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ABSTRACT 

In recent years there has been considerable interest in 

the active control of fluid flow phenomena. Applications 

include separation control, drag reduction and lift 

enhancement.  The present study is concerned with flow 

separation and reattachment, and considers the case of flow 

through a 10o plane diffuser, studied experimentally by 

Masuda et al (1994), where the control is provided by a 

periodic injection/suction upstream of where the flow would 

separate under stationary conditions.  

Results are reported using the two-equation linear k-ε  

model of Launder & Sharma (1974) and a two-equation 

non-linear k-ε scheme (Craft et al., 2005), in conjunction 

with the Reynolds-averaged momentum (URANS) 

equations.  The linear  scheme does not capture the flow 

separation in the unforced case, whilst the non-linear model 

does better, although slightly underpredicts the recirculation 

zone size. In the unsteady, forced, cases the non-linear 

scheme generally reproduces the effect of the forcing in 

enhancing the coherence of the separated shear layers and 

reducing the reattachment length at the lower forcing 

frequencies, whilst showing a smaller effect as the 

frequency is increased.  

 

 

INTRODUCTION 

During the past two decades, there has been 

considerable attempt to develop methodologies and tools to 

actively control fluid flow phenomena. Applications include 

separation control, drag reduction, lift enhancement, and 

virtual aerodynamic shaping. Of particular interest here are 

flows involving separation and reattachment, which are 

found in a range of engineering systems including vehicles 

and planes.  

The test case examined is that of flow through a 10o 

plane diffuser, studied experimentally by Masuda et al 

(1994), as shown in Figure 1. The control is provided by an 

imposed pulsation from a periodic injection/suction 

upstream of where the flow would separate under stationary 

conditions. Since the separation point here is not 

geometrically fixed, the control affects both the flow 

detachment and reattachment processes, and this poses 

significant challenges in the computational modelling. 

Computing flows exhibiting even steady detachment 

and reattachment is by no means a trivial task, and in order 

to minimise computing times there is a desire to employ 

relatively simple RANS models of turbulence. Linear eddy-

viscosity models (LEVM’s) are, however, known to 

perform badly in separated flows. Craft et al (2005) 

introduced refinements to a low-Reynolds-number non-

linear eddy-viscosity model (NLEVM) and showed that this 

performed quite successfully in predicting the steady flow 

and heat transfer through a sudden pipe expansion. Craft et 

al (2007) subsequently applied this model to periodically 

forced flows through a pipe expansion. The overall effect of 

the forcing, namely a reduction in the size of the separation 

zone, together with a more intense back flow, was captured 

by the model and, as a result, the time-averaged heat 

transfer profiles showed higher levels in the separated 

region and a peak which was further upstream than in the 

steady flow case.  

The objectives of the present study are thus to establish 

how well the above non-linear model can perform in the 

case of the 10o diffuser, where neither separation nor 

reattachment is fixed by the geometry, and to use the 

computed results to advance our understanding of the 

mechanisms of flow control with pulsation. 

The following sections outline the modelling 

approaches tested, describe the flow cases considered, and 

present comparisons between the model predictions and 

available experimental data. 

 

 

MODELLING APPROACH 

 

Two-Equation Linear k-ε Model: 

The simplest model employed in this study is the linear 

k-ε scheme of Launder & Sharma (1974), which 

approximates the turbulent stresses and heat fluxes by 
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The production rate of turbulent kinetic energy, Pk, is 

given by  
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The term dcY  is the lengthscale correction originally 

proposed by Raisee (1999), and subsequently re-tuned by 

Craft et al. (2005), which is based on lengthscale gradients, 

and can be written as 

( )[ ]0,1max
~

24.0
2

+= FF
k

CY wdc

ε
  (6) 

where F essentially measures the difference between the 

predicted lengthscale gradient and the value it would take in 

an equilibrium boundary layer: 
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with )/( 5.1 εkl =  and the term dydle /  standing for the 

equilibrium lengthscale gradient, given by: 
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The various model coefficients and near-wall damping 

terms are given in Table 1, whilst tR
~

 is the turbulent 

Reynolds number, )~/(
~ 2 vkRt ε= . 

