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ABSTRACT

Direct numerical simulations (DNS) of temporally devel-
oping turbulent mixing layer with non-reactive and reactive
scalar transport up to Sc¢ = 30.0 have been conducted to
investigate the fractal geometry of scalar surfaces in turbu-
lence. Although contour lines of scalar include small scale
wrinkling for high Sec, global pattern is similar to that of
moderate Sc cases. Effects of Schmidt number and chemi-
cal reaction are discussed by applying fractal analyses based
on a box-counting method for scalar surfaces obtained from
DNS. For high Se, two fractal dimensions can be defined.
The first fractal can be observed in relatively large scales.
The dimension of the first fractal coincides with that of mod-
erate Sc number case in the inertial subrange (D = 2.5).
The second fractal dimension of non-reactive scalar can be
defined in small scales and shows larger values (about 2.8),
which denotes self-similarity of scalar surfaces smaller than
the Kolmogorov length. The second fractal dimension of re-
active scalar decreases to 2.65 due to the chemical reaction.
The inner cutoff of the second fractal reaches to about 10
times Batchelor length scale for high Sec.

INTRODUCTION

The mixing transition in turbulent free shear flows is very
important phenomenon in many engineering applications
such as chemical process and combustion. This phenomenon
can be observed after the turbulence transition of the flow
field and enhances scalar mixing significantly (Konrad, 1974;
Dimotakis, 2000). However, detailed mechanism of the mix-
ing transition has not been clarified yet. In our previous
studies on fine scale structure of turbulence (Tanahashi et
al., 1997; 2001; 2004; 2008; Wang et al., 2007), the exis-
tence of universal fine scale structure (coherent fine scale
structure), which is independent on Reynolds number and
type of flow field, have been revealed. The diameter and the
maximum azimuthal velocity of coherent fine scale eddies
can be scaled by Kolmogorov length () and Kolmogorov
velocity (uy), respectively. Except for near-wall turbulence
(Tanahashi et al., 2004), the most expected diameter and
maximum azimuthal velocity are 8n and 1.2ug. It should be
noted that the azimuthal velocity of intense fine scale eddies
reaches to 3 ~ 4u’, . and are closely related to the inter-
mittency of energy dissipation rate. Since the coherent fine
scale structure is a dissipative structure of turbulence and
the smallest vortical structure, they would have very impor-
tant roles on the mixing of heat and mass in turbulence.

In turbulent combustion research, fractal geometry of
flame surfaces is very important because the area of flame
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surface is frequently represented by the ratio of the inner
to outer cutoff scale raised to the 2 — D power (Gouldin
et al., 1989) where D is fractal dimension of the flame sur-
face. The fractal dimension and the inner cutoff of the flame
surface has been investigated by many experimental stud-
ies (Yoshida et al., 1994; Smallwood et al., 1995; Giilder et
al., 2000). However, Giilder et al. (2000) and Giilder and
Smallwood (1995) have suggested that the fractal dimen-
sion and inner cutoff strongly depend on the measurement
and do not agree with expressions proposed by many stud-
ies (Peters, 1986; Gouldin, 1987; Giilder, 1990; Poinsot et
al., 1990). Therefore, detailed information about the inner
cutoff and fractal dimension are necessary to construct the
high accuracy turbulent combustion model.

In our previous study (Tanahashi et al., 2007), fractal
characteristics of scalar surfaces in turbulent mixing layer
have been investigated up to Rew,0 = 1900 for Sc = 0.6.
Fractal dimension of scalar surfaces in the fully-developed
turbulent state is independent to Reynolds number and coin-
cides with the theoretical expectation of Mandelbrot (1975)
(D ~ 2.5). The inner cutoff is 8 times Kolmogorov length
both in the transitional and fully-developed state, and coin-
cides with the most expected diameter of coherent fine scale
eddy in turbulence. The mixing transition is characterized
by the drastic increase of difference between the outer and
inner cutoffs (Rey ~ 100). DNS of reactive scalars show that
fractal dimension decreases to 2.40 ~ 2.45 due to the chem-
ical reaction. The inner cutoff, however, is not affected by
the chemical reaction and agrees with that of non-reactive
scalars for moderate Sc number.

