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ABSTRACT 
This study explores the potential of a recently developed 

wall-function strategy, based on the analytical solution of 

simplified, boundary-layer, forms of the momentum and 

enthalpy transport equations, for the economical and 

reliable prediction of natural convection flows. 

Comparisons are also drawn with results from the 

conventional wall-function strategy, based on the log-law. 

These near-wall modelling strategies have been combined 

with different high-Reynolds-number turbulence models, 

including the k-ε, a basic form of 2nd-moment closure, and a 

more elaborate version, which satisfies certain physical 

realizability constraints. In the 2nd-moment computations, in 

addition to the generalized gradient diffusion hypothesis, 

more complex algebraic forms have also been employed for 

modelling the turbulent heat fluxes, involving the solution 

of transport equations for the temperature variance and its 

dissipation rate.  Four test cases have been computed: a 

square cavity with differentially heated vertical walls, and a 

tall cavity with similar heating arrangements at three 

different angles of inclination; vertical, 60o and 5o to the 

horizontal. The resulting comparisons show that the more 

elaborate wall function shows distinct predictive 

advantages, and in some cases even returns superior 

predictions to a low-Re model. The k-ε model, when used 

with the new near-wall approach, is satisfactory in most 

cases. Of the second-moment closures, the realizable 

version, used with the more complex thermal field models, 

yields the most satisfactory flow and thermal predictions. 

 

INTRODUCTION 
Natural convection flows are encountered in nature and 

also in engineering applications, including domestic 

heating, refrigeration and nuclear reactor cooling systems. 

The fluid motion and thereby the thermal convection 

process, are driven by the gravitational force acting in 

regions of variable fluid temperature and consequently 

density. The fact that in cases of natural convection the 

Nusselt number can be considerably higher than unity 

shows that buoyancy-induced motion can significantly 

enhance the wall heat transfer. The process can be 

characterised by either the Grashoff, or the Rayleigh 

number Ra≡gPrβ(ΘH-ΘC)L3/ν2. As the Rayleigh number 

increases, the buoyancy-driven flow undergoes transition 

from laminar to turbulent, leading to even greater 

enhancement in wall heat transfer.  

Turbulent natural convection flows, in even simple 

systems, can be physically complex. The buoyancy force 

influences the turbulence field directly and, depending on 

the orientation of the temperature gradients, can either 

generate or suppress turbulence. The computation of 

turbulent buoyant flows is a challenge. It has long been 

recognised that, due to the gravitational body force, natural 

convection boundary layers do not follow the “universal” 

log-law. Most attempts to compute turbulent natural 

convection flows have thus avoided use of the traditional 

wall-function approach for the prescription of wall 

boundary conditions, because this involves the assumption 

of logarithmic wall laws. Ince and Launder (1989) 

examined natural convection flows in tall differentially 

heated cavities using a low-Re k-ε scheme with the 

generalised gradient diffusion hypothesis (GGDH) 

modelling of the turbulent heat fluxes. Professor Hanjalic’s 

group has made a series of contributions to this topic. In 

Hanjalic (1994), Hanjalic et al (1996), Dol et al (1997) and 

Kenjeres and Hanjalic (1999) a range of natural convection 

flows were studied, including empty and partitioned 

rectangular enclosures and Rayleigh-Benard cells. They 

found it necessary to extend the low-Reynolds-number k-ε 

model to include more complex algebraic equations for the 

turbulent stresses and heat fluxes, requiring transport 

equations for the temperature variance 2θ and its 

dissipation rate εθ. 

The authors’ group has developed more general wall-

functions. While retaining the numerical robustness of the 

conventional, “standard” approach, these no longer need to 

assume logarithmic variations of the near-wall velocity and 

temperature. One such strategy, the analytical wall function 

(AWF) of Craft et al (2002), has been employed 

successfully in mixed convection flows. For the outer field 

Craft and Launder (2001) developed a refined 2nd-moment 

closure, using realizability constraints which satisfy the 2-

component limit of turbulence (TCL). As subsequently 

shown by Craft et al (2004), in the computation of 

buoyancy-opposed wall jets this TCL 2nd-moment closure 

led to predictive improvements in comparison to the 

“Basic” one of Gibson and Launder (1978).  

