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ABSTRACT

An investigation on mechanisms of the turbulent drag

reduction, induced by the viscoelasticity of non-Newtonian

fluids, is in progress. In the present work, the effects of

viscoelastic contribution is examined by direct numerical

simulations (DNS), using the Giesekus model for surfac-

tant solutions. A series of DNS on the turbulent channel

flow has been performed for different rheological properties,

with respect to Weissenberg number and the ratio of solvent

contribution to the total zero-shear viscosity, at different

Reynolds numbers. It is found that high drag reduction can

be achieved by suppression of the turbulent production for

high Weissenberg number, and/or by decrease of the effective

viscosity irrespective of the Reynolds number. Moreover, we

focus on the viscoelastic contribution term in the budget of

Reynolds stresses and its relation to the local flow pattern.

INTRODUCTION

It is well known that the small amount of polymers or

surfactant additives to flowing liquid give rise to drag reduc-

tion (DR) in a wall-bounded turbulent flow. In the past

six decades since the discovery of Toms effect (1948), a

number of works have been done to investigate this phe-

nomenon and to apply it to practical applications. One of

the most successful applications of this effect was that in the

Trans-Alaska pipeline, in which the desired discharge of an

additional million barrels of crude oil per day was accom-

plished by the addition of polymers. However, because of

the difficulty in analysing the interaction between additives

and turbulent motions at the molecular level, the mechanism

of drag-reducing turbulent flow by surfactant additives has

not been satisfactorily clarified. This is partly due to the

limitation of present experimental facilities, with which it is

extremely difficult to measure various instantaneous quan-

tities such as velocity and pressure in the vicinity of the

walls with sufficient accuracy. A direct numerical simula-

tion (DNS) has become an important tool to study physics

of turbulence and can identify instantaneous structures in

turbulence. Recently, DNS has been used to study drag-

reducing flow by additives (e.g., Sureshkumar et al., 1997;

Den Toonder et al., 1997; Dimitropoulos et al., 1998; Hou-

siadas & Beris, 2004), and it was found that a viscoelastic

model can reproduce most of the experimental observations

(such as wider buffer layer, reduction of Reynolds shear

stress and larger spacing between low-speed streaks).

Although there are competing models (e.g., FENE-P,

Oldroyd-B), the Giesekus model, proposed by Giesekus

(1982), is adopted in our study because this model can

describe well the measured apparent shear viscosity and ex-

tensional viscosity of the surfactant solution: cf. Wei et

al. (2006). On the other hand, the FENE-P model was al-

ready shown to be able to reproduce the essential effect of

polymers and provide evidence that polymers disrupt the

near-wall turbulence regeneration cycle and reduce the tur-

bulent friction drag (see, e.g., White & Mungal (2008)). As

for the surfactant additives, Suzuki et al. (2001) studied

numerically the drag-reducing flow with using a Giesekus

model. The author’s group (Yu & Kawaguchi, 2004, 06; Yu

et al., 2004) has simulated a viscoelastic fluid by DNS with

the Giesekus model. The numerical results are qualitatively

agreed with experimental data, indicating that this model

is appropriate for surfactant solutions. In this study, we

considered dilute surfactant solutions, in which the shear-

thinning behavior was assumed to be negligible and the

elongational viscoelastic effect was taken into account using

various methods for the extra elastic stresses.

The present objectives are to perform DNS of the drag-

reducing flow with surfactant additives, and to examine the

role and influence of the viscoelasticity in drag-reducing ef-

fect on the structures of wall-bounded turbulent shear flow.

NOMENCLATURE

A : velocity-gradient tensor = ∂ui/∂xj

Cf : skin friction coefficient = 2τw/ρu2
m

cij : conformation tensor

DR% : drag-reduction rate

p : pressure

Re∗
m : Reynolds number = 2ρumδ/ηeff

Reτ : Reynolds number = ρuτ δ/η0

t : time

u, v, w : velocity component in x, y, or z direction

um : bulk mean velocity

uτ : friction velocity =
√

τw/ρ

Weτ : Weissenberg number = ρλu2
τ δ/η0

x1, x : streamwise direction

x2, y : wall-normal direction

x3, z : spanwise direction

Greek

α : mobility factor

β : ratio = ηs/η0
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Table 1: Computational parameters and important results.

