear
flows

Due to its eminent practical importance wall-bounded
shear flows are by far the most intensively investigated tur-
bulent flow thereby employing a vast number of numerical,
experimental and modeling approaches and this, in fact, for
more than a century.

From all the theoretical approaches the universal law of
the wall is the most widely cited and also accepted approach
with its essential ingredient being the logarithmic law of the
wall. Though a variety of different approaches have been put
forward for its derivation neither of them have employed the
full multi-point equations, which are the basis for statistical
turbulence, nor do they solve an equation that is related to the
Navier-Stokes equations.

In the following we demonstrate that the log-law is an
invariant solution of the infinite set of multi-point equations
and further it is shown that it essentially relies on one of the
new symmetry groups (44) or more specifically (47).

Already in Oberlack (1995) it was observed that in the
limit of high Reynolds numbers and |r| � ηK the logarithmic
wall law allows for a self-similar solution of the two-point
correlation equation (26). This is rather remarkable since for
inhomogeneous flows equation (26) is not a partial differen-
tial equation in the classic sense but a non-local differential
equation. Non-locality is denoted by the fact that for a given
point x and r not only the dependent variables and derivatives
are connected but also terms “at the point” x + r contribute to
the equation. In equation (26) this is given by the last term in
the first row and the first term in the second row.

Indeed, the terms mentioned above were the major cause
for the limitation of the two-point correlation equation to be

only applicable to homogeneous flows and, even more chal-
lenging, if the Fourier transformed version was considered.
In particular the above mentioned non-local terms may not be
transformed into Fourier space. It is important to note that this
limitation is not present for the symmetry approach.

Within this subsection we exclusively examine wall-
parallel turbulent flows only depending on the wall-normal
coordinate x2. Further, we only explicitly write the two-point
correlation Ri j though all results are also valid for all higher
order correlations. This finally yields

Ū1 = Ū1(x2), Ri j = Ri j(x2,r), . . . . (50)

With these geometrical assumptions we identify a re-
duced set of groups. Necessary for the calculation of the sub-
sequent scaling laws are the two scaling groups T̄2 and T̄3 and
the translation invariance form T̄7− T̄9 in x2-direction in (42).
Additionally, it is necessary to use the above-mentioned sta-
tistical symmetries, especially the translational group in cor-
relation space (46), the translational group (47) for Ū1, the
translational group (48) for Ri j and finally the scaling group
(49)

With the know symmetries of the MPC equations we
may in a final step generate invariants and as a consequence
invariant solutions as have been done for the heat equation
above in equation (38). As was noted above the actual cal-
culations may be done invoking infinitesimal transformations
(see Bluman et al., 2009) leading to an equivalent form of the
invariance condition.

For the reason of briefness we skip the lengthy compu-
tations and obtain the invariance condition for the MPC equa-
tion

dx2

k2x2 + kx2

=
dr[k]

k2r[k] + kr[k]

=
dŪ1

(k2− k3 + ks)Ū1 + kŪ1

=
dR[i j]

ξR[i j]

= · · · with

ξRi j = (2k2−2k3 + ks)Ri j− (ksŪ1(x2)Ū1(x2 + r2)+

kŪ1
(Ū1(x2)+Ū1(x2 + r2))

)
δi1δ j1 + kRi j , (51)

where no summation is implied by the indices in square
brackets and instead a concatenation is implied where the
indices are consecutively assigned its values. For brevity
explicit dependencies on the independent variables are only
given where there is an unambiguity. Any solution of (51) for
an arbitrary set of parameters ki generates a set of invariants
which are in fact invariant solutions and hence if implemented
into the MPC equation leads to a symmetry reduction.

In fact, with a distinct combinations of parameters k2,
k3 and ks a multitude of flows may be described where here
we first focus on the log-law. We may keep in mind that Ū1
exclusively depends on x2 and not on r.