Here the main aim is to assess the effectiveness of the 

analytical wall function (AWF), Craft et al (2002), for the 

modelling of the near-wall turbulence in the computation of 

natural convection flows. This is done in conjunction with a 

high-Re k-ε scheme and two 2nd-moment closures (the 

original, “Basic”, closure and more recent TCL version) for 

the outer field. With these latter schemes algebraic 

equations for the turbulent heat fluxes, which involve 

transport equations for the temperature variance 2θ and its 

dissipation rate εθ, are also adopted. Comparisons are drawn 

with experimental data and results using a standard wall-

function (SWF) approach. 
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Four cases have been investigated: one square and three 

tall rectangular differentially heated cavities. The square 

cavity was experimentally investigated by Ampofo and 

Karayiannis (2003). The tall cavity cases involve three 

orientations: a vertical cavity, (measurements from Betts 

and Bokhari, 2000); one inclined at an angle of 60o to the 

horizontal (experimental data by Esteifi, 2008), and one 

inclined at 5o to the horizontal (LES data by Addad et al, 

2008). The latter two both have a heated upper surface.  

 
TURBULENCE MODELLING 
Modelling of Turbulent Stresses and Heat Fluxes       

Most computations employed high-Reynolds-number 

models, in which the dynamic and thermal turbulence fields 

are determined from the solution of transport equations and 

wall boundary conditions are specified from a knowledge of 

near-wall turbulence, to avoid the need for fine near-wall 

grids. The models tested are listed in Table 1.  

 

  k-ε Models 
The effective viscosity and diffusivity approximations 

are 
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with the turbulent viscosity taken as εν µµ /2kfct = , and 

the turbulent kinetic energy, k, and its dissipation rate, ε, 

obtained from separate transport equations. 

 

  Second-Moment Closure (RSM) Models 
The Reynolds stresses are now obtained using transport 

equations of the type shown below: 
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The generation rate terms, Pij, due to shear, and Gij, due 

to the buoyancy force, are exact. Terms dij, Φij and εij 

require modelling. Different approximations to these terms 

are adopted in the two RSM models, Basic and TCL. The 

two RSM models also adopt different forms for the 

transport equation for the dissipation rate, ε. It is worth 

noting the buoyant generation rate term, Gij, for two 

reasons. First, according to how the turbulent heat flux 

vector is aligned with the vertical it can be either positive or 

negative, enhancing turbulence when the temperature 

increases in the downward direction, and attenuating 

turbulence when the temperature gradient is reversed. 

Second, even though its trace (G11+G22+G33) in non-zero 

and hence also present in effective-viscosity models, it is 

highly anisotropic in its effect. This feature can only be 

reproduced by second-moment closures. 

 

  Generalised Gradient Diffusion Hypothesis  
This representation of the turbulent heat fluxes is 

usually employed with second-moment closures:  
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Table 1. Summary of turbulence models tested. 
Reynolds 

Stresses 

Turbulent Heat 

Fluxes 

Near-Wall 

Strategy 

Name 

Low-Re k-ε, 
Launder-

Sharma  

Effective 

Diffusivity 

Low-Re 

Model. Fine 

grid 

LRN 

High-Re k-ε Effective 

Diffusivity 

Standard 

Wall Funct. 

SWF 

High-Re k-ε Effective 

Diffusivity 

Analytical 

Wall Funct. 

AWF 

Diff. Model. 

Gibson-

Launder 

Generalised 

Gradient Diffusion 

Hypothesis 

Analytical 

Wall 

Function 

RSM 

Basic 

Diff. Model 

Gibson-

Launder 

Algebraic model 

eqns. for θ2 and εθ., 
Hanjalic et al 

Analytical 

Wall 

Function 

Mod 

RSM 

Basic 

Diff. Stress 

Model. Craft-

Launder 

Generalised 

Gradient Diff. 

Hypothesis 

Analytical 

Wall 

Function 

RSM 

TCL 

Diff. Model 

Craft-Launder 

Algebraic model 

eqns for θ2 and εθ., 
Hanjalic et al 

Analytical 

Wall 

Function 

Mod 

RSM 

TCL 

 

  Hanjalic et al (1996) Heat Flux Model 
Here a more elaborate algebraic expression is used for 

the turbulent heat fluxes: 
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The temperature variance, 2θ , which appears in these heat 

flux equations, is determined from additional transport 

equations for 2θ  and its dissipation rate εθ, not included 

here due to space limitations. 
 
Modelling of Near-Wall Turbulence 

The modelling of near-wall turbulence has been one of 

the focal points of this study. Effective-viscosity, k-ε, 

computations have been performed with three different 

approaches: firstly a low-Reynolds-number model, secondly 

the conventional, “standard”, wall-function approach based 

on the log-law, and finally the more general analytical wall-

function of Craft et al (2002). The low-Reynolds-number 

(LRN) model employed here is the Launder-Sharma (1974) 

model, which has been applied to the computation of natural 

convection flows with some success, Ince and Launder 

(1989), but which requires the use of fine near-wall grids.  