Fluid (Weτ ,β) u+
m η0/ηeff Re∗

m DR%

A ( 0, 1.0) 15.2 1.00 4570 —

B1 (30, 0.5) 25.9 1.45 11300 58.1

B2 (30, 0.5) 29.6 1.45 33800 57.6

C (30, 0.3) 29.6 1.93 17200 64.2

D (40, 0.5) 30.1 1.53 13800 67.1

E (10, 0.8) 16.3 1.04 5110 13.2

F (10, 0.5) 17.1 1.13 5750 18.0

G1 (11, 0.5) 20.8 1.15 6130 26.1

G2 (11, 0.5) 21.0 1.15 19100 29.3

δ : channel half width

δij : Kronecker delta

ε : dissipation rate

η0 : viscosity of the surfactant solution

at zero-shear rate = ηa + ηs

ηa : shear viscosity of surfactant contribution

ηeff : effective viscosity at the wall

ηs : shear viscosity of solvent contribution

λ : relaxation time

τw : mean wall shear stress

ρ : density

Superscript and subscript

( )∗ : normalized by uτ , ρ, δ

( )+ : normalized by uτ , ρ, η0

( )η : normalized by uτ , ρ, ηeff

( )′ : fluctuation component

( ) : statistically averaged

( )rms : root-mean-square value

NUMERICAL PROCEDURE

A series of DNS on a turbulent plane channel flow have

been performed at friction Reynolds numbers of Reτ = 150

and 395. We employed a viscoelastic Giesekus constitutive

equation to calculate the extra stress caused by the interac-

tion between shear rate and the elasticity network structure

of surfactant additives. The dimensionless governing equa-

tions for fully developed viscoelastic turbulent channel flow

can be written as follows: the continuity equation

∂u+
i

∂x∗
i

= 0, (1)

the Navier-Stokes equation

∂u+
i

∂t∗
+ u+

j

∂u+
i

∂x∗
j

= −
∂p+

∂x∗
i

+
β

Reτ

∂

∂x∗
j

(

∂u+
i

∂x∗
j

)

+
(1 − β)

Weτ

∂c+ij

∂x∗
j

+ δ1i, (2)

and the constitutive equation

∂c+ij

∂t∗
+

∂u+
k

c+ij

∂x∗
k

−
∂u+

i

∂x∗
k

c+
kj

−
∂u+

j

∂x∗
k

c+
ki

= −
Reτ

Weτ

[

c+ij − δij + α
(

c+
ik

− δik

) (

c+
kj

− δkj

)]

, (3)

where cij is the conformation tensor associated with defor-

mation of network structures. The mobility factor, which is

a parameter determining the extensional viscosity, is set to

be α = 0.001.

Table 2: Reynolds number and Computational domain size;

Li, Ni and Δi are box length, grid number and spatial res-

olution in i-direction.

Fluid A B1, C, D, E, F, G1 B2, G2

L∗
x, L∗

z 10.0, 5.0 12.8, 6.4 12.8, 6.4

Nx, Nz 128, 128 128, 128 256, 256

Ny 128 128 256

Δx∗, Δz∗ 0.08, 0.05 0.10, 0.05 0.05, 0.025

Δy∗
min 0.00149 0.00149 0.00075

Δy∗
max 0.03013 0.03013 0.01506

Reτ 150 150 395
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Figure 1: Mean velocity profile in comparison with data

from PIV experiment (Yu et al., 2004). Dotted line is the

empirical law so-called Virk’s ultimate profile (Virk, 1971).

