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ABSTRACT 

Instantaneous amplitude and phase concept emerging 
from analytical signal formulation is applied to the wavelet 
coefficients of streamwise velocity fluctuations in the buffer 
layer of a near wall turbulent flow. Experiments and direct 
numerical simulations show both the existence of long 
periods of inert zones wherein the local phase is constant. 
These regions are separated by random phase jumps. These 
behaviours are reminiscent of phase synchronization 
phenomena observed in stochastic chaotic systems. The 
lengths of the constant phase inert (laminar) zones reveal a 
type-I intermittency behaviour. The observed phenomena 
are related to the footprint of coherent structures convecting 
in the low buffer layer that synchronizes the wall 
turbulence.  

 
INTRODUCTION 

The discovery of coherent structures in the early 1960’s 
has profoundly modified our point of view of the wall 
turbulence structure. The “incoherent” turbulence occupies 
only 20% of time and space in the inner layer. The coherent 
part is simpler to understand, since the coherent vortical 
structures can be identified, and tracked in time and space, 
and their direct effect on the wall shear and transport of the 
shear stresses and passive scalar can be clearly determined. 
The common consensus reached by now points at the 
existence of quasi-streamwise vortices of diameters 
typically 10 wall units and located at 20 units from the wall. 
Their streamwise extend is roughly 300 units, and they 
generate low and high speed streaks at the wall with a 
spanwise periodicity of 100 wall units. The sweep and 
ejection events they generate contribute to the Reynolds 
shear stress by 80%. The time period of their generation is 
approximately 100 units also and it depends on the distance 
from the wall. 

  Turbulence in general and the wall turbulence in 
particular can be seen as an infinite dimensional chaotic 
system. The quasi-periodicity induced by the coherent 
structures that are convecting in the low buffer layer, should 
logically lead to the synchronization of the turbulent 
quantities near the wall. Chaos synchronization is a process  

 

 
 
 
 
 
wherein chaotic coupled (sub) systems subject to 

external forcing adjust their time scales resulting in 
common spatial and temporal dynamics (Boccaletti et al., 
2002, Pikovsky et al., 2001). Synchronization can also be 
defined as the locking between the instantaneous phases of a 
state variable of the system and the phase of the external 
periodic force. A rather weak degree of wall turbulence 
synchronization is expected in a rush environment partially 
dominated by incoherence. The weaker synchronization 
between chaotic systems, namely the phase synchronization 
occurs when the suitably well-defined phases collapse, 
while the amplitudes remain highly uncorrelated. The noisy 
synchronization is commonly defined as stochastic 
synchronization, and the phase locking occurs for random 
periods of times and is interrupted by random phase slips 
(Freund et al., 2000; Callenbach et al., 2002). The 
synchronization of the wall turbulence driven by coherent 
vortices advecting in the low buffer layer, if it occurs, 
should be classified in this last category the incoherent part 
playing the equivalent role of noise. 

DEFINITION OF THE INSTANTANEOUS 
FREQUENCY 
      Special techniques are necessary to detect the 
synchronization, which is generally hidden in phase 
synchronization of chaotic systems and in stochastic 
synchronization that is further difficult to depict. We apply 
the instantaneous amplitude and phase concept to the scale 
decomposed turbulent quantities in the present 
investigation. The scale decomposition is obtained through 
wavelet analysis. 
        Let  
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" TW ,t( )  be the wavelet coefficient of the real 
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where, 

! 

a = 2TW and 

! 

t  denote respectively the scaling and 
shift parameters and 

! 

g is the mother wavelet. The wavelet 

frequency scale parameter is defined as 

! 

k =
2"

TW

 hereafter, 

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

353

미정댁
메인/컨텐츠



in this session. Any signal, moreover the wavelet 
coefficients 
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" k,t( ) may be expressed as: 
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" k,t( )= r k,t( ) cos #
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where 

! 

r k,t( )  stands for the instantaneous amplitude and 

! 

"
i
k,t( )  is the instantaneous angular frequency at scale k. 

