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ABSTRACT

In this work the predictive capability of a number of
Reynolds stress transport (RST) models was first tested
in a range of non-equilibrium homogeneous flows, compar-
isons being drawn with existing direct numerical simulation
(DNS) results and physical measurements. The cases con-
sidered include both shear and normally strained flows, in
some cases with a constant applied strain rate, and in others
where this varied with time. Subsequently, the models were
also tested in the inhomogeneous case of pulsating channel
flow over a wide range of frequencies.

Models were generally found to perform well in homo-
geneous shear at low shear rates, but their performance
increasingly deteriorated at higher shear rates. This was
attributed mainly to over-predicted shear stress anisotropy
at high shear rates. Performance in irrotational homoge-
neous strains was generally good, and was more consistent
over a much wider range of strain rates.

In the pulsating channel flows, the most challenging case
for the models was found to be the lowest frequency case
where, because of the amplitude of oscillation, laminariza-
tion and re-transition to turbulence were present at certain
phases of the cycle.

INTRODUCTION

The need for reliable and accurate simulations of un-
steady, non-equilibrium turbulent flows arises in many fields
of engineering and scientific studies. Examples include inter-
nal combustion engines, aerofoils at high angles of incidence,
coastal hydrodynamics, and the flow of blood in veins and
arteries, to name but a few. The requirements of unsteady
or largely off-design simulations stretch, and are sometimes
beyond, the capabilities of standard eddy-viscosity based
Reynolds-averaged treatments of turbulent flows. Never-
theless, typical time and cost limitations make it highly
desirable to be able to tackle such problems with an aver-
aged approach that is sensitive to the non-equilibrium effects
on the flow quantities of interest, while avoiding the need
for high-resolution approaches. Reynolds stress transport
(RST) models potentially offer some of this desired sen-
sitivity to unsteadiness and non-equilibrium conditions by
allowing for misalignment between mean velocity gradients
and turbulent stresses that can affect the rate of production
of turbulence. However, other important aspects of flow non-
equilibrium, such as delays in the transfer of energy across
the turbulence spectrum, are not built-in. Moreover, it is
not clear a priori how the principal modelled elements in the
stress transport equations, particularly pressure-strain rate
redistribution, are themselves affected by non-equilibrium
conditions. It is thus desirable to test existing models in
a wide range of unsteady non-equilibrium flows to identify
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the major strengths and weaknesses of the models and main
areas requiring improvement.

The present work thus aims to study the performance
of a number of existing Reynolds stress transport models
in a range of non-equilibrium flows. The models tested in-
clude the LRRIP model of Launder et al. (1975) (the ‘Basic
Model’), the SSG model of Speziale et al. (1991), the Shima
(1998) Low-Re model, and the TCL model (Craft, 1998;
Craft and Launder, 2002). Both homogencous and inhomo-
geneous flows have been considered. Here, results are first
reported for homogeneous shear flows, both with constant
shear rates and also for a case with a time-varying shear.
Some irrotational, plane-strain, cases are then presented,
again with both constant and time-varying strain rates. Fi-
nally, applications are reported to pulsed channel flows over
a range of forcing frequencies. None of the models tested
reproduce all the flows correctly, and the sections below at-
tempt to highlight the relative strengths and weaknesses of
the schemes.

TURBULENCE MODELS
The Reynolds stress transport equation can be written
in short form as
Dugu;
Dt

= Pi; + iy + Ti5 + Vij —eiy (1)

where the the right hand side terms represent production,
pressure-strain rate redistribution, turbulent diffusion, vis-
cous diffusion, and dissipation of Reynolds stress, respec-
tively. Production is given exactly in closed form by

Pisi= —wuE—2 — Ujly —— (2)
Lk k

Similarly, viscous diffusion is given exactly by

0 (u7u;)

Vi =
y==¥ Oz oy

(3)
The dissipation rate tensor is most often assumed to be
isotropic
2
gij = 780; (4)
3
where ¢ is the scalar rate of dissipation of turbulent kinetic
energy and is obtained from a modelled transport equation

2
% = /EIEPH« _(?52% B % (Cagm% +Vaa_lic)
(5)
where P,, = Py /2 and the standard values of the coefficients
are Czq = 1.44, Cep = 1.92, and C- = 0.15.
The most widely used model for the turbulent diffusion
is the generalized gradient diffusion hypothesis (GGDH) of
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Daly and Harlow (1970)

i O k Juiu;
15 = By (Cseutuk Bitx ) (6)

where Cs = 0.22.