Considering the classic case of the logarithmic wall law
the reason of the appearing symmetry breaking can be found
by revisiting the key idea of von Kármán. He assumed that
close to the wall the wall-friction velocity uτ is the only pa-
rameter determining the flow. This condition causes a sym-
metry breaking of the form k2− k3 + ks = 0 (see Oberlack &
Rosteck, 2010).
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Under this assumption (51) leads to the extended classi-
cal functional form of the mean velocity

Ū1 =
kŪ1

k2
ln
(

x2 +
kx2

k2

)
+Clog (52)

and the invariant correlations read

r̃k =
rk

x2 + kx2
k2

,

Ri j =
(

x2 +
kx2

k2

)− ks
k2

R̃i j(r̃)+
kRi j

ks
for i j 6= 11

R11 = R̃11(r̃)
(

x2 +
kx2

k2

)−ks/k2

−
k2

Ū1

k2
2

ln2
(

x2 +
kx2

k2

)

−

(
2

kŪ1

k2
Clog +

k2
Ū1

k2
2

ln(r̃2 +1)

)
ln
(

x2 +
kx2

k2

)
−
(

Clog kŪ1

k2
ln(r̃2 +1)+C2

log−
kR11

ks

)
, . . . , (53)

where Clog in (52) and the variables marked with “˜” in (53)
are constants of integration. These are the new invariant co-
ordinates solely depending on r̃. Clog is an exception since
according to (50) Ū1 depends on x2 alone.

Obviously equation (52) is a slightly generalized form
of the classic logarithmic wall law since by the term

kx2
k2

a
displacement of the origin is admitted. In its classical dimen-
sionless form it reads

u+ =
1
κ

ln(x+
2 +A+)+C . (54)

Moreover, the two-point correlation can be reduced to
Reynolds stresses by taking the limit r→ 0 so that we gain

Ri j = (x+
2 +A+)γ Di j +Bi j , i j 6= 11 (55)

R11 = D11(x+
2 +A+)γ − 1

κ2 ln2(x+
2 +A+)

−2
1
κ

C ln(x+
2 +A+)+B11 (56)

where the new constants γ , Di j and Bi j are combinations of
the kα in equation (53). It is remarkable to note, that γ is
the same constant in all higher moments, so that the main be-
havior of these scaling laws only depends on a reduced set of
parameters.

As betokened above the non-locality of the two- and
multi-point correlation equations appears not to hinder the
analysis and, of course, a reduced form of the equation may
be given for any multi-point correlation tensor equation.

The invariant variable r̃ in (53) for the logarithmic wall
law was already given by Hunt et al. (1987) though in a less
general form and has been numerically verified by DNS data
of a turbulent channel flow. Especially for the two-point cor-
relation tensor R22 this data matches very well (not shown
here).

4.2 Rotating channel
The second application to be focussed on is the rotating

channel flow, where different rotational axes will be consid-
ered.

Figure 1. Flow geometry of the pressure driven channel
flow.

Using our symmetry analysis in order to gain scaling
laws, the calculated symmetries have to be transformed into
the coordinate system of a rotating frame. Then the invari-
ant system can be developed and for each rotational axis the
symmetries used in this case must be determined.

This leads to a rather complex and involved form of the
operator (51) so details have to be omitted and only results for
the mean flow will be given.

We first assume that the rotational axis lies along the x3
direction i.e. only Ω3 is non-zero. Applying Lie symmetry
analysis the classical symmetries i.e. scaling in space and the
Galilei invariance are used and they are extended by the action
of the new scaling symmetry (49) and the translation of the
velocities (47). Solving the resulting system for the invariant
solution, we gain

Ū1(x2) = Cxβ

2 +A , (57)

where C, β and A are constants
Assuming that β = 1 and re-scaling based on Ω3 we ob-

tain the well-known scaling law for a rotating channel about
the x3-axis (see Oberlack, 2001)

Ū1(x2) = αrotΩ3x2 +Ūcl . (58)

A clear validation of (58) is given in figure 2 for various Ω3
taken from the DNS of Kristoffersen & Andersson (1993). In-
teresting enough the value for αrot appears to be very close to
2.