The representation (1) is not unique and different 
characterizations are possible, depending upon the choice of 
the dual processes. In the Rice canonical representation that 
is optimum in the sense of minimizing the average rate of 
the signal envelope, one has: 
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where ' denotes the time derivative. The corresponding 
optimum carrier frequency equals: 
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Moreover, the dual of 
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" k,t( )  is obviously its Hilbert 
transform: 
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 The instantaneous frequency may also be written as: 

! 

"
i
(k,t )="

c
k( )+

d# k,t( )
d t

              (6) 

where 

! 

" k,t( )  is the random phase at scale k. It is 
straightforward that 

! 

"
i
(k,t )  governs directly the behavior 

of 

! 

" k,t( )  near the zero-crossings. 

EXPERIMENTS 
We used the simplest Haar wavelet in this session. We omit 
the details here, and simply indicate that quite similar 
results have been obtained by other mother wavelets such as 
Mexican hat. The transitions from ejections to sweeps 
detected by the Haar wavelet at large eddy scales behave as 
a discontinuous phase frequency shift keying process (Aulin 
and Sundberg, 1981), with random, yet somewhat coherent 
and regular periodicity. Fig.1 shows some traces of the 
phase 

! 

" k
+
,t

+( )  and amplitude 

! 

r
+
k

+
,t

+( )  of the 

fluctuating streamwise velocity signal u' at 

! 

y
+

=10 , for the 
wavelet scale parameter 

! 

k
+

=0.057  (corresponding to the 
wavelet window duration 

! 

T
W

+
=26). The optimum angular 

carrier frequency is 

! 

"
c

+
=0.08  in this case. It is seen in 

Fig.1 that the instantaneous phase 

! 

" k,t( )  consists of line 
segments that are discontinuous at points B and D where 
random phase jumps occur. The phase increases first at A-
B, remains constant during a large period C-D, jumps again 
and increases at D-F. The constancy of the phase indicates 
that the instantaneous frequency is sensibly equal to the 
carrier frequency. The periods like C-D wherein 

! 

"
i
#"

c
 

coincide generally with large amplitudes 

! 

r
+
k

+
,t

+( )  as 
clearly seen in Fig.1. Strong ejection-sweeps transitions 
marking the arrival of coherent structures are, therefore, 
merely constant phase events. The time intervals as A-B 
wherein 

! 

" k
+
,t

+( )  increases while 

! 

r
+
k

+
,t

+( )  decreases 
are reminiscent of apparition of small scales. The slop of A-

B is 

! 

d" +

d t
+

=
#

c

+

3
 indicating that 

! 

"
i
(k,t )  is jumped by a 

factor 4/3. The jumps in frequency with the same fraction of 

! 

"
c

+  are often and repetitively observed. It is asked 
whether this behavior can be partly explained by the 
multifractal nature of the cascade process or not (Argoul 
and al., 1989). The epochs as E-F, wherein both the 
instantaneous phase and the amplitude increase from small 
values, are presumably related to the arrival of smaller scale 
active structures.  

The occurrence of these long periods is particularly 
interesting. They refer to the set-up of stochastic 
synchronization, and appearance of “laminar” periods 
wherein the instantaneous frequency locks to the mean 
carrier frequency. The locking frequency corresponding to 
Fig. 1 is 

! 

f c
+

="c
+
2# = 0.011 which is precisely the median 

ejection frequency at 

! 

y
+
" 15 where the production reaches 

its maximum. The physical interpretation of the occurrence 
of constant phase zones is related to the phase 
synchronization between the wall turbulent quantities and 
the forcing imposed by the coherent vortices generated and 
convecting near the wall. For phase synchronization of 
coupled chaotic oscillators, as it will be discussed in detail 
in the following, a very large constant phase locked zone is 
followed by a very short turbulent stage (the turbulent stage 
here refers to periods wherein the signal is chaotic 
according to the terminology used in chaos 
synchronization). The difference here, is that, not only the 
duration of phase locked zones is random, but also that the 
phase smoothly fluctuates before sharp increases or phase 
jumps. Furthermore, zones like A-B wherein the phases 
increase do not exist in the case of coupled chaotic 
oscillators, that are subject to quiescent periods followed by 
rapid phase slips. This behavior is due to the stochastic 
nature of the turbulence that is under the effect of 
incoherence. When the phase synchronization is perfect the 
average duration 

! 