In this study, direct numerical simulations (DNS) of tur-
bulent mixing layer with non-reactive and reactive scalar
transports have been conducted to investigate fractal geom-
etry of scalar surface and relationship between scalar mixing
and fine scale structure in turbulence for high Sc¢ number.

DIRECT NUMERICAL SIMULATION OF TURBULENT
MIXING LAYER

DNS of temporally developing turbulent mixing layer
with different Sc were conducted by solving following conti-
nuity equation, incompressible Navier-Stokes equations and
mass conservation equations;

V.u=0, (1)
6u—‘,—wxu— VP + Viu (2)
ot N Rew,O ’
Y4 1,
—_— VYy = ——V7Y4 — ReYapY] 3
5 tuVYa= 5o VIYa - ReYaYp,  (3)
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(a)

Figure 1: Distributions of scalar mass fraction in fully-developed turbulent state (¢ = 150) for Re,, 0 = 500. (a):Rc = 0,

Se = 0.6, (b):Rec =0, Sc=30.0 and (c):Rc =1, Sc = 30.0.

Table 1: Numerical parameters for DNS of temporally-
developing turbulent mixing layer with non-reactive and
reactive passive scalar(Rey,0 = 500).

Run ID Rc Sc Nz x Ny X N,
TMLPS1 0 0.6 216 x 325 x 144
TMLPSH1 0 3.0 480 x 721 x 320
TMLPSH2 0 6.0 480 x 721 x 320
TMLPSH3 0 30.0 1152 x 1729 x 768
TMLRS1 1 0.6 216 x 325 x 144
TMLRSH1 1 3.0 480 x 721 x 320
TMLRSH2 1 6.0 480 x 721 x 320
TMLRSH3 1 30.0 1152 x 1729 x 768

oYg

1 .
+u-VYg = —VZYB — RcYaYp,
ReSc

p (4)

where u, w, P and Y; denote velocity vector, vorticity vector,
total pressure (P = p+wuwu/2) and mass fraction of species i,
respectively. These equations are non-dimensionalized by a
mean velocity difference (AU), an initial vorticity thickness
(0w,0 = AU/(0u/0Y)maz) and mass concentration in the
free stream (Y;,0). Dimensionless groups in above equations
are Reynolds number (Re,,0), Schmidt number (Sc) and
non-dimensional reaction rate (Rc).

The initial mean velocity distribution was given by a
hyperbolic tangent velocity profile: wu(y) = 0.5tanh(2y).
Three dimensional random perturbation which has the same
turbulent intensity profile with the experimental results
(Wygnanski and Fielder, 1970) and banded white noise
|ki| < 21 was superposed on the mean velocity (Tanahashi
et al., 2001). As for the initial concentration profile of pas-
sive scalars are also assumed to be hyperbolic tangent one;
Ya(y) = 0.5+0.5tanh(2y), Yg(y) = 0.5—0.5tanh(2y). Com-
putational domain was selected to be 4A x 6A x 8/3A, where
A is the most unstable wave length for the initial mean ve-
locity profile.

All variables are expanded by Fourier series in stream-
wise (z) and spanwise (z) directions and by sine/cosine series
in transverse (y) direction. The boundary condition is peri-
odic in the streamwise and spanwise directions and free-slip
in the transverse direction. In the spanwise direction, the
size of the computational domain is selected due to the 3/2
instability of the two-dimensional roller (Pierrehumbert and
Widnall, 1982). In the transverse direction, that is selected
to be enough to avoid mirror vortex effects caused by the
free slip boundary condition.

DNS were conducted for Rey,,0 = 500 and Schmidt num-
ber is changed for Sc = 0.6, 3.0, 6.0 and 30.0. To investigate
effects of chemical reaction, DNS are conducted for Rc = 0
and 1 for each cases by assuming a single step reaction: A +
B = 2P. Table 1 shows numerical parameters of the present
DNS. The largest DNS are performed in 1152 X 1729 X
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Figure 2: Contour lines of mass fraction (Y'=0.5) on a typical
z—y plane (a) and NL—L plots for 0.5 contour line of passive
scalar on = — y plane (b) for Sc=0.6.

768 grid points. Aliasing errors from nonlinear terms in the
governing equations are fully removed by 3/2 rule and time
integration is conducted by the low-storage version of 3rd
order Runge-Kutta scheme. Computations were carried out
until after the saturation of the subharmonic mode (¢ = 150)
for all cases.