 

 

Two-Equation Non-Linear k-ε Model: 

The above linear EVM is known to have many 

weaknesses, so much of the present work has been carried 

out within the framework of non-linear eddy-viscosity 

models. The form adopted here is that proposed by Craft et 

al (2005), which was developed from the earlier versions of 

Craft et al. (1999) and Suga (1996). In this scheme, the 

Reynolds stresses are approximated by 
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where ijijS Ω and  are the strain and vorticity tensors, 

defined as 
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In modelling the turbulent eddy viscosity, the quantities  

µf  and µc  are taken as 

)1( ssi ffff −+= µµ    (11) 

with 

( ) ( ) 





 −−−=

25.0
400/

~
90/

~
exp1 tti RRf µ   (12) 

( )


























= 1,
75.0

0,50/
~

,1min)~/(max

min

2

tk

s

RP

f

ε
 (13) 

and 

 








++
=

RSf
c

ηα
µ

1

2.1
,09.0min  (14) 

where 

)
~

,
~

(max Ω= Sη   (15) 

with 

( ) 












−−−=

2
400/

~
exp15.05.3 tRα  (2) 

and  

( )[ ] )400/
~

(exp333.3,0max235.0
2

tRS Rf −−= η   (3) 

2

)(

~
~ ijij SSk
S

ε
= ,    

2

)(

~
~ ijijk ΩΩ

=Ω
ε

       (18) 

 

The remaining model coefficients are given in Table 2. 

 

The ε~  equation is similar to that employed in the 

Launder-Sharma model, but the near-wall source term E is 

replaced by 










>

≤














∂∂

∂

=

250
~

0

250
~

~

~

0022.0

2
22

t

t

kj

it

R

R
xx

UkSv

E ε  (19) 

 

 

Table 1: Coefficients and damping functions in the 

linear k-ε model. 
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Table 2 : Coefficients in the two-equation cubic 

stress-strain relation. 

C1 C2 C3 C4 C6 C7 

-0.1 0.1 0.26 
210 µc−  

25 µc−  
25 µc  

 

 

and the coefficient employed in the lengthscale correction 

Ydc in equation (7) is modified as 
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CASE STUDIED 

The test case examined is that studied experimentally by 

Aoki et al. (1993) (under steady state conditions) and 

Masuda et al. (1994) (with an imposed unsteady jet as flow 

control). As shown in Figure 1, it consists of flow through a 

10o plane diffuser with a span-wise slit on the diffuser wall, 

located upstream of the detachment point. The perturbation 

is accomplished by periodically alternating between flow 

suction and injection through this slit. The experiment 

without flow control has proved useful and popular for 

assessing turbulence models, due to the smooth-wall flow 

separation which occurs. The diffuser angle is not so large 

as to cause separation of the flow on entry to the diffuser, 

yet it is large enough to generate an adverse pressure 

gradient which will cause a turbulent flow to separate. 

Separation from the inclined wall occurs at about one-third 

of the distance along the diffuser. 

 

 
Figure 1: Schematic of the test section of the experiment of 

Masuda et al (1994). 

 

The Reynolds number based on upstream channel 

height and bulk velocity was Reb = 20000, the same as used 

by Aoki et al. (1993) and Masuda et al. (1994) in their 

experiments. In these experiments, the flow at the inlet of 

the diffuser was fully developed. This was reproduced for 

the present calculations by a pre-calculation of flow 

between parallel plates using periodic inlet and outlet 

boundaries. This provided fully-developed profiles of the 

velocity and the Reynolds stresses for the inlet of the main 

calculation (a separate pre-calculation was made for each 

turbulence model). 

The flow forcing is introduced by periodically 

alternating flow suction and injection through a span-wise 

slit on the diffuser wall. This slot, of width g=0.1H (H being 

the inlet channel height), is located at X/H=3.2. The jet 

velocity here is assumed to have a uniform spatial profile, 

but varies sinusoidally in time as  

         )2(sin)( 0 tfUAtU j π=                      (22) 

where A=0.3 is defined as the forcing amplitude, and a 

range of frequencies, 0.01 < StH <0.2  (where the Strouhal 

number StH = fH/Uo) have been studied. 

In the results below, comparisons are drawn between 

the time and phase-averaged predictions and available 

experimental data. Most computations have employed the 

non-linear EVM, although some comparisons are also 

shown for the linear Launder-Sharma scheme. 

 

 

NUMERICAL IMPLEMENTATION 
The computations have been performed using an in-

house FORTRAN code (STREAM), based on a finite-

volume scheme with a fully collocated grid storage 

arrangement. The pressure-velocity coupling is handled by 

the SIMPLE scheme, and second order schemes for both 

spatial (UMIST) and time (Crank-Nicolson) discretisation 

have been employed. In all the unsteady cases the 

simulations were run for a large number of cycles before 

data was collected, so that the results presented correspond 

to fully-periodic conditions. 