Tl  of the phase locking regions separated 
by successive phase slips scales as: 

! 

Tl " C #C ps

#$
                     (7) 

where 

! 

C  is either the coupling strength or the frequency 
(wavenumber) of the driving signal.  The exponent 

! 

" > 0 is 

! 

" = 1 in the case of on-off intermittency, and 

! 

" =
1

2
 for the 

type I intermittency. The parameter 

! 

C ps  is the critical value 
of the phase synchronization. It is impossible to observe 
perfect synchronization in stochastic systems with 
incoherent turbulence (IT). The phase locked regions are 
interrupted by IT induced phase slips, and the system does 
not exhibit infinite “laminar” lengths. We define the 
occupancy 

! 

" = Tli# Ttotal by the sum of the time-lengths 

of the laminar zones to the total duration of the data. The 
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occupancy seen that 

! 

"  goes through a well-defined 

maximum at 

! 

k
*

+
= 0.25  and 

! 

k
*

+
= 0.20  for respectively 

! 

" u  
at 

! 

y
+

= 10  and the fluctuating wall shear stress

! 

" # , and 
decreases for larger and smaller wavelengths (not shown 

here). Fig. 2 shows 

! 

ln"  versus 

! 

ln k
+
" k

*+ . It is clearly 

seen that the type I intermittency with 

! 

"# k
+
$ k

*+
$1/ 2

 

holds reasonably well for 

! 

k
+
" k

*+
# 0.14 . The type-I 

intermittency is connected to the saddle-node bifurcation of 
the locking periods. These points are discussed in more 
details in Tardu (2008). We will focus on new results in this 
paper obtained through direct numerical simulations 
performed in a low Reynolds number turbulent channel 
flow. 

 
DIRECT NUMERICAL SIMULATIONS 
We use a DNS data basis (

! 

Re" =180 ), multiple scale edge 
detection (Mallat and Zhong, 1992) and directional Hilbert 
transforms (Granlund and Knutsson, 1995) together with 2D 
Hardy wavelets to detect two-dimensional singularities. We 
consequently extracted information related to the local 
amplitudes and phases versus the scale, in a manner similar 
to the section preceding section. Let 2 wavelets defined by: 

! 

"1 (x,z ) =#$ (x,z ) #x , " 2
(x,z ) =#$ (x,z ) #z         (8) 

where, 

! 

"  is the smoothing function taken as a Gaussian 
here, while x and z stands respectively for the streamwise 
and spanwise directions. The wavelet coefficients at scale s 
are given by: 

! 

s
W
1
u (x,z ) = u " s#

1
(x,z ) = s

$

$x
(u "s% )(x,z )
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W

2
(x,z ) = u " s#

2
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            (9) 

The local maxima of 

! 

s
Wi u (x,z)  correspond to the sharp 

smoothed gradients of the velocity field, or to the inflection 

points of the convolution 

! 

u "
s
# . The computations are 

performed in Fourier domain in practice, and a fast 
algorithm is available but the details are omitted here. The 
scale 

! 

s is not a continuous parameter and varies along the 
dyadic sequence 

! 

2 j"N
j . The largest scale here is 

! 

m = 8 . 

The wavenumber 

! 

k
+  at a given scale 

! 

j = m  is defined as 

! 

k
+ =

2"

2
m
#x

+
#y

+( )
1/ 2

 where 

! 

"x
+

= 13  and 

! 

"z
+

= 6  are 

the mesh sizes in the streamwise and spanwise directions.  

Let us introduce now, 1W
s
(

 and 2W
s
(

 the directional 
Hilbert transform of the wavelet coefficients. Let 

! 

ˆ 
W 1 "x ," z( )  denotes the Fourier transform of 

! 