The periodic boundary condition is employed in stream-

wise and spanwise directions, and the non-slip condition is

imposed on the walls. For the spatial discretization, the fi-

nite difference method is adopted. The numerical scheme

with the 4th-order accuracy is employed in the stream-

wise and spanwise directions, and the 2nd-order accuracy

is applied in the wall-normal direction. The 2nd-order

MINMOD scheme is adopted to the convective term in

the constitutive equation. Time advancement is done by

the 2nd-order Adams-Bashforth method, but the 2nd-order

Crank-Nicolson method is used for the viscous terms in the

wall-normal direction.

We investigated effects of the various rheological param-

eters on the drag reduction. Table 1 summarizes the impor-

tant flow parameters of the non-Newtonian fluid as well as

mean flow variables, such as the actual bulk Reynolds num-

ber Rem. In addition, chosen frictional Reynolds numbers

are shown in Table 2, in which the computational domain

size is also listed.

RESULTS AND DISCUSSION

The mean velocity profiles are plotted in Fig. 1, includ-

ing the experimental data obtained by Yu et al. (2004).

In their experiment, a drag-reduction rate DR% of 51%

(defined later) was achieved using surfactant solution of

cetyltrimethyl ammonium chloride (CTAC) dissolving in wa-

ter with a concentration 75 ppm. The DNS result for New-

tonian fluid by Abe et al. (2004) is also drawn in the figure.

Here yη is the wall-normal height non-dimensionalized by

the viscous length based on the effective viscosity at the

wall (Sureshkumar et al., 1997), which is obtained as

ηeff = η0

(

β
du

dy
+

(1 − β)cxy

Weτ

)

/

du

dy
. (4)
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Figure 2: (a) Cf vs Re∗
m, (b) DR% vs Re∗

m. Solid line is

Virk’s maximum drag-reduction asymptote (MDR).

The present results are in qualitative agreement with their

data. For non-Newtonian fluid, there exists a shift of the

logarithmic law of a Newtonian fluid due to the presence of

the additives. The magnitude of the shift seems to depend

mainly on Weτ . The highest drag-reduction rate in the

present study is achieved by fluid D of Weτ = 40, in which

no apparent log-law region is found, as shown in Fig. 1.

However, the log-law profile for Weτ ≤ 30 can be observed

from a position higher than that of Newtonian fluid. Though

Reτ increases with the same rheological parameters (fluids

B1 and B2, or G1 and G2), the shift displacement of the

log-law from the Newtonian profile is almost the same level.

In Table 1, note that Re∗
m is based on ηeff , and the drag-

reduction rate is defined as

DR% =

(

CD
f − Cf

)

CD
f

× 100% (5)

where Cf is the actual value for non-Newtonian fluid and CD
f

is the value estimated by the Dean’s empirical correlation

(Dean, 1978) for Newtonian fluid at the same bulk Reynolds

number. The result indicates that the DR% increases with

the increase of Weτ . For instance, a slight increase of about

Weτ = 10 → 11 (fluids F to G1) induces a rise of 8% in

DR%. Its increment is relatively significant when compar-

ing with fluids B1 to D (Weτ = 30 → 40). This is because

the Cf and DR% for fluids B1 and D are close to Virk’s

MDR asymptote (Virk, 1971) whereas those of fluids F to

G1 are approximately turbulence values, as given in Fig. 2.

In a high-DR% flow at high Weτ , the production and redis-

tribution of streamwise velocity fluctuation are suppressed,

as discussed later with the budget of turbulent energy u′u′.

A comparison between fluids B1 and C (or fluids E and

F) also indicates that the DR% increases with the decrease

of β at a constant Reτ . In this case, the effective viscosity of

ηeff is remarkably decreased, causing a decrease in Cf and an

C
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Figure 3: Fractional contribution to friction coefficient.
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Figure 4: Root-mean-square of streamwise velocity fluctua-

tion u′: (a) various rheological conditions at Reτ = 150; (b)

comparison between Reτ = 180 and 395. Symbol of × is the

DNS by Abe et al. (2004) for Newtonian fluid at Reτ = 395.

increase in DR%. Therefore we can identified two types of

factors in the drag reduction: the decreases of the turbulent

production (by increasing Weτ ) and of the effective viscosity

(by decreasing β). As for the Reynolds-number dependence,

a comparison between fluid B1 and B2 (also G1 and G2)

indicates that there is no meaningful distinction in DR%

and η0/ηeff .