The ‘Basic Model’

The pressure strain rate term ¢;; is comprised of a non-
linear turbulence-turbulence interaction or ‘slow’ term 05:7-,
a ‘rapid’ term that arises from interaction with the mean
velocity gradient, ¢[;, and corresponding terms that arise
from interaction of the previous terms with walls, thus

bij = @3 + oL + 05" + oy (7)
In homogeneous turbulence, the last two terms are zero. The
basic RST model uses Rotta’s Return-to-Isotropy model for
the slow pressure strain rate term:

#i; = —Cicaij (8)

and the Isotropization of Production (IP) model for the
rapid term,
Py = —Ca (P — %PK dij) (9)

The wall interaction terms in the basic model employ ‘wall
reflection’ terms that are based on wall-normal vectors and
distances to walls.

For turbulent diffusion the generalized gradient diffusion
model of equation (6) is used.

The Shima Low-Re model

In its original form the Launder and Shima (1989) model
is a low-Re version of the Basic Model that uses wall re-
flection terms and includes damping coefficients to return
the correct near-wall behaviour. Later Shima (1998) de-
veloped an alternative model, based on the Quasi-Isotropic
(QI) model of ¢; described in Launder et al. (1975), that
discards the use of wall-reflection terms that depend on wall-
normal vectors and distances, with the aim of improving the
applicability and generality of the models. In this version

I, = —Ca(Pij — 2/3Pudij) — Ca(Dij — 2/3Dxdi5)

au; | oU;
c,wc( = + -’) (10)

dxr; Oz
TR au, AUk
Uk
D;; = —wuy B - 'u.,-uka—mi (11)

Dy = Dy /2 and the coefficients are given by

C1 =14 2454325 A%75[1 — exp(—494%?)]
% {1 — exp[—(Re:/60)*]}
Uy =0.7A (12)
C3 =0.34%°
Y = 0.65A(0.23C) + C2 — 1) + 1.3A3%°Cy
where A = 1 — 9/8(Az — A3) is the ‘flatness’ parameter,

and Az = ajja;;, Az = a;jajray; are the second and third
invariants of the stress anisotropy tensor respectively.

The TCL Model

The TCL model (Craft, 1998; Craft and Launder, 2002)
was developed based on the principle of maintaining realiz-
ability in the limit of two component turbulence, when one of

the normal stress components drops to zero, as occurs near
a wall or free surface. In this model the slow pressure-strain
rate term is given by

#5; = —Cielaij + Cf (akar; — 5A2055)] — fyeai;, (13)
where the coefficients are given by
Ch = 3.1(AA)"/?
¢l =1Ll

fil = \/ZfRnt + A(] = fRCt)
fre, = min[(Re;/160)%,1]

(14)

The rapid pressure-strain rate term is given by
¢r; = — 0.6 (Pij —2/36;5 P) + 0.6a;; P
3 0.2{ Up; Urt; |:3Uk " BUI]

_ Witk % + w7 oU;
E LT R TR

= CZ{A2(Pij = Dij) =t 3'1mianj (ann == Dm‘n‘)}

i As X
+C{2{ (E = T) (P” = 2/36?31’)

+ 0.2[0.2'3' - 1/2(&.,;1“(11“_7- - 1/3(51';,‘ Az]P — 0.05a;5 a1 Prg
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A= (Dik — Pt;c)}

(15)

In its earliest High-Re formulation, the TCL model used
constant coefficients Cs = 0.55, Cé = 0.6. This was later
abandoned in Low-Re versions of the model to allow for near
wall corrections. The coefficients used here, in the later ver-
sions are given as

—Al“Re 3.2A
'y = min {0.55 {l —exp ( 100 tt)] ' T4 o }
+ (16)

3.5(8* —Q*)
3+ 5%+

€% = min(0.6, A) + — 2min[Sy, 0]
However, as will be seen below, the original prescription with
constant coefficients was found to have some merits in ho-
mogeneous shear flows.

An anisotropic dissipation tensor is used in this model,
and is given by

el +ell. +elf
s=(—f) = —+ 2 Jeedij (17)

In homogeneous turbulence this reduces to

Ui U4 b
g5 =1 —fe) r—:% + 2 foebi; (18)

where f. = A%2. Due to space limitation, the remaining
elements of (17), and other elements pertaining to the inho-
mogeneous parts of ¢;; and diffusion terms will not be listed
here. Interested readers are referred to Craft (1998).
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HOMOGENEOUS TURBULENCE

Homogeneous turbulence is a special case in which all
spatial gradients of turbulent statistics are negligibly small.
For this to hold, the mean velocity gradients, if present, are
allowed to vary in time but not in space. While this severe re-
striction means such flows are of little practical interest, the
great simplification of the governing equations that results,
and the fact that the turbulence is effectively decoupled from
the mean flow, makes homogenecous turbulence very attrac-
tive from a theoretical view point, particularly as a means
for model testing and development.