Since low-Reynolds-number models are used in the 

present study, the grid must be fine enough to capture the  

gradients that occur near the wall. Grid and time-step 

sensitivity tests were performed, and the results reported 

below, using a non-uniform grid of 320x100 cells and 6000 

timesteps to cover an injection/suction cycle, can be 

considered essentially grid and time-step independent.  

 

 

RESULTS 
For flows over geometries where separation is not fixed 

by sharp corners, predicting the correct location of the 

separation line depends on modelling the correct response 

of the shear stress, and to some degree also the normal 

stresses, to deceleration; that is, of predicting the correct 

turbulent time scale. Beyond the separation point, the flow 

loses much of the direction-constraining influence of the 

boundary, and all components of the Reynolds-stress tensor 

become significant. At the same time, the rate of recovery 

and, hence, the reattachment point, depend on the 

magnitude of the shear stress in a (curved) free shear layer. 

The challenges for turbulence models in such a flow are, 
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therefore, (i) to predict the correct turbulent time scale in 

decelerated wall and free shear layers; and (ii) to predict the 

correct anisotropy of the Reynolds-stress tensor. 

 

Steady State Flow Predictions 

Starting with the unforced case (steady state), the 

computed streamlines with the LEVM and the NLEVM are 

compared in Figure 2. As also reported by other researchers, 

the linear model predicts no separation and consequently no 

reattachment. However, the streamlines for the non-linear 

model indicate that the oncoming flow separates at around 

X/H=8 (slightly later than the measured separation, X/H=7), 

and reattaches at around X/H=24, slightly earlier than the 

measured reattachment of X/H=29. Downstream of the 

reattachment point, the flow builds up a new boundary 

layer. 

   
a) Linear k-ε model 

      
b) Non-linear k-ε model 

Figure 2. Streamlines of the steady flow with linear and 

non-linear k-ε models. 

 

The coefficients of pressure (CP ) and skin friction (Cf ) 

are calculated on the plane and inclined walls as follows: 

( ) )5.0/( 2

bop
UPPC ρ−=   (4) 

)5.0/( 2

bwf
UC ρτ=    (5) 

where P and τw are the pressure and shear stress calculated 

at a given cell on the wall, ρ is the density (constant in these 

incompressible calculations), Ub is the inlet bulk velocity 

and Po is the reference pressure at X/H = −4 and Y/H = 

0.001. Cf is a useful indicator of flow separation, since one 

way of defining this is where the time-averaged value of τw 

is zero (and hence Cf = 0). 

Coefficients of pressure and skin friction calculated by 

both the linear and the non-linear k-ε model on the inclined 

wall are shown in Figure 3. There is a clear improvement in 

the prediction of CP and Cf on the inclined wall due to the 

use of the non-linear model in comparison to the linear 

model. CP calculated by the non-linear k-ε model in the 

latter part of the diffuser and downstream section 

reproduces the measured data well and the profile of Cf 

confirms the separation and reattachment points reported 

above.  

Active Flow Control Computations 

In the experiment performed by Masuda et al. (1994), 

the influence of the perturbation on flow reattachment was 

examined in terms of the reverse flow fraction, γ, measured 

at a fixed point near the unperturbed reattachment point. γ 

was calculated as the ratio of the number of negative 

velocity samples to the total number of valid velocity 

signals sampled during the measurement time. Predicted 

values of this ratio calculated from the phase-averaged flow 

field versus Strouhal number (StH=fH/Ub) with the non-

linear k-ε model are presented in Figure 4. This definition is 

believed to be close, but not identical, to the definition of 

the experimental γ ratio. The forcing is seen to produce a 

maximum reduction in the γ ratio occurring over a Strouhal 

number range of 0.01 < StH < 0.03. 

Another measure used here to characterize the flow is 

the time-averaged reattachment point, defined as the first 

point, starting from downstream of the diffuser and moving 

upstream, where the near-wall time-averaged stream-wise 

velocity changes sign. This is not the same as the reverse 

flow fraction, γ, since the latter depends only on the 

proportion of the total time for which the axial velocity at a 

position is negative, while the former is also influenced by 

the velocity magnitude. Figure 5 shows the variation of the 

reattachment point determined from the time-averaged flow 

field divided by its steady state predicted value, Xrs, with the 

forcing frequency. It is seen that for 0.005 < StH < 0.03, the 

forcing jet has a maximum effect on the time-averaged 

separation bubble size, resulting in an attached time-

averaged flow. At higher frequencies the flow field returns 

to its steady state reattachment point prediction. 