Fukagata et al. (2002) proposed a direct relation between

the skin friction coefficient and the Reynolds stress distribu-

tion. This identical equation indicates that the skin friction

coefficient can be decomposed into the laminar contribution,

the turbulent contribution and the inhomogeneous and tran-

sient contributions. The equation for the channel flow of a

non-Newtonian fluid governed by Eq. (2) is derived as fol-

lows,

Cf = 12
β

Rem
+ 6

∫ 1

0

(

−u′+v′+
)

(1 − y∗)

u+
m

2
dy∗

+ 6

∫ 1

0

c+xy (1 − β)

Weτ

(1 − y∗)

u+
m

2
dy∗. (6)

The first term is the laminar contribution, the second term is

the turbulent contribution and the third term is viscoelastic

contribution. For five typical cases, the fractional contribu-

tion made by each part is shown in Fig. 3. The reduction of

skin friction coefficient of non-Newtonian fluid is attributed

mainly to the remarkable reduction of the turbulence con-

tribution, though the additional viscoelastic contribution is

small but not trivial. It is worth noting that, although flu-

ids C and D yield almost same high DR%, the former gives

a smaller laminar contribution and a larger turbulence con-

tribution than those of latter case. As mentioned before,

the low β for fluid C induces a decrease of the laminar con-

tribution, and the high Weτ for fluid D damps down the

turbulence contribution.
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Figure 5: Same as Fig. 4 but for v′.
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Figure 6: Same as Fig. 4 but for w′.
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Figure 7: Same as Fig. 4 but for −u′+v′+.

Figures 4–6 show the turbulent intensities. It can be

found that, for high-DR% cases, u′+
rms tends to increase for

yη > 10 and both v′+
rms and w′+

rms decrease in the whole

channel width (see (a) in the figures). In other words, the

flow at high DR% is prone to become anisotropic turbulence.

In such case, the Reynolds shear stress also becomes much

small in the near-wall region (see Fig. 7), and it results in the

high DR% as suggested by Eq. (6). Especially, this tendency

of fluid D is remarkable and consistent with the discussion

above. As seen from Fig. 4(b), profiles of u′+
rms for the rheo-

logically identical fluids (e.g., constant Weτ and β), do not

depend on the Reynolds number. The maximums of v′+
rms,

w′+
rms and −u′+v′+ for non-Newtonian fluids are lower than

those of Newtonian fluid, as shown in Figs. 5(b)–7(b). Their

peak positions shift away from the wall as Reτ increases.

Budget of Reynolds stress

The budget terms of Reynolds stress u′+u′+ in fully-

developed channel flow can be expressed as

D

Dt
u′+u′+ = P − ε + Π + T + D + E (7)

where the terms on the right-hand side are as follows:

production : P = −2u′+u′+
k

∂u+

∂x+
k

, (8)

dissipation : ε = 2β
∂u′+

∂x+
k

∂u′+

∂x+
k

, (9)

VPG : Π = −2

(

u′+ ∂p′+

∂x+

)

, (10)
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Figure 8: Budget of u′+u′+ for the almost same DR% cases.
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turbulent diffusion : T = −
∂

∂x+
k

u′+u′+u′+
k

, (11)

molecular diffusion : D = β
∂2

∂x+
k

2
u′+u′+, (12)

VEC : E = 2
1 − β

Weτ

(

u′+
∂c′+

xk

∂x+
k

)

. (13)

Here the VPG and VEC terms denote the velocity pressure-

gradient correlation term and viscoelastic contribution term,

respectively. The VEC term is an extra term derived from

the viscoelastic effect. Figures 8 and 9 show the budget of

Reynolds stress u′+u′+. A difference between Newtonian

fluid and non-Newtonian fluid is found in the VPG term

corresponding to the pressure strain, also called the redis-

tribution term. It is well-known that the energy transfer

from u′+u′+ to the other directions is attributed to the re-

distribution term. For non-Newtonian fluid, the VPG term

is much smaller than that of Newtonian fluid (not shown

here), and hence the relevant flow strengthen the tendency

toward anisotropic turbulence.