Turbulence kinetic energy in this case is governed by the
exact equation

Dk _

a = PK =g (]9)

Homogeneous Turbulent Shear

The first set of test cases pertains to homogeneous turbu-
lent shear flow where the mean velocity gradient is constant
and the only non-zero component is given by % =5,

The initial shear parameter 5§ = % varied in the range
from 1 to 50. Evolution of the turbulent kinetic energy
and the a11,a12 components of Reynolds stress anisotropy
for three values of the initial shear parameter is shown in
Figure 1. Model predictions are compared to DNS results
of Rogers and Moin (1987) for the case Sj = 1.2, Mat-
sumoto et al. (1991) for S} = 4.7, and Lee et al. (1990) for
S5 = 16.75. At the lowest initial shear rate, both k& and
the stress anisotropy are reasonably well predicted by all
the models. This was generally found to be true in cases
where the initial shear parameter is less than 4. At the in-
termediate shear rate S = 4.7, the Basic and TCL models
over-predict the rate of growth of k. This is due to the slight

over-prediction of the a2 magnitude by these models. The
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Figure 1: Evolution of turbulent kinetic energy (left) and
ai1,a12 components of anisotropy (right) in simple
homogeneous shear at various shear rates.
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SSG model, and the TCL model using constant C and Cé
coefficients (labelled TCL cc) do not suffer from this over-
prediction, and thus more accurately reproduce the growth
of k. Tt can be said that at this level of shear the anisotropy
is still qualitatively correct.

At the highest shear rate of Sj = 16.75 there is a marked
qualitative change in the behaviour exhibited by the turbu-
lence statistics. Due to the high shear rate in this case, the
DNS results resemble the Rapid Distortion Theory (RDT)
solution for simple shear, as confirmed by Lee et al. (1990).
In the limit of rapid distortion, simply-sheared homogeneous
turbulence tends towards a one-component limit, where all
of the energy is contained in the uZ component, the @0 com-
ponent is suppressed, and the asymptotic growth of k is
linear rather than exponential (Pope, 2000). These trends
are seen in the bottom row of Figure 1; specifically, the nor-
mal anisotropy @11 is markedly higher than in the previous
cases, and is largely under-predicted by the models, and the
magnitude of the turbulence energy-producing aiz is lower
than in previous cases, and over-predicted by almost all the
models. The over-prediction of a2 leads to an exaggerated
rate of growth of k. The notable exception to this is the TCL
model using constant coefficients C2, C4. The currently used
variable prescription of these coefficients was found by Craft
(1998) to improve the model’s performance in the backward
facing step problem, where it was noted that higher C> con-
tributed an excessively large sink for the shear stress (Craft,
1998). It is precisely this behaviour that is desired in this
problem where, as the RDT solution predicts, aj2 decays.

Oscillating Homogeneous Shear
The next set of cases was that of turbulent flow subjected
to an oscillating shear rate given by

U

7= = 5(t) = Smax sin(wt) (20)
dy

The reference data for this set of cases is the DNS of Yu and
Girimaji (2006), who carried out simulations for the range
of frequencies 0.125 < w/Smax < 10.

The DNS and modelled evolution of k/kg at different
forcing frequencies (up to w/Smax = 1.0) are shown in Fig-
ure 2. It can be seen that turbulence energy grows (on
average) at the lower frequencies of the applied shear, and
decays at high frequencies. Yu and Girimaji identified the
frequency at which this change in behaviour occurs to be
around w/Smaz ~ 0.5. The critical mechanism determining
whether k grows or decays is the phase shift between the
shear stress uv and the applied rate of shear % The mod-
els correctly reproduce this qualitative change of behaviour
between low and high frequencies, due to the intrinsic qual-
ity of RST models, where the Reynolds stresses are obtained
from individual transport equations, and thus need not be
in phase with the mean strains. The observed critical fre-
quency at which the growth behaviour changes appears to be
picked up most closely by hoth versions of the TCL model.
The TCL model with constant Co and C}, coeflicients returns
the best results over the whole range considered, while the
version with variable coelflicients significantly over-predicts
the rate of growth of k at the lower frequencies.