The standard wall function “SWF”, is a well-

documented approach, in which in order to avoid the need 

for fine near-wall grid resolution, a logarithmic velocity 

variation, the local equilibrium of turbulence and a constant 

turbulence shear stress are assumed across the near-wall 

control volumes. Wall boundary conditions to the mean 

momentum and enthalpy equations, and also to those for the 

transport of turbulence quantities such as k and ε, can then 

be specified from the values of the mean flow and 

turbulence parameters at the near-wall nodes. This approach 

is numerically robust, but lacks generality, due to the 

limitations imposed by the assumptions employed.  

The analytical wall function, “AWF”, Craft et al (2002), 

removes some of the limiting assumptions of the standard 

approach, but without sacrificing its numerical robustness.  

As in the SWF, large near-wall control volumes are 

employed and wall boundary conditions to all transport 

equations are specified from the values of the mean flow 
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and turbulence parameters at the near-wall nodes. This 

process is, however, based on near-wall variations of the 

mean wall-parallel velocity and temperature which result 

from the analytical integration of simplified near-wall forms 

of their transport equations: 
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The wall-parallel and wall-normal directions are denoted by 

x and y respectively. The turbulent viscosity, µt, is assumed 

to vary linearly across the near-wall cell according to: 
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where the dimensionless thickness of the zero-turbulent-

viscosity sub-layer, yv
*, is taken as 10.8. 

The wall-parallel convection and pressure gradient 

terms in equations (7) and (8) are treated as constants and 

calculated from nodal values, while for the buoyancy term 

in equation (8) the variation produced by the solution of 

equation (7) is used. The wall-normal convection term, 

when the wall-normal velocity at the near wall cell is 

towards the wall, is treated as constant over the entire cell, 

while when the wall-normal velocity is away from the wall, 

a two-layer approach is adopted. In this case, outside the 

zero-turbulent-viscosity layer it is evaluated from the nodal 

values, whilst within the sub-layer velocity values at the 

edge of the sub-layer are used, based on linear interpolation. 

The above strategy makes the introduction of further 

refinements possible, such as accounting for changes in 

molecular properties across the sub-layer. More details are 

given in Craft et al (2002). 

 

CASES EXAMINED 
Four cases of free convection flows in enclosed cavities 

have been computed, for which validation data are 

available. The first is that of flow in a square cavity with 

differentially heated vertical walls. Along the horizontal 

walls the temperature changes from that of the hot wall at 

one end to that of the cold at the other. The Rayleigh 

number value based on the side of the square cavity is 

1.58x109 and the Prandtl number 0.7.  The other three cases 

involve a tall cavity, aspect ratio 28.7, with one hot and one 

cold long wall and thermally insulated end walls at a 

Rayleigh number of 0.86x106 and a Prandtl number of 0.7. 

The first of the tall cavity cases is a vertical cavity with the 

long walls at 90o to the horizontal. The second is inclined at 

an angle of 60o to the horizontal, with the hot surface being 

the upper one and the third of the long cavity cases is at an 

angle of 5o to the horizontal, also with the upper surface 

being the hot surface.  

 

NUMERICAL ASPECTS 
The in-house, two-dimensional, code TEAM has been 

used. It is a finite volume, structured code which solves the 

heat and fluid flow equations in either Cartesian or axi-

symmetric co-ordinates with a staggered grid arrangement. 

In the case of the DSM computations, the apparent viscosity 

concept was also employed to enhance numerical stability. 

For the discretization of convective transport the 3rd order 

upwind QUICK scheme was employed.  

Following grid sensitivity tests, for the square cavity, 

the low-Re k-ε results have been obtained using an 80x80 

grid and for all computations employing high-Re models a 

40x40 mesh has been employed, with y* (≡yk1/2/ν) values at 

the near-wall nodes ranging from 3 to 40. For the tall cavity, 

low-Re k-ε computations have been obtained with an 

80x120 mesh and  high-Re models employed a 20x80 mesh 

with y* values ranging from 4 to 22.  

 

RESULTS 
Square Cavity  

The differential heating generates the convection cell 

shown in Figure 1, in which there is a strong near-wall 

motion, with impingement regions at the four corners, but 

especially  at  the  corner  between  the  hot  and upper walls 

and also the one diametrically opposite. The measurements 

of Ampofo and Karayiannis (2003) show that the flow is 

turbulent in the near-wall regions, but with a laminar core.  

 

 

Figure 1. Streamlines in square cavity, Ra = 1.58x109. 