FRACTAL GEOMETRY OF SCALAR SURFACES

Fractal analyses

Figure 1 shows distributions of mass fraction on a z — y
plane in fully-developed turbulent state (¢ = 150) for several
representative cases. With the increase of Sec, scalar distri-
bution tends to include small scale fluctuation obliviously.
For high Sc number reactive case, the scalar distribution be-
comes more complex, suggesting visualization is not enough
to investigate characteristics of scalar mixing. In this study,
fractal analyses are introduced similar to our previous study
(Tanahashi et al., 2007). As for contour lines on two di-
mensional cross sections or contour surfaces of scalar, a
two-dimensional (2D) or three-dimensional (3D) box count-
ing methods are applied. In the 2D box counting method,
contour lines on each x — y or y — z plane such as in Fig.
2(a) are analyzed, and one fractal plot (NL — L plot) is ob-
tained by averaging counting results on all planes as shown
in Fig. 2(b). Here, L is the measure and NL is length of
contour lines. From the NL — L plot, an inner cutoff (I;.¢.)

Main


미정댁
메인/컨텐츠


Contents

Main

Sixth International Symposium on Turbulence and Shear Flow Phenomena

2.6 A B AL BB B
25 B
24 F
o 23F
F —o— x-yplane ]
22 B E
E —=— y-zplane
21 F E
E —— 3dimension
20 C | R | I | IR | IR
0 30 60 90 120 150
t
Figure 3: Comparison of fractal dimensions fom two-

dimensional cross-section and three-demensional surfaces for
Sc=0.6 and Rc=0.

and an outer cutoff (lp.c.) can be defined. From a slope of
the NL — L plot, fractal dimension (D) is estimated using
an additive law. As a result, inner cutoff, outer cutoff and
fractal dimension are determined at a given time. As for the
3D box counting method, a fractal plot is obtained directly.
The accuracy of the box counting method has been shown
by our previous study (Miyauchi et al., 1994).

In Fig. 3, fractal dimensions obtained from two-
dimensional cross-section and three-dimensional surfaces are
compared for Sc¢ = 0.6. Fractal dimensions increase be-
tween t = 30 and ¢ = 80. In this period, the turbulence
transition of flow field occurs and lots of coherent fine scale
structures are created (Tanahashi et al., 2001). In our previ-
ous study (Tanahashi et al., 2007), fractal characteristics of
scalar surfaces have been investigated up to Re,, o = 1900 for
moderate Sc number. In the fully-developed turbulent state
(t > 80), the directional dependence of the fractal dimen-
sion decreases. Fractal dimension from 3D surfaces coincides
with that from y—z planes in the transitional stage, and with
that from x —y planes in the fully-developed state. The frac-
tal dimension obtained in our previous DNS of non-reactive
scalar is 2.50 which coincides with the theoretical expecta-
tion of Mandelbrot (1975). Note that the chemical reaction
reduces the fractal dimension to 2.40 ~ 2.45 (Tanahashi et
al., 2007).

Effects of Schmidt number

As for turbulent flows with transport of passive scalar
with high Sc number, it is well-known that Batchelor length
scale (np) becomes smaller than Kolmogorov length signif-
icantly because it is expressed by np = n/Sc!/2. Contour
lines of passive scalar (Y4=0.5) on a & — y plane are shown
for different Sc cases in Fig. 4. Distribution of mass frac-
tion becomes more complex for high Sc. Contour lines of
scalar include small scale wrinkling for high Sec. It should
be noted that global pattern is similar even for different Sc
because the turbulence structure is exactly same for these
cases. The complexity of the contour lines is caused by local
engulfment of scalar due to fine scale motion of turbulence.
Figure 5 shows fractal plots (NL — L plots) for S¢ = 0.6 and
Sc = 30.0. As shown in Fig. 2, only one fractal dimension
(D) can be defined for moderate Sc (Tanahashi et al., 2007),
which represents the inertial subrange of turbulent velocity
fluctuation and self-affinity of scalar surfaces. On the other
hand, for high Sc¢ number cases, two fractal dimensions (D;
and Ds in Fig. 5) can be defined. The first fractal dimension
D; can be observed in relatively large scales and coincides
with that of moderate Sc¢ number case (D). Furthermore,
D1 nearly coincides for high Sc number cases. The sec-
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Figure 4: Contour lines of passive scalar (Y4=0.5) on a typ-
ical x — y planes (Rc = 0). (a):Sc = 3.0, (b):Sc = 6.0 and
(c):Se = 30.0.