Irrotational Strain Rates

Another class of homogeneous turbulence test cases con-
These
include plane strain and axisymmetric contraction and ex-

sidered is that of irrotational mean strain rates.
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pansion. Due to space limitation, only the plane strain
results are presented here.

In plane strain the production of turbulent kinetic energy
is given by P = S11k(a2s — a11). The strain parameter for
this case is defined as 8* = Sy11k/e. The reference data set
for this case is the DNS of Lee and Reynolds (1985). Tur-
bulent kinetic energy and stress anisotropy evolution under
plane strain is shown in Figure 3 for three initial strain pa-
rameters, Sg = 0.5,4,77. One immediately notices that, in
contrast to homogeneous shear, the k evolution is quite well
predicted over a much larger range of S*. This is true even
for the models whose anisotropy evolution tends to deviate
from the reference data. Evidently, both ags and a1 appear
to deviate in the same direction, and since it is the difference
az2 — ay1 that determines Py, the errors tend to cancel and
the kinetic energy evolution is well predicted. Unfortunately,
due to the short integration time of the reference data, one
cannot know how well this holds over longer periods.

The stress anisotropy evolution is remarkably well re-
produced by the TCL model with variable coeflicients over
the whole range of strain rates, while the opposite is true
for the version using constant coefficients. This is in sharp
contrast to the homogeneous shear cases, both constant and
time-varying, where the version with constant coefficients
gave the better results. This suggests a significantly differ-
ent behaviour of the pressure-strain rate redistribution in
rotational and irrotational strains, highlighting the conflict-
ing requirements on model coefficients.

Another irrotational strain case studied here is the
successive plane strain-relaxation-destraining experiment of
Chen et al. (2006). The form of the mean velocity gradi-
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Figure 2; Evolution of k/kp in oscillating homogeneous
shear.
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ent is the same as in the preceding set of cases, but the
strain rate S7; now varies in time. This time-varying ap-
plied strain rate is shown in the top plot of Figure 4, and the
Reynolds stress components 1?‘ 2 (labelled as R11 and Ra2)
are shown in the the bottom plot normalised by their initial
values. All the models return the correct v2 evolution up to
the point at which S11(tf) peaks, after which they all over-
predict this stress component, with the T'CL giving the least
over-prediction. The magnitude of uZ is under-predicted
throughout the cycle, but to a lesser extent. Unfortunately,
since the third stress component was not measured in the
experiment, it is not possible to tell to what extent these
over-predictions are the result of an over-predicted level of
turbulence energy, or degree of anisotropy. If one assumes
that the redistribution is adequately accounted for, at least
by the TCL as in the previous plane strain cases, the rapid
decay of v2 after the peak of straining suggests an acceler-
ated turbulence dissipation rate.

PULSATING CHANNEL FLOWS

A range of oscillating internal (pipe and channel) flows
has also been examined. Briefly presented here is a set of
cases pertaining to pulsating channel flow driven by an oscil-
lating pressure gradient at three non-dimensional frequencies
of wt = 0.0016, 0.01, 0.04, where wt = wv/ur and ur is the
time-averaged wall friction velocity. The reference for this
case is the LES of Scotti and Piomelli (2001). The amplitude
of pressure oscillations was varied dramatically in order to
maintain a fairly constant amplitude of centre-line velocity
oscillations, around 70%, so that flow reversal was observed
in the near wall region. This set of cases has proven to be
quite challenging for the models. This is particularly true for
the low frequency case, where the flow was found to experi-
ence cyclic laminarization and transition back to turbulence.

Figure 3: Fvolution of turbulent kinetic energy (left) and
Reynolds stress anisotropy (right) in plane strain at various
strain rates.
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Figure 4: Successive plane straining-destraining experiment
of Chen et al. (2006). Top: applied strain rate. Bottom:
u?,v2 Reynolds stresses normalised by their initial value.

In the Scotti and Piomelli (2001) simulations, turbulent
channel flow is subjected to an applied pressure gradient
_dp