Although almost same DR% values are obtained in fluids

C and D, their budgets of u′+u′+ are slightly but signifi-

cantly different (see Fig. 8). For example, the maximum of

the turbulent production in fluid D is much smaller com-

pared to fluid C, which is due to high Weτ . However, the

dissipation and the molecular diffusion in fluid D are larger

than those of fluid C, which is attributed to low β. These

results indicate that high DR% in fluid D is attributed to

the suppressed turbulent production and that in fluid C is
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Figure 10: Distribution of viscoelastic contribution.

to the decreased effective viscosity .

It is of interest that, for the high-DR% case, the bud-

get terms are less dependent on the Reynolds number in the

whole channel, as shown in Fig. 9(a). On the other hand,

for the low-DR% flow as well as a Newtonian-fluid flow, the

near-wall values of production, dissipation, molecular dif-

fusion and turbulent diffusion are prone to be increased as

Reτ increases (see Fig. 9(b)). Moreover, the VEC term of

the high-DR% fluids (i.e., fluid B1, B2, C, D) works as a

gain of turbulent energy in the near-wall region (yη ≈ 10),

whereas it works as a dissipation in the whole area for the

low-DR% cases (fluids G1 and G2).

Flow topology and viscoelastic contribution

In order to discuss the viscoelastic contribution in more

detail, the VEC term of Eq. (13) is divided to the viscoelastic

diffusion Ed and the work by viscoelastic stress Eε.

E = Ed − Eε, (14)

viscoelastic diffusion:

Ed = 2
(1 − β)

Weτ

∂

∂x+
k

u′+c′+
xk

, (15)

work by viscoelastic stress:

Eε = 2
(1 − β)

Weτ

(

c′+
xk

∂u′+

∂x+
k

)

. (16)

The second term can be interpreted as a dissipation rate

from the kinetic energy to the elastic energy. Regarding

these two terms, results in several cases are shown in Fig. 10.

The Ed transfers the turbulent energy of u′+u′+ from the

buffer layer (from yη = 5 to 30) and the elastic layer (i.e.,

up to 60 in the case of fluid D) to the near-wall region or

the channel center (see Fig. 10(a)). On the other hand, the

Eε dissipates the turbulent energy in almost whole chan-

nel; hence this term can be called ‘viscoelastic dissipation’,

while the ε is called ‘viscous dissipation’ (see Fig. 10(b)). It

is worth noting that, for high DR% (such as fluids B–D),

−Eε becomes positive at the near-wall region of yη = 5–

20. It implied that, in this region, there exists a fraction of

the elastic energy, which is accumulated at the outer region

(−Eε < 0 at yη > 20) and backward transfered to the tur-

bulent kinetic energy. Moreover, both Ed and Eε are found

to be are dramatically dependent on Weτ and β and not

scaled by the effective viscosity nor outer scale such as δ.

Figure 11 shows the instantaneous field of −Eε and the

velocity vector in an arbitrarily chosen cross-section of (y, z)

(a)

y
η

z
η

(a)

y
η

z
η

(b)

y
η

z
η

(b)

y
η

z
η

Figure 11: Instantaneous velocity vector and contour of −Eε

in (y, z)-plane for (a) fluid G1 , (b) fluid B1: black, −Eε >

0.06; white, −Eε < −0.06. Vectors indicate (v′, w′)

SF UF

R

SN UN

( ) 23

9

32 QR −±=

Q

SF UF

R

SN UN

( ) 23

9

32 QR −±=

Q

Figure 12: Topology classification of three-dimensional flow

pattern, in the Q-R plane. From Soria et al.(1994).

plane. Note that the axes are non-dimensionalized by the

effective viscosity. In Fig. 11(a), we can observe a number

of eddies near the walls, especially in the buffer layer, which

has been widely accepted for the Newtonian fluid. For fluid

B1 with high DR%, near-wall eddy structures are suppressed

and only rather large-scale structures, which extends to the

channel center, can be found. Moreover, the region of −Eε >

0 is observed not only at the near-wall region but also at the

outer region, and coincides well with the location of a quasi-

streamwise vortex, indicating some relationship between the

viscoelastic contribution and the local flow topology.

