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ABSTRACT

The Algebraic Structure Base Model (ASBM), which

gives a more complete description of turbulence than clas-

sical models, has been coupled with the k − ω BSL trans-

port equations to allow an easy use of this model. As the

ASBM model requires correct estimates of the turbulent ki-

netic energy and dissipation rate, a correction of the relation

between ω and the dissipation rate in the wall region is pro-

posed. First tests on simple flows show encouraging results.

INTRODUCTION

Present industrial design heavily relies upon CFD, using

mainly eddy viscosity models, the two most popular ones

being the Spalart-Allmaras (1994) one equation model and

the Menter SST k−ω model (1992), because of their ability

to predict separation. However, they are known to fail to

capture many flow issues, first of all because of the eddy

viscosity assumption.

Two routes are generally considered to get rid of the eddy

viscosity assumption:

• The use of transport equations for the Reynolds stress

tensor (DRSM models) allows one to circumvent most of

the failures of the eddy viscosity assumption, by accounting

for turbulence memory effects and most of the rotation and

curvature effects. Although the FLOMANIA project (Haase

et al., 2006) led to robust implementation of such models in

several CFD codes, their everyday use is still an issue.

• Explicit Algebraic Reynolds Stress Models (EARSM)

only require two transport equations and replace the eddy

viscosity assumption by an equilibrium assumption for the

anisotropy tensor. They so inherit many properties of the

underlying Reynolds stress model. However, the extension

of these models in regions where the equilibrium assumption

does not hold has long been an issue.

A third modelling route was proposed by Reynolds et

al. (2000) and Kassinos et al. (2000, 2001) to circumvent

most of the failures of DRSM models. While DRSM models

assume that all the information about turbulence is in the

turbulence length and velocity scales and in the anisotropy

tensor, they pointed out the importance of the dimensional-

ity of turbulence. This led them to Structure Based Models

(SBM), which are able to better represent rapid distortion,

rotation effects and many subtle non-equilibrium effects than

current DRSM models. But these models use extra trans-

port equations, compared to DRSM models and are thus less

prone to a prompt industrial use.

A simplified version, using the SBM approach to directly

represent the anisotropy and dimensionality tensors was de-

rived (Kassinos et al., 1994; Langer and Reynolds, 2003).

It only requires two transport equations for turbulence ve-

locity and length scales, and brings some similarities with

EARSM models. This approach is very powerful as it allows

to sensitize the length scale equation to the dimensionality

of turbulence. But the length scale equation (Reynolds et

al., 2002) is unusual and may require some specific changes

to be implemented in a commercial code.

Therefore, an even more simplified version, coupling the

Algebraic Structure Based Model (ASBM) with a more stan-

dard set of length scale equations, has been developed, to

give an easy access to the ASBM technology.

ASBM MODELLING

Structure Based Models, and especially ASBM models,

can be envisioned in two complementary ways.

A first way is the use of turbulence structure tensors

to characterize the turbulent motion. While DRSM models

only deal with the anisotropy tensor, other tensors can be

derived from the turbulent stream function vector, the curl

of which is the turbulent velocity field. The dimensionality

tensor characterizes the changes of the turbulence structure

along the various directions; the circulicity tensor charac-

terizes the vorticity field associated with the energy bearing

structures, the inhomogeneity tensor the degree of inhomo-

geneity of the turbulent field. These three tensors and the

Reynolds stress tensor are related and, in SBM complete

models, transport equations are solved for these tensors to

fully describe the turbulent field.

A second way is to consider that turbulence can be mim-

icked with a combination of simplified turbulent structures,

i.e. as an ensemble of hypothetical 2D eddies the direction of

independence of which is aligned with the eddy-axis. These

eddies differ by their componentality and dimensionality and

are:

• Jetal motions: 2D-1C fields where the motion is only

along the eddy axis,

• Vortical motions: 2D-2C fields where the motion is

around the eddy axis,

• Helical eddies: superpositions of the above two motions

A last important notion is the flattening of the eddies,

which is related to the degree of asymmetry of the turbulent

kinetic energy distribution around the hypothetical eddies.

A complete turbulent field is envisioned as a large ensem-
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ble of these eddies, with varying characters and orientations.