 

The comparisons of Figures 2 and 3, which focus on the 

boundary layer at the half-way point of the hot wall, are 

typical of a wider range of comparisons (at both vertical 

walls) and provide a good assessment of the different 

modelling strategies. Starting with the vertical velocity 

comparisons of Figure 2, the k-ε predictions on the left hand 

side graph show that the low-Re model under-predicts the 

boundary layer thickness, suggesting that this model returns 

a laminar boundary layer, while the high-Re model with 

either wall function predicts the correct boundary layer 

thickness. Moreover, while the SWF version under- 

estimates the velocity maximum, the AWF returns a value 

close to that measured. The Basic RSM, with the AWF, 

returns the correct velocity variation as well, while the TCL 

version appears to predict a thicker boundary layer and a 

lower velocity maximum. In the corresponding comparisons 

of the turbulent kinetic energy, k, of Figure 3, the k-ε 

comparisons show that, as suggested by the velocity 

profiles, the low-Re model predicts zero k levels. The two 

high-Re versions, which return turbulent boundary layers, 

under-estimate the peak k level, but again the AWF 

predictions are closer to the measurements. Switching to the 

basic RSM, with the AWF, leads to further predictive 

improvements. Introducing the TCL version and the 

Hanjalic et al (1996) approximation of the heat fluxes, 

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

375

미정댁
메인/컨텐츠



causes the k levels to be over-estimated, though not 

severely. Introduction of transport equations for the 

temperature variance and its dissipation rate does not 

change the velocity predictions (not included here) but leads 

to a modest increase in the predicted k levels. 

In Figure 4, k-ε predictions of the local Nusselt number 

over the walls of the square cavity are compared. The data 

show that the maximum levels occur at the bottom of the 

hot and the top of the cold walls, where Figure 1 shows flow 

impingement. These values are only captured with the 

AWF. The SWF produces a flatter Nu distribution. The low-

Re model, which predicts laminar flow, under-estimates 

peak levels. The RSM, Figure 5, does not lead to significant 

improvements in local Nu predictions. The RSM-TCL, with 

the Hanjalic et al (1996) approximation of the heat fluxes, 

improves Nu predictions along the two horizontal walls. 

 

  

Figure 2. Vertical velocity variation along the mid-horizontal 

line near hot wall. Square cavity, Ra=1.58x109. 

 

 
 

Figure 3. Turbulent kinetic energy along the mid-horizontal 

line near hot wall. Square cavity, Ra=1.58x109. 

 

  

  

Figure 4. Local Nusselt number variation over the walls of 

the square cavity. Ra = 1.58x109, k-ε comparisons. 

  

Figure 5. Local Nusselt number variation over the walls of 

the square cavity. Ra = 1.58x109, RSM comparisons. 

 

Tall Cavities 

Figure 6 shows streamline plots of the three cases. The 

90o and 60o cavities show very few differences in the mean 

flow which are confined to the end-wall regions. The 5o 

cavity displays a different behaviour, with the recirculation 

cell confined to the middle third of the cavity and having a 

different inclination angle to that of the cavity. 

  

 

Figure 6. Mean flow fields in 90o and 60o tall cavities, 

Ra=0.8x106. 

 

Similarities in the flow development at the 90o and 60o 

angles are also evident in the temperature profile 

comparisons of Figure 7. At both angles the temperature 

variation over the middle cavity region is determined by 

turbulent mixing, while near the end walls it is mainly 

influenced by convection. In contrast to the square cavity, 

for all the versions of the k-ε model the mean temperature 

predictions agree with each other and also with the data. 

The RSM comparisons, Figure 8, show that the basic RSM 

also returns reliable temperature predictions throughout 

these two cavities, while the two-component-limit version 

appears to over-estimate turbulence mixing near the end 

walls. The more elaborate heat flux model improves the 

thermal predictions of the RSM-TCL, but differences with 

the data still remain. For the vertical cavity, Figure 9, the 

mean velocity across the middle region is well predicted. 

The only exception is the basic RSM, which over-predicts 

the velocity peaks. Local Nu comparisons for the 90o case, 

Figure 10, show that all EVM models return the correct Nu 

variation. Comparisons with RSM predictions, not included, 

show similar agreement with the data. 

Figure 11 focuses on temperature variance at the cavity 

mid-height. For the 90o case, the extended RSM, which 

includes a transport equation for the temperature variance, 

predicts the correct levels in the cavity core, but higher 

near-wall levels. For the 60o case, the experiments show a 

reduction in the level of temperature fluctuations, possibly 

due to the stable stratification. The computations appear less 
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sensitive to the change in angle, returning fluctuation levels 

similar to those of the vertical case. The extended k-ε 

model, with additional 2θ  and εθ transport equations, not 

shown here, returns higher fluctuation levels at both angles. 