Topological methods are useful in the description of flow

fields with large data sets generated by DNS. Chong et

al. (1990) have carried out a classification of the various

types of three-dimensional flow patterns. This classification

method is based on the structure in the space of invariants of

the velocity gradient tensor A. The eigenvalues of A satisfy

the characteristic equation. The second and third invariants

are given by

Q =
1

2

(

trace[A]2 − trace
[

A
2
])

. (17)

R = −det [A] . (18)

Note here that the first invariants is equivalent to Eq. (1).

The solutions to the characteristic equation at each point

determine the local, linearized flow pattern. Four local-flow

topologies, which can occur in an incompressible flow, are

determined by the invariants (Q, R), as given in Fig. 12. The

four classifications are unstable focus/contracting (UF), sta-

ble focus/stretching (SF), stable node/saddle/saddle (SN),

and unstable node/node/saddle (UN), respectively (reading
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Table 3: Relation between viscoelastic dissipation, −Eε, and

local-flow pattern defined by topological classification at sev-

eral wall-normal positions for fluids B1, B2 and G1. Here

(+) and (−) indicate −Eε > 0 and −Eε < 0, respectively.

The values are indicated in percentage, and the boldface

represents the most dominant flow pattern in each height.

yη = 5 yη = 30 yη = 94

−Eε (+) (−) (+) (−) (+) (−)

B1 SF 42 35 46 31 44 36

UF 30 37 34 42 37 34

UN 15 16 13 20 13 23

SN 13 12 7 7 6 7

B2 SF 40 35 41 33 40 36

UF 32 36 35 42 32 34

UN 15 17 17 18 20 23

SN 13 12 7 7 8 8

G1 SF 51 34 34 37 37 38

UF 24 38 31 34 30 34

UN 16 16 25 22 23 19

SN 8 10 10 7 10 9

from top right corner counter-clockwise in the figure). In

concrete terms, SN is uniaxial elongation and biaxial com-

pression, UN is biaxial elongation and uniaxial compression,

and both UF and SF indicate vortex.

Table 3 shows percentages of each flow pattern (topol-

ogy) at yη = 5, 30 and 94 for three kinds of fluids. In all

cases, there is observed a correlation between −Eε and the

flow topology: if −Eε > 0, SF is dominant; if −Eε < 0,

UF is dominant, implying that the vortex stretching and

compressing can be related with gain and loss of the elastic

energy, respectively. It indicates that the relation is satis-

fied in the energy-gain region (in Fig. 10(b)) so that this

region dominates vortex. This tendency is apparent for a

high DR% case. For instance, in the cases of fluids B1 and

B2, this relation maintains at yη = 30.

CONCLUSION

We performed DNS on the turbulent channel flow of vis-

coelastic fluids using the Giesekus constitutive equation at

two Reynolds number Reτ = 150 and 395, and systemati-

cally investigated drag-reducing flows with various values of

the Weissenberg number and the viscosity ratio. Moreover,

the viscoelastic dissipation term is studied with emphasis

on its relation to turbulent flow topologies related to the in-

variants of the velocity gradient tensor. The budget of the

turbulent intensity is also discussed focusing on the “vis-

coelastic dissipation −Eε (from turbulent kinetic energy to

elastic energy)”, which is absent in Newtonian-fluid flow.

The main results may be summarized as follows:

1. High drag reduction can be achieved by suppression of

the turbulent production for high Weissenberg-number

fluid, and/or by decrease of the effective viscosity.

2. Positive −Eε gives rise to vortex stretching that pro-

duces turbulent energy, whereas a negative one causes

vortex compression (energy loss).

3. For a high drag-reducing flow, the viscoelastic contri-

bution and its relationship to the local-flow topology

are significant in the outer layer as well as in the inner

near-wall region.
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