44 i
40 N

&

-

Z 36 .

3

°
32 .
28 .

05 00 05 10 15 20
log(L)
Figure 5: NL — L plots for S¢ = 0.6 and Sc = 30.0 (Rc = 0).
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ond fractal dimension D> can be defined in small scales and
shows larger values up to 2.8 and denotes self-similarity of
scalar surfaces. Temporal developments of these fractal di-
mensions are shown in Fig. 6. The first fractal dimension is
always small and the second one does large. However, dif-
ference between Sc = 6.0 and Sc = 30.0 is not significant.
This result suggests that an asymptotic fractal dimension
may exist for higher Sec.

In Table 2, inner cutoff of the second fractal is compared
with dissipation length scales of velocity and scalar fluctu-
ations in the fully-developed state. Temporal developments
of these relations are shown in Fig. 7. The inner cutoff of
the second fractal would be scaled by the Batchelor length
scale and reaches to about 10ng. The self-similar fractal in
small scales is induced by fine scale stirring of scalar by the
coherent fine scale eddy of turbulence. The observation that
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Figure 6: Development of fractal dimension of non-reactive
passive scalar with different Sc (Rc = 0).

Table 2: Inner cutoff of the second fractal and its relation to
dissipation length scales of velocity and non-reactive scalar
fluctuations in fully-developed state

Sc n nB ns/n_ lr.c./nB
0.6 0.0577 0.0745 1.29 6.2958
3.0 0.0577  0.0333 0.58 7.4119
6.0 0.0577  0.0235 0.41 8.4105
30.0 0.0577 0.0105 0.18 9.9436

w
o

Figure 7: Development of relation of inner cutoff of the sec-
ond fractal to dissipation length scales of scalar fluctuations.

the contour lines for Sc¢ = 30.0 is more complex than that for
Sc = 0.6 is mainly caused by the scale separation between 7
and np.

In Fig. 5, D1 and D3 fractals crossover at a medium
scale. In this study, this length scale is defined as a crossover
scale (lc.0.). Figure 8 shows temporal development of the
crossover scale. Here, L g represents integral length scale of
turbulent velocity fluctuation. The crossover scale becomes
smaller with the increase of Sc¢, whereas that is about Lg.

Effects of chemical reaction

Experimental observations in turbulent reactive flows
(Glilder and Smallwood, 1995; Giilder et al., 2000) have
suggested that fractal dimension of surfaces with chemical
reaction such as flame is smaller than that of non-reactive
surfaces (Sreenivasan et al., 1989; 1991). In our previous
study (Tanahashi et al., 2007), effects of chemical reaction
on the fractal geometry have been investigated for the mod-
erate Sc number. The fractal dimension decreases from 2.50
for non-reactive scalar and approaches to 2.40 ~ 2.45 for
high reaction rate.

Figure 6 shows contour lines of mass fraction (Y4 = 0.5)
for reactive cases in the fully-developed turbulent state. As
for the reactive cases, distribution of mass fraction depend
on Re for small Re (Tanahashi et al., 2007). However, for
large Rc, distribution of mass fraction scarcely depend on Rc
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Figure 8: Developments of the crossover scale of D; and D32

fractals.

(a)

Figure 9: Contour lines of passive scalar (Y4=0.5) on a typ-
ical  — y planes (Rc = 1). (a):Sc = 6.0 and (b):Sc = 30.0.
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Figure 10: Development of fractal dimension of reactive pas-
sive scalar with different Sc¢ (Rc = 1).

because the reaction is limited by the turbulent mixing. In
Fig. 10, fractal dimension obtained by the 3D box counting
method is shown for reactive cases. The first fractal dimen-
sion also decreases for high Sc number case compared with
non-reactive cases shown in Fig. 6. Similar to the mod-
erate Sc cases, however, the decreasing rate of the fractal
dimension is relatively small and Dj becomes about 2.4. For
the second fractal dimension, chemical reaction also reduces
surface complexity with about 0.1 dimension. The second
fractal dimension of the highest Sc case is about 2.65. The
Sc number dependence of this dimension is similar to that of
non-reactive cases. In Figs. 7 and 8, temporal developments
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Figure 11: Elliptic feature of the coherent fine scale eddies on the rotating plane.
(b):velocity vector and (c):distributions of energy dissipation rate.