Averaging over the ensemble produces statistical quantities

representative of the field. Decomposing the fluctuating ve-

locity in components aligned and normal to the eddy-axis

direction, taking the product u′iu
′
j , and then averaging, re-

sults in the algebraic constitutive relation for the normalized

Reynolds stress tensor (related to statistics of the ensemble)

rij =
u′
iu

′
j

2k
= 1

2
(1− φ) (δij − aij) + φaij

+ (1− φ)χ
ˆ

1
2

(1− anmbnm) δij − 1
2

(1 + anmbnm) aij

−bij + ainbnj + ajnbni] (1)

−γ Ωk
Ω

(εiprapj + εjprapi)
˘

1
2

[1− χ (1− anmbnm)] δkr

+χ (bkr − aknbnr)}

where aij , the eddy-axis tensor, represents the energy-

weighted average direction cosine of the eddy-axis vector.

Eddies, like material lines, tend to align with the direction

of positive mean strain rate, and are rotated kinematically

by the mean rotation rate. To ensure the algebraic model

for the eddy-axis tensor is realizable, it is computed via a

two-step procedure. Initially a strained eddy axis, asij , is

evaluated based upon the mean strain rate tensor, Sij .

asij =
δij

3
+ τ

Sika
s
kj + Sjka

s
ki −

2
3
|Sas|δij

a0 + 2
q
a2

1 + τ2SkpSkqaspq

, (2)

where τ is a turbulent time scale, |Sas| = Spqasqp, and

{a0, a1} are “slow” parameters. Next a rotation operation

is applied on asij , so that the final (strained, then rotated)

eddy-axis tensor, aij , is obtained as

aij = HikHjma
s
ij . (3)

The rotation operator Hij is modeled as

Hij = δij + h1
Ωijp
|Ω2|

+ h2
ΩikΩkj

|Ω2|
, (4)

which satisfies the orthonormal conditions HikHjk = δij for

h1 =
q

2h2 − h2
2/2. h2 is chosen to satisfy theoretical rapid

distortion limits for combined homogeneous plane strain and

rotation.

h2 =

8>>>><>>>>:
2− 2

q
(1 +

√
1− r )/2 if r ≤ 1

2− 2
q

(1−
p

1− 1/r )/2 if r ≥ 1

,

where r = (apqΩqrSrp)/(SknSnmamk).

bij , the eddy-flattening tensor, is an ensemble average

of the direction cosines of the eddy-flattening vector. The

flattening direction is found to be dependent on the vorticity

vector, and the model for bij takes the simple form (fixed

frame)

bij =
ΩiΩj

|Ω2|
. (5)

φ, the jetal parameter, is representative of the amount of

energy in the jetal mode of motion. (1−φ) is representative

of the amount of energy in the vortical mode. In irrotational

flows φ = 0, and of course 0 ≤ φ ≤ 1. Mathematically, it

represents the average (over all eddies) of the dot product

between the eddy-axis vector and the velocity vector. In

simple shear flows (this study), it reads

φ = 1× fslow(a2)

fslow(a2) = 0.35f2.5
iso (a2) + (1− 0.35)f0.5

iso (a2) (6)

fiso(a2) = (3/2)(a2 − 1/3)

γ, the helical parameter, is representative of the correla-

tion between the jetal and the vortical modes. In the general

case,

γ = β

s
2φ(1− φ)

1 + χ
, (7)

and for simple shear flows β = 1.

χ is the flattening parameter, a representative of the

average magnitude of the lack of symmetry in the energy

distribution around the eddies. In simple shear flows

χ = 0.2× fslow(a2). (8)

The model is moreover sensitized to the wall blocking

with the help of an elliptic relaxation equation for a blocking

parameter Φ, from which a partial projection of the eddy

axis tensor towards the wall is deduced

aij = Pika
h
klPlj , Pik =

1

Da
(δik −Bik), (9)

D2
a = 1− (2−Bkk)ahmnBnm,

where Pik is the partial-projection operator, and D2
a is such

that the trace of aij remains unity (note the superscript “h”

is used to indicate the unblocked tensor). The blockage ten-

sor Bij gives the strength and the direction of the projection.

If the wall-normal direction is x2, then B22 = Φ is the sole

non-zero component, and varies between 0 (no blocking) far

enough from the wall, to 1 (full blocking) at the wall.

The blocking parameter, Φ, is computed by an elliptic

relaxation equation

L2 ∂
2Φ

∂x2
l

= Φ, L = CL max

0@k3/2

ε
, Cν

4

s
ν3

ε

1A (10)

with Φ = 1 at solid boundaries, and
∂Φ

∂xn
= 0 at open

boundaries, where xn is the direction normal to the bound-

ary. Values of the constants are CL = 0.17, Cν = 80.

To retrieve the proper near-wall asymptotics for the

Reynolds stress tensor, the blocking parameter Φ is also used

for blending of φ and γ with their wall values; 1 and 0 re-

spectively,

φ = 1 + (φh − 1) (1− Φ)2 , (11)

γ = γh (1− Φ) . (12)

It must be pointed out that the so obtained Reynolds

stress tensor is fully realizable. Model details can be found

in Reynolds et al. (2000) and Langer and Reynolds (2003).