Next, assuming rotation about x2, two velocity compo-
nents Ū1 and Ū3 have to be taken into consideration since the
Coriolis force induces a cross flow. Again, both averaged ve-
locities may only depend on x2. Different to the first case is
that one additional symmetry appears, namely translation in
time i.e. T̄ ′1 in (43). From this we derive the new Ω2 depend-
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Figure 2. Comparison of the scaling law (−) in (58) with
the DNS data (· · · ) of Kristoffersen & Andersson (1993) at
various rotation rates Rom = Ω3h

um
and Reτ = 194.

ing scaling laws

Ū1 =
( y

h

)b [
a1 cos

(
cRo2 · ln

y
h

)
+a2 sin

(
cRo2 · ln

y
h

)]
+d1(Ro2)

Ū3 =
( y

h

)b [
a1 sin

(
cRo2 · ln

y
h

)
−a2 cos

(
cRo2 · ln

y
h

)]
+d2(Ro2) . (59)

A first comparison to DNS data is done for the non-rotating
case. Here we employ the DNS data of Hoyas & Jimenez
(2006) at Reτ = 2003 and compare them the scaling law (59a)
with Ω2 = 0. Rewriting it in defect scaling we obtain

Ucl −Ū1

uτ

= a
( y

h

)b
(60)

where Ucl is the velocity at the center of the channel and uτ is
the friction velocity. Figure 3 shows an almost perfect agree-
ment of the scaling law (60) with the latter DNS where the
parameters are fitted to a = 6.43 and b = 1.93.

Finally we consider the rotating case and compare the
DNS data of Mehdizadeh & Oberlack (2010) at Reτ = 360
with the scaling law (59). Results are depicted for two differ-
ent rotation numbers Ro2 with

Ro2 =
2Ω2h
uτ0

(61)

in the figures 4 and 5 exhibiting an excellent fit in the center
of the channel for all cases. uτ0 refers to the friction velocity
of the non-rotating case. It is to note from all the DNS data

Figure 3. Comparison of the scaling law (−) in (60) with the
DNS data (· · · ) of Hoyas & Jimenez (2006) at Reτ = 2003.

Figure 4. Comparison of the scaling law (−) in (59) with the
DNS data (· · · ) of Mehdizadeh & Oberlack (2010) at Ro2 =
0.011.

sets in Mehdizadeh & Oberlack (2010) we find that with an
increasing Ω2 the magnitude of Ū1 and Ū3 switch position
since with increasing rotation rates Ū1 is suppressed while Ū3
increases up to a certain point and decreases again though to
a smaller extend compared to Ū1. This behavior is exactly
described by the scaling law (59).
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Figure 5. Comparison of the scaling law (−) in (59) with the
DNS data (· · · ) of Mehdizadeh & Oberlack (2010) at Ro2 =
0.18.

5 Summary and outlook
Within the present contribution it was shown that the ad-

mitted symmetry groups of the infinite set of multi-point cor-
relation equations are considerable extended by three classes
of groups compared to those originally stemming from the
Euler and the Navier-Stokes equations. In fact, it was demon-
strated that it is exactly these symmetries which are essentially
needed to validate certain classical scaling laws such as the
log-law from first principles and also to derive a large set of
new scaling laws.

Implicitly, symmetries have been used in turbulence
modeling for several decades since essentially all symmetries
of Euler and the Navier-Stokes equations have been made part
of modern turbulence models. Still, this is only partially true
for the new statistical symmetries. In fact, some of them have
been employed even in very early turbulence models since
many of them where calibrated against the log-law. Many
other symmetries, however, have never been made use of and
in fact, it might be even impossible to make turbulence mod-
els consistent with some of the symmetries such as the new
scaling symmetry (45).

Still, even with these new symmetry groups at hand
which give a much deeper understanding on turbulence statis-
tics there are still some key open questions to be answered. (i)
So far completeness of all admitted symmetries of the MPC
equation has not been shown. This appears to be necessary
not only from a theoretical point of few but rather essential to
generate scaling for all higher moments. (ii) From turbulence
data it is apparent that the appearing group parameters do have
certain decisive values which are to be determined. In some
very rare cases such as the classical decaying turbulence case
values such as the decay exponent may be determined from
integral invariants. Still, a general scheme is unknown. (iii)
Finally, we clearly observe that certain scaling laws such as

the log law only cover certain regions of a turbulent flow and
are usually embedded within other layers of turbulence. Still,
the matching of turbulent scaling laws is still an open ques-
tion.
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