W1 . The 
directional Hilbert transform following 

! 

x  is defined as 

( )xx signWjW !ˆˆ
,1 =

(

 where 

! 

sign "x( )  is the sign of 

! 

"x
 and 

! 

j = "1 . The computations are performed in Fourier 
domain in practice, and a fast algorithm is available but the 
details are omitted here. The wavelet 

! 

"
1
 is then defined in 

Fourier domain by 
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Similar relations hold for 

! 

"
2
 and the details can be found 

in Mala and Zhong (1992). 
For the band-pass wavelet transforms at a given scale s, 

one can define a local amplitude and wavenumber through 
along the prescribed direction 

! 

i  (

! 

i = 1 and 

! 

i = 2 corresponds 
respectively to the streamwise and spanwise directions): 

! 
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where, the amplitude is: 
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The local wavenumber that minimize the space variations of 
the envelope is given by: 
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The carrier wavenumber is defined by: 
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with 

! 

E  standing for spatial averaging. With the introduction 
of the carrier frequency, one can define a local phase by  

! 

s
W
i

=
s
A
i
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s
k
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x
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We set the direction 

! 

i = 1 hereafter and replace 

! 

i  by the 
corresponding streamwise direction 

! 

x . In the streamwise 
constant phase zones, the local wavenumber obeys 
to

! 

s
kx x,z( ) = s

kc x at a given scale 

! 

s . Fig. 3 shows the 
contours of the events defined as the ensemble of points 
where:

! 

0.9
s
kcx "

s
kx " 1.1

s
kcx  and obtained at 

! 

y
+

= 20 . 
The emerging contours were more regular by using these 
thresholds, instead of taking 

! 

s
kx x,z( ) = s

kc x  directly, but 
the results did not change significantly. The spurious zones 
where the phase is only punctually constant are eliminated. 
Elongated constant streaky zones exist at each scale, and 
occupy a large amount of the homogeneous plane as seen in 
Fig.3. It is clearly seen that at 

! 

k
+

= 0.044  (Fig. 3b) the 
constant phase zones are of larger scales than at 

! 

k
+

= 0.178  
(Fig. 3a) although their relative occupations of the whole 
plane are relatively comparable with respectively 0.23 and 
0.17. Their length scales are several times larger than 

! 

2"
s
kc x , i.e. one wavelength. In order to quantify the 

space occupied by constant phase events, we define the 
quantity 

! 

"  by dividing the number of constant phase 
events to the total number of points. Note that this is just the 
definition of the occupancy already used in Fig. 2 for 
experimental data. Fig. 4 shows 

! 

ln"  versus 

! 

ln k
+
" k

*+   

with 

! 

k
*+

= 0.15  at which the maximum occupancy occurs. 
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This value differs only slightly from 

! 

k
*

+
= 0.25  

corresponding to experimental 

! 

" u  data at 

! 

y
+

= 10 . Type I 

intermittency clearly occurs for 

! 

k
+
" k

*+
# 0.1 . There is 

also reasonable correspondence between the experimental 
and DNS data, taking into account the differences in the 
methodology, the mother wavelets and the detection points. 

The local amplitude 

! 

Ax x,z( )  defined through the 
equation (11) varies slowly in the phase locked zones. We 
show in Fig. 5 the flatness factor of 

! 

Ax x,z( )  defined in the 
usual way as to characterize the associated intermittence. 
The flatness xAF !  is computed globally but also separately 
in the phase varying and phase locked regions, first taking 
the mean values individually in these zones, and then 
computing the normalized fourth order moment of the 
fluctuating amplitudes ( ) ( ) ( )xxx AEzxAzxA !=" ,, . It is seen 
in Fig. 5 that the intermittency of the local amplitude 
increases with the wavenumber as expected, both globally 
and in the varying phase zones, the increase being more 
pronounced in the latter case. In the phase varying zones for 
instance the flatness reaches values as high as 9 at the 
highest wavenumber. The amplitude in the phase locked 
zones, however is significantly less intermittent, 

! 