COUPLING WITH A k - ω MODEL

Among two-equation models, the k − ω model is known

to give fair predictions of pressure gradient effects. How-

ever, as the Wilcox (1988) model is sensitive to free stream

values, Menter’s BSL model (1994) has been preferred. Cou-

pling the above ASBM representation of the Reynolds stress

tensor with the BSL model however requires some changes.

To take advantage of the fair representation of the

Reynolds stress tensor provided by the ASBM model, the

turbulent kinetic energy production must be computed with

the ASBM model as Pk = −u′iu′j
∂Ui
∂xj

, where the ASBM

model provides the expression for the Reynolds stress tensor.

The source term in the ω equation deserves more attention.

In the original ω equation, thanks to the eddy viscosity defi-

nition, it can be expressed, as pointed out by Menter (1994),
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either as Pω = γPk
ω

k
or as Pω = 2γSijSij where Sij is the

mean rate of strain. The two expressions differ when the

ASBM model is used to express the Reynolds stress ten-

sor. As pointed out by Menter, the second form should

be favoured as it states that the turbulence time scale ω−1

tends to adjust to the mean flow time scale
`p

2SijSij
´−1

.

An important point is that the ASBM model has been

designed to represent real near wall turbulence while the ba-

sic k−ω model yields turbulent kinetic energy profiles which

are more similar to v′2 profiles in the wall region and do not

exhibit a near-wall peak. Wilcox later proposed to add three

wall functions to retrieve the correct wall behaviour. When

using the ASBM model, only the dissipation rate is altered

as

ε = βfwωk (13)

A first damping function was adapted from Peng et al.

(1997). Results are presented in Aupoix et al. (2009).

A way to optimize the damping function fw has since

been devised. Assuming infinite Reynolds number, the equa-

tions in the wall region reduce to a parallel flow, i.e. a

one-dimensional problem. Using wall variables, i.e. making

all quantities non-dimensional with the wall friction and the

viscosity, the model equations reduce to

1 =
∂u+

∂y+
− u′v′+ (14)

−u′v′+ = k+F
„
∂u+

∂y+
, k+, ε+

«
(15)

0 = P+
k − ε

+ +
∂

∂y+

»“
1 + σν+

t

” ∂k+

∂y+

–
(16)

0 = P+
ω − β∗ω+2 +

∂

∂y+

»“
1 + σν+

t

” ∂ω+

∂y+

–
(17)

ν+
t =

k+

ω+
(18)

Equation (14) is the mean flow momentum equation, ne-

glecting advection and pressure gradient effects. As the

mean velocity profile is nearly universal, using e.g. Re-

ichardt’s u+(y+) distribution yields ∂u+

∂y+
and hence u′v′

+
.

Reichardt’s law was slightly modified in the linear region to

avoid negative turbulent shear stress −u′v′+.

Equation (15) is just a rewriting of the ASBM model (1)

in which F is non-local because of the elliptical relaxation.

Provided the ε+ profile is known, it gives the k+ profile.

Equation (17) is the BSL (or k−ω as they are equivalent

in the wall region) ω transport equation. From the above

determined k+ profile, it provides the ω+ profile. It must

be noticed that iterations are needed as ω+ also appears in

the definition of the eddy viscosity (18).

At last, the turbulent kinetic energy equation (16) allows

to compute the dissipation profile. The complete near wall

solution can so be determined, using an iterative process

on the dissipation profile and solving all equations from the

wall to far in the logarithmic law. As equation (16) requires

the derivatives of k+, some numerical noise issues have to

be circumvented. The wall damping function fw is finally

deduced from the turbulent profiles, using equation (13).

Unfortunately, the so-obtained solutions are not fully sat-

isfactory. The turbulent kinetic energy profile is realistic,

but the dissipation profile exhibits unexpected oscillations

in the buffer region. Playing with the coefficient in the el-

liptic damping and with the expression for the source term

in the ω equation cannot suppress this oscillation which is

y+

f w

10-1 100 101 102 10
0

0.2

0.4

0.6

0.8

1

Computed
Model

Figure 1: Determination of the wall function

due to an inconsistency between the imposed velocity gradi-

ent (and hence turbulent shear stress) distribution and the

form of the diffusion term in the turbulent kinetic energy

equation (16).