(a):Contour plot of azimuthal velocity,

Figure 12: Phase-averaged distributions of scalar mass fraction for (a):Sc = 0.6, (b):Sc¢ = 6.0 and (c):Sc¢ = 30.0 on the plane

perpendicular to axis of coherent fine scale eddy.

Figure 13: Phase-averaged distributions of scalar dissipation rate for (a):Sc¢ = 0.6, (b):Sc = 6.0 and (c):Sc = 30.0 on the plane

perpendicular to axis of coherent fine scale eddy.

of the inner cut off and the crossover scale are also shown for
the reactive case. Although the fractal dimension is affected
by the chemical reaction, these scales show similar behaviors
with non-reactive cases.

MICRO-SCALE SCALAR TRANSPORT

To discuss scalar mixing in small scale, it is important to
shows the characteristics of the fine scale eddies. As shown
by our previous study on the inner structure of fine scale
eddies (Kang et al., 2006), the cross section of the coherent
fine scale eddy shows distinct elliptic feature. The azimuthal
velocity near the center is dominated by the kg = 2 mode,
where kg = 2 represents azimtuhal wave number. In this
study, phase-average is conducted based on the kg = 2 mode
of the azimuthal velocity. Figure 11 shows contour plots of
phase-averaged azimuthal velocity, velocity vectors and dis-
tribution of energy dissipation rate. The radius of displayed
region in Fig. 11 is 2.0r;, where r. represents radians of
the fine scale eddy. Near the center of the fine scale eddy,
elliptic feature can be observed in the distribution of the
phase-averaged azimuthal velocity. The distribution of ra-
dial velocity, which is not shown here, shows existence of
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distinct inflow into the center and outflow from the cen-
ter. The velocity vectors constructed from the azimuthal
and radial velocity component also shows the asymmetric
feature of the fine scale eddy. These feature of the coherent
fine scale eddies have been confirmed by PIV measurements
(Tanahashi et al., 2002; 2008). The energy dissipation rate
shows two minima near the center on the minor axis of the
azimuthal velocity distribution and two maxima on major
axis.

Scalar distribution around the coherent fine scale eddies
are dominated by kg = 1, which is different from that of
the azimuthal velocity. However, there are strong relation
in phase between these dominant modes. Figure 12 shows
mean scalar distributions around the eddy. Here, scalar dis-
tributions are phase-averaged based on the kg = 2 mode
of the azimuthal velocity. Due to the elliptic feature of the
eddy, the scalar is convoluted towards the center of the eddy
and shows the maximum and minimum on the major axis in
that plane. Although all cases shows a similar global scalar
distributions around the coherent fine scale eddy, engulf-
ments of scalar are enhanced for higher Sc case. In Fig. 13,
phase-averaged scalar dissipation rates are shown for three
cases. The scalar dissipation rate is also phase-averaged
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based on the kg = 2 mode of the azimuthal velocity. The
scalar dissipation rate shows the maximum and minimum
on that plane and their peak values tend to increase and to
approach to the center for high Sc case. Furthermore, the
locations of the maximum coincide with that of the maxi-
mum energy dissipation rate of velocity fluctuation, which
suggests analogy between turbulence and scalar fluctuation
transport in small scales.

CONCLUSIONS

In this study, direct numerical simulations of turbulent
mixing layer with non-reactive and reactive scalar transports
have been conducted to investigate turbulent mixing of high
Sc number passive scalar.

For high Se¢, two fractal dimensions can be defined. The
first fractal dimension coincides with that of moderate Sc,
whereas the second one shows larger values around 2.8. The
inner cutoff of the second fractal reaches to about 10 times of
Batchelor length scale for high Se. DNS of reactive scalars
show that the first fractal dimension decreases to 2.40 ~ 2.45
and the second one does 2.7 due to the chemical reaction.
The fact that the inner cutoff for the reactive cases coincides
with that of non-reactive cases shows that the coherent fine
scale structure of turbulence dominates the mixing and re-
action in small scales.
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