 
Figure 3. Coefficients of pressure (Cp) and skin friction 

(Cf) on the inclined wall for steady flow calculated using 

linear and non-linear k-ε models. 
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Figure 4. γ ratio versus Strouhal number with the non-

linear k-ε model. 

 

             
Figure 5. Normalised reattachment length of the time-

averaged flow field versus Strouhal number with the non-

linear k-ε model. 

 

To further illustrate the effects of the forcing on the 

time-averaged flow, Figure 6 shows time-averaged 

coefficients of skin friction calculated with the NLEVM on 

the inclined wall, which indicate a substantial variation in 

the time-averaged flow separation zone length over the 

tested range of Strouhal numbers. At the lowest Strouhal 

number of 0.005 the time-averaged flow field does not show 

any recirculation, but as the Strouhal number is increased 

the skin friction coefficient profiles move toward the steady 

state prediction. It is also noted that at the lowest Strouhal 

number even the far downstream region of the time-

averaged flow is affected, showing a slight increase of Cf 

compared to the other predictions. 

The complexity of the phase-averaged flow field is 

illustrated in Figures 7 and 8, which show predicted phase-

averaged streamlines and the corresponding k contours for 

the forced case at a Strouhal number of 0.005 at four phase 

times (0, π/2, π, 3π/2). Although, as shown in Figure 6, the 

time-averaged flow field at this Strouhal number shows no 

separation, significantly wavy streamline patterns are shown 

at each phase, with a separation bubble that moves along the 

inclined wall during the cycle, and even a separation zone 

near the plane surface during part of the cycle. The phase-

averaged k contours again show that the flow over most of 

the domain is highly affected by the imposed jet. Although 

not shown here, at higher frequencies the imposed 

perturbation decays rapidly in the downstream direction, 

leaving only small traces of its influence in the region of 

separation and recovery. 

 

 
Figure 6. Time-averaged skin friction (Cf ) on the 

inclined wall calculated using the non-linear k-ε model  at 

StH = 0.005, 0.026, 0.067 

 

 
Figure 7. Phase-averaged streamlines at StH = 0.005 

with the non-linear k-ε model at four time phases (0, π/2, π, 

3π/2) 
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Figure 8. Phase-averaged k contours at StH = 0.005 with 

the non-linear k-ε model at four time phases (0, π/2, π, 3π/2) 

 

As shown above, at the very low frequency of StH = 

0.005, most of the flow region is affected by the imposed 

jet. For StH > 0.03, the effect of increasing Strouhal number 

on the oscillation of the phase-averaged flow field, when 

viewed in terms of the phase and amplitude characteristics 

of its response, was found to be a progressive reduction in 

the amplitude of its oscillation. At higher imposed 

frequencies the unsteadiness did not penetrate into the 

downstream region, and the flow essentially became frozen 

shortly beyond the jet slot.  

Although not shown here, FFT results for the NLEVM 

predictions show that the flow disturbances mostly occur at 

the same frequency as the imposed perturbation for all 

tested Strouhal numbers. 

 

 

CONCLUSIONS 

Flow in a 10o plane diffuser has been used to 

demonstrate improvements in the flow calculation due to 

the non-linear k-ε model. This test case has demonstrated 

the relative capabilities of the linear and non-linear models 

to calculate smooth wall separation and reattachment in an 

adverse pressure gradient, and their ability to capture the 

effects of the imposed flow control. 

Calculations with the linear k-ε model do not reproduce 

the unforced case well, predicting no separation on the 

inclined wall. The non-linear model returns improved 

results, although the size of the separation bubble is slightly 

underpredicted.  

The effect of the periodic perturbation varies according 

to its frequency. In general, it leads to a reduction of the 

separation length, as a result of the enhanced momentum 

transport across the diffuser due to the organised oscillatory 

fluid motion. This effect is seen most clearly within the non-

dimensional Strouhal number range of 0.005 < StH < 0.03. 

Over this range, the effect of the induced perturbation 

extends downstream, giving rise to oscillations of the 

streamlines and splitting of the instantaneous recirculation 

zones. At higher frequencies, the imposed perturbation 

decays rapidly in the downstream direction, leaving only 

small traces in the region of separation.  

Although not shown here, both linear and non-linear k-ε 

models do qualitatively capture the changes in turbulent and 

mean velocity profile shapes. However, the non-linear 

model generally returns the better quantitative results, 

including capturing reasonably accurately the variation of 

the recirculation zone as the forcing frequency is changed. 
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