Therefore, a simpler solution was looked for. The turbu-

lent kinetic energy equation (16) was no longer considered

and the dissipation profile was imposed. This is justified

by the analysis of several DNS (Spalart, 1988; Skote, 1998,

Hoyas and Jimenez, 2006) which shows that the near wall

dissipation profile is nearly universal for moderate pressure

gradient flows. The convergence only deals with the turbu-

lent kinetic energy and specific dissipation profiles.

As pointed out by Wilcox (1993) and Peng et al. (1997),

fw must tend to
5

18
at the wall in order to have k ∝ y2 in the

wall region and a finite wall value for the dissipation. This

has drastic consequences as this limiting behaviour has to

be forced in a significant part of the buffer region where the

two expressions of Pω significantly differ. Unfortunately, the

choice of Pω = 2γSijSij leads to a too extended blocking

of the fw function in the buffer layer and thus an overes-

timation of the dissipation and an underestimation of the

turbulent kinetic energy. Better results are achieved using

Pω = γPk
ω

k
.

The so-determined fw function was finally represented

as

fw = 1.−
13

18
exp

"
−
„

0.6 +
Rt

50

« 
1.− exp

"
−
„
Rt

10

«2
#!#

Rt =
k

νω
(19)

This analytical model is compared to the function given by

the resolution of the equations in figure 1. Of course, the

biggest differences are due to the enforcement of the near-

wall behaviour. It must be pointed out that this function

plays a rôle rather far from the wall, up to a reduced wall

distance y+ larger than 300 (this value is not linked to the

integration domain, which at least extended up to y+ =

3000).

VALIDATION RESULTS

All validation tests were performed with simple one-

dimensional codes for self-similar flows or with a boundary
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Figure 2: Channel flow Rτ = 2000 – Mean velocity predic-

tions

layer code with adaptive grid so that grid convergence is

achieved.

Channel flows

Channel flows are first addressed. Predictions of the pres-

sure drop versus Reynolds number remain within ±4% over

the investigated range, i.e. up to a Reynolds number based

upon the mass flow velocity Re =
2uh

ν
= 6 105, where h is

the channel half height. The accuracy is better than that

of the BSL model and other tested models (mixing length,

k − ε).
Predicted profiles are compared with DNS data at var-

ious Reynolds numbers, provided by Madrid Polytechnic

University (Hoyas, 2006). For the sake of clarity, only

the present ASBM model and the standard BSL model

are presented, and only for the largest Reynolds number

Rτ = huτ
ν

= 2000. All figures use wall scaling.

The mean velocity profiles are presented in Figure 2. The

near wall treatment of the ASBM model is fair as the buffer

region is better predicted than with the standard BSL model.

Both models depart from the DNS in the wake region, which

is consistent with the error on the pressure drop for this

Reynolds number.

Figure 3 points out that the model rather nicely repro-

duces the turbulent kinetic energy profile, but underesti-

mates it as it cannot capture the inactive motions, as will

be discussed later. On the contrary, the turbulent kinetic

energy profile predicted by the BSL model is unrealistic as

it does not reproduce the near wall peak, as expected. The

improvement brought about by the use of the damping func-

tion (13) is apparent on the dissipation profile, which is now

in fair agreement with DNS data, opposite to the dissipa-

tion profile predicted by the BSL model which exhibits too

strong a peak in the buffer layer and falls down at the wall.

The three diagonal stresses are plotted in figure 4. “BSL”

values are obtained assuming u′2 = k, v′2 = 0.4k, w′2 =

0.6k. v′2 profile is well reproduced, w′2 is depleted in the

buffer region and u′2 and w′2 are underestimated, but not

in the same region, w′2 being underestimated closer to the

wall, while the near wall peak of u′2 is well reproduced but

u′2 is underestimated further from the wall. Profiles of all

y+

k+ ε+

100 101 102 1030

1

2

3

4

5

6

0

0.05

0.1

0.15

0.2

0.25

0.3

UPM
ASBM
BSL

Figure 3: Channel flow Rτ = 2000 – Turbulent kinetic en-

ergy and dissipation rate predictions
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u
’2

+
,v

’2
+
,w

’2
+

100 101 102 1030

2

4

6

8

10

UPM
ASBM
BSL

Figure 4: Channel flow Rτ = 2000 – Diagonal stresses pre-

dictions

turbulent quantities are very similar to the ones provided by

the k − ω model in the logarithmic region and above.

Couette–Poiseuille flows

In the framework of the WALLTURB program, DNS of

Couette–Poiseuille flows were performed by the Roma Uni-

versity. Two Reynolds numbers, roughly corresponding to

Rτ = 100 and 200 and three lower wall velocities, giving

Couette, intermediate and Poiseuille type flows, were con-

sidered (0rlandi, 2008).