(&)
de/ — da
The phase-averaged velocity is governed by

w_ L, 0 o)
at —  pdx Ay Ay

The Reynolds number based on mean friction velocity ur,
is Rer = 350. The flow exhibits two limiting behaviours
depending on the frequency. At the limit of very low fre-
quencies, when the rate of variation of mean flow quantities
is very small, the turbulence has ample time to adjust to the
changing flow conditions. The flow in this limit behaves as if

given by

+ | o8 cos(wt) (21)
dax

(22)

progressing through a series of equilibrium states at different
conditions, hence it is called the quasi-steady limit. At the
other extreme, when the frequency is sufficiently high the
inertia of the bulk flow confines fluctuations of flow quan-
tities to a small region near the wall, and the turbulence is
‘frozen’ in the outer region. At the point when fluctuations
are confined Lo the viscosity aflected region, the flow mim-
ics the laminar solution of this problem, and this is hence
called the quasi-laminar limit. The examined [requencies
of wt = 0.0016, 0.01, 0.04 correspond roughly to the low,
intermediate and high frequency regimes, respectively.
Some sample results are presented in Figures 5 and 6
showing profiles of phase-averaged velocity and turbulent
kinetic energy, respectively, for the high frequency case
wt = 0.04. Results were obtained using the Shima and
TCL models, and the low-Re k-¢ model of Launder and
Sharma (1974) has also been used for comparison. At this
frequency, the Shima model tends to under-predict the veloc-
ity throughout the cycle, while the TCL model agrees best
with the LES data in this respect. In Figure 6 it can be seen
that because of the high frequency in this case, cyclic vari-
ations in k are concentrated in the near-wall region where
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none of the models is able to fully reproduce the peak in
the k profile, which is consistently under-predicted in this
region. In the outer region k is seen to remain at a fairly
constant level, as expected at high frequency, and all of the
models give broadly the right shape of profile for k in this
region. An alternative view of the data is provided in Fig-
ure 7 showing cyclic variations of flow quantities at a fixed
location of y+ = 18, and Figure 8 shows similar graphs for
the lowest frequency case w™ = 0.0016 at y* = 19. This lat-
ter figure reveals some of the difficulty that the models face
by laminarization and re-transition within the cycle, where
the flow variables are seen to undergo an abrupt change in
the re-transition phase. This is more pronounced in the
TCL model, as evidenced by the ‘kink’ in the graphs, This
is most likely due to the damping coefficients in the models
which are designed to return the correct near-wall behaviour
in steady flow. In this periodic case the flow quantities, in
particular Rey = k2 /we, cyclically oscillate about the values
used in the coefficient ‘switches’ that were appropriate in
steady flow, thus producing abrupt variations in the coeffi-
cients that adversely affect the profiles of the variables. The
Shima model did not recover from the laminarization phase
of the cyle in this case, and it was not possible to obtain a
periodic turbulent solution using it.

5 H i i

T T r T
F 5 S e e e e

L ! I 1
100 150 200 250

0 I
0 50

300 351

v
Figure 5: Profiles of phase-averaged velocity at wt = 0.04.
Symbols represent data of Scotti and Piomelli (2001).

CONCLUSIONS

In simple shear it was generally found that models pre-
dict the correct evolution of turbulent kinetic energy k&
and dissipation rate £ at lower dimensionless shear rates
Sk/e < 4. There is some variation among the models in the
quality of the anisotropy prediction, but the more impor-
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Figure 6: Profiles of turbulent kinetic energy at w' = 0.04
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Figure 7: Cyclic variation of flow quantities at y*+ = 18 for
the high frequency case w' = 0.04. Key as in Figure 6.

tant components ajz, ajy are reasonably well predicted by
most models. At the higher shear rates tested, Sk/e > 16,
existing models grossly over-predict the evolution of k and
e. This is attributed mainly to the inability of the models
to replicate the decay of a2 at high shear rates as predicted
by Rapid Distortion Theory (RDT), and observed in DNS
results. In addition, the normal stress anisotropies are also
under-predicted by the models. It is observed that with
some modifications to the coefficients of the pressure-strain
rate correlation, it is possible to correct the former at least,
thus correcting the rate of evolution of k and e.

In the case of homogeneous turbulence subjected to os-
cillating shear the models generally returned the correct
qualitative trend of turbulence energy growth at low frequen-
cies and decay at high frequencies. The critical frequency at
which this change in behaviour occurs depends on the modu-
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Figure 8: Cyclic variation of various flow quantities at

yt = 19 for the high frequency case wt = 0.0016. Solid

line: TCL; dashed line: LS.

lation of the shear stress and the applied shear, and is picked
up most closely by the TCL model.

Model performance was found to be consistent over a
much wider range of strain rates in the homogeneous irrota-
tional strain cases, where the Low-Re TCL model was found
to return the best results.

In pulsating channel flow, the models performed reason-
ably well in the high frequency case, where the flow ap-
proached the quasi-laminar behaviour. The lowest frequency
case was found to be the most challenging due to cyclic
laminarization and re-transition. This suggests a need for
reformulating the near-wall damping in some of the model
coefficients to allow them to handle this cyclic transition
more gracefully.
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