For the 5o cavity, Figure 12 shows comparisons between 

predicted k-ε and LES profiles of the wall-parallel velocity 

and the mean temperature along the cold side. The 

temperature variation is well reproduced by all models. The 

k-ε wall-parallel velocity variations are also close to those of 

the LES study, with the AWF version leading to closer 

agreement. Corresponding turbulent kinetic energy 

comparisons, Figure 13, present a different picture. The 

LES predictions suggest that along the cold wall there are 

high turbulence levels over the middle of the cavity with 

practically laminar flow near the end walls. This trend is 

returned by the computations, but the k levels are under-

estimated. The SWF results in the prediction of higher k 

levels over the middle section of the cavity, which are closer 

to the LES values, although at the mid-section,  y/H=0.5, the 

SWF results in the poorest agreement with the LES mean 

velocity variation. Finally local Nu comparisons along the 

hot wall of the 5o cavity, Figure 14, show practically no 

difference between any of the k-ε predictions and the LES 

data. They all show high Nu levels near the bottom end 

wall, where the re-circulating motion, Figure 6, transports 

the cold fluid, and a gradual reduction toward the top end as 

the fluid transported upwards heats up. The close agreement 

with LES suggests that because turbulence levels are low, 

due to stable stratification, they have only a minor effect on 

the flow and thermal development at this Rayleigh number. 

 

 

Figure 7.  Mean temperature comparisons for 90o and 60o 

tall cavities. Ra=0.8x106. 

 

Figure 8.  Mean temperature comparisons, using second-

moment closures, for the 60o tall cavity. Ra=0.8x106. 

 

  

Figure 9. Vertical velocity variation along the mid-

horizontal line. Tall 90o cavity, Ra = 0.86x106. 

  

Figure 10. Local Nusselt number variation over the cold and 

hot walls of the vertical tall cavity. Ra = 0.86x106. 

 

Figure 11. Temperature variance profiles across the 

cavity at mid-height Y=0.5. Ra = 0.86x106. 

 

CONCLUDING REMARKS 
From the comparison of the predictions for the four 

buoyant flow test cases, it can be concluded that the 

introduction of the more elaborate analytical wall function 

(AWF) generally improves the flow and thermal 

predictions. It thus provides a cost-effective strategy for the 

near wall modelling of buoyant turbulent flows. Indeed, for 

the first test case, where the flow is only turbulent within 

the boundary layer regions, the AWF approach has been 

shown to be superior to the more expensive low-Re model, 

which returns completely laminar flow. 

The AWF strategy has been combined with more 

refined models for the Reynolds stresses, such as the two-

component-limit (TCL) second-moment closure and also 

more sophisticated models for the turbulent heat fluxes, 

such as the algebraic model of Hanjalic et al (1996) based 
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on additional transport equations for 2θ  and εθ. This has 

been shown to further improve the Nusselt number 

predictions, especially over the horizontal walls of the 

cavities, and to lead to more reliable predictions of the 

dynamic and thermal turbulent fields.  

For tall differentially heated cavities with either vertical 

heated walls or inclined at moderate angles to the vertical, 

the k-ε model predictions are in close agreement with 

measurements of the mean velocity, temperature and local 

Nusselt number. The RSM models display some 

deficiencies, with the Basic version over-estimating velocity 

peaks at mid-height and the TCL over-estimating the 

turbulent mixing near the end walls. The RSM predictions 

of temperature variance are superior to those of the k-ε, but 

are still not sensitive to the effect of angle of inclination. 

Flow in the 5o inclined cavity is strongly affected by 

stable stratification. The AWF version of the k-ε 

successfully reproduces the LES mean flow and temperature 

fields, but under-estimates the LES k levels. All models 

reproduce the LES local Nu variation, which suggests that 

the low levels of turbulence present have only a minor 

effect on wall heat transfer. 

 

 

a)Wall-parallel mean velocity b) Mean temperature 

Figure 12. Mean flow and thermal comparisons along the cold 

wall of the 5o inclined cavity. Ra=0.8x106. 

 

 

Figure 13. Comparisons of turbulent kinetic energy along the 

cold wall of the 5o inclined cavity. Ra=0.8x106. 

 

Figure 14. Comparisons of local Nusselt number along the hot 

wall of the 5o inclined cavity. Ra=0.8x106. 
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