Predicted velocity profiles for the six cases are compared

to DNS in figure 5. From bottom to top, the profiles are

shifted and correspond to Poiseuille, intermediate and Cou-

ette flow, the lowest curve being for the lowest Reynolds

number. Some discrepancies can be noted for the Poiseuille

type flow but the overall agreement is very good.

Reynolds stress profiles for the intermediate flow case, at

the highest Reynolds number, are plotted in figure 6. In all
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Figure 5: Predictions of the mean velocity profiles for the

Couette–Poiseuille flows

y

u
’2

,v
’2

,w
’2

,-
u’

v’

-1 -0.5 0 0.5 1
-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

u’ 2

v’ 2

w ’ 2

-u’v’
u’ 2

v’ 2

w ’ 2

-u’v’

Figure 6: Reynolds stress predictions for the intermediate

type flow

flow cases, the longitudinal component u′ 2 is slightly over-

estimated but the overall agreement is fair. Comparisons

have also been performed on the dimensionality and cir-

culicity tensors which characterize the underlying turbulent

structures. Some discrepancies are found at low Reynolds

number, especially close to the moving wall, but the overall

agreement is satisfactory.

Zero pressure gradient boundary layers

Skin friction coefficient predictions for zero pressure gra-

dient boundary layers are compared with Fernholz’ (1996)

and Kármán-Schoennher correlations. After an initial tran-

sient, models relax to very low error levels, the present model

being comparable to Spalart and SST ones.

Comparisons were also performed with experimental

data for high Reynolds number boundary layers obtained in

the framework of WALLTURB in Laboratoire de Mécanique

de Lille (LML). Changing the flow velocity, boundary layer

y+

k+

100 101 102 103 104
0

1

2

3

4

5

6

7

Rθ=8200
Rθ=11500
Rθ=14500
Rθ=21000
ASBM
ASBM
ASBM
ASBM

Figure 7: Zero pressure gradient boundary layers –Turbulent

kinetic energy profile for various Reynolds numbers
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0.0007
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ASBM
BSL
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Figure 8: Skin friction predictions for Sk̊are and Krogstad

strong adverse pressure gradient experiment

data for Reynolds number based upon the momentum thick-

ness Rθ = 8200, 11500, 14500 and 21000 have been ob-

tained. Nice agreement is achieved for the mean velocity

profiles. However, as shown in figure 7, the present model,

as other standard models, yields the same solution for the

non-dimensional turbulent kinetic energy profile in the wall

region whatever the Reynolds number. This is logical when

considering the way the wall treatment has been designed.

u+(y+) and hence ∂u+

∂y+
and −u′v′+ are assumed universal,

in agreement with DNS data. As there is nothing in the

ASBM model to account for inactive motions, it also yields

universal profiles for all the diagonal stresses and the turbu-

lent kinetic energy, in contradiction with the Reynolds num-

ber dependence evidenced by de Graaf and Eaton (2000).

Adverse pressure gradient boundary layers

At last, several adverse pressure gradient test cases have

been considered. Only the most difficult case, i.e. the

nearly equilibrium flow subjected to a strong adverse pres-
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Figure 9: Mean velocity profile predictions for Sk̊are and

Krogstad strong adverse pressure gradient experiment -

From right to left stations X = 3. , 4.2 , 4.6 and 5m

sure gradient investigated by Sk̊are and Krogstad (1994) is

presented. Figure 8 shows that the present model better

predicts the low skin friction levels than the BSL model it is

based upon, even when SST correction is applied. Launder

and Sharma (1974) k− ε model predictions are also plotted

(LS) to evidence the improvement brought by the use of the

ω equation.

Figure 9 compares velocity profile predictions at various

stations, profiles moving from right to left when going down-

stream. The improvement brought by the present model

w.r.t. the SST model is retrieved.

CONCLUSIONS AND PERSPECTIVES

An easy way to use the Algebraic Structure Based Model,

coupling it with the widespread BSL model, has been pro-

posed. It only requires slight modifications of the BSL part,

besides of course adding an ASBM routine to compute the

Reynolds stress tensor. A rationale to derive the wall cor-

rection has been proposed. The present model thus gives

access to the much better representation of the Reynolds

stress tensor, e.g. for flows with rotation, provided by the

ASBM model.

The model has been tested on simple sheared flows such

as Poiseuille, Couette-Poiseuille and boundary layer flows,

for which it gave fair predictions and rather nicely repro-

duced the near wall turbulence, what the basic BSL model

is not able of. Improvements to represent “inactive motions”

have to be considered. The information about the turbulent

structures available in the ASBM model could be used to

improve the ω equation, as in Reynolds et al. (2002).
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