F " A x
 is 

practically uniform across the whole wavenumber range, it 
is smaller than the Gaussian value and varies from 1 to 2. 
This shows that the amplitude in the constant phase zones 
approach a uniform distribution in the high wavenumber 
range, and the uniformity of 

! 

F " A x
 at large 

! 

k
+  indicates 

clearly that the wavelet coefficients oscillate smoothly in 
the constant phase zones. 

Coherent structures near the wall are situated in the low 
buffer layer concentrated roughly at 

! 

"
+

= 20. Let us define 
an external forcing at the scale 0 by 

! 

0
" = 2# $

+ . That 
represents the direct effect of coherent vortices convecting 
near the wall and inducing phase locking of the wall 
turbulence. Suppose that the forcing acting at the dyadic 
scale 

! 

s = 2
i  is self-similar and directly of the form 

! 

s
"=

s

" 2
i . The frequency locking between the fluctuating 

near wall velocity at a given scale and the external forcing 
occurs when the local wavenumber is of the form 

! 

s
kx x,z( ) frequency is of the form 

! 

s
kx =

m

n

s
"  where 

! 

m  

and 

! 

n  are integers (Rosenblum et al., 1996). That reduces 

to 

! 

s
kcx =

m

n

s
"  in terms of carrier wavenumber during the 

constant phase zones. Fig. 6 shows the ratio 

! 

s
kcx

s
" versus 

! 

k
+ .  There is quite a reasonable agreement 

between this simplified theory and the DNS data leading to 

! 

m n = 1 4 . 
 

CONCLUSION 
 The analytic signal concept is applied to the wavelet 

coefficients of fluctuating streamwise velocity in the low 
buffer layer. Automatic separation of different time scales 
through both the Hilbert transform that freezes the slow 
variables and the wavelet analysis allows to sort out the 
hidden phase synchronization. Long quiescent periods of 

about 100 wall units wherein the phase oscillates around 
constant values are noticed near the critical scale parameter. 
The constant phase zones are interrupted by rapid phase 
jumps. A parallelism is constructed between these behaviors 
and the stochastic synchronization of chaotic systems that 
are under the effect of noise, or incoherence as is the case of 
the near wall turbulence. Both experimental and direct 
numerical simulation results converge to the more or less 
similar results. They both reveal the existence of type-I 
intermittency connected to the saddle-node bifurcation of 
the locking periods. The occurrence of long quiescent 
periods of constant phases of the wavelet coefficients is 
interesting and may be used in some control strategies. The 
phase jumps in particular are unambiguously well defined 
near the critical wavelet scale parameter. The long time 
periods between the jumps annunciate the arrival of active 
structures. A gain in effectiveness may presumably be 
achieved if the decision and action stages of active control 
schemes coincide with these periods. Strategies similar to 
the chaos control can also be developed on the basis of the 
results presented here. It is expected that local excitation the 
wall turbulence near the critical scale parameter improves 
the efficiency of active control strategies. Tardu and Doche 
(2007) have shown for instance that a local blowing of 
frequency near the bursting frequency doubles the 
efficiency of suboptimal control, and synchronizes the 
fluctuating wall shear stress over significantly long 
streamwise distances downstream of local forcing. 
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Figure 1: Samples of the instantaneous amplitude (continuous line) and phase (thick line) in radians of the Haar wavelet 

coefficients of the fluctuating streamwise velocity at 

! 

y
+

= 10  versus time .The scale parameter of the wavelet transform is 

! 

k
+

=0.24  in wall units.CD: Constant phase zone wherein the instantaneous frequency is equal to the carrier frequency.AB: 
The phase increases while the amplitude decreases: Apparition of small-scale structures.EF: The phase and amplitude increase 
simultaneously: Small scale amplitude variations.DE: Phase jump.FG: Constant phase zone. 
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Figure 2: Type-I intermittency of the occupency of phase locked zones. Data are from the velocity fluctuations 

! 

" u at 

! 

y
+

= 10  and wall shear stress fluctuations 
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" # .  
 
 
 
 
 
 
 
 

 

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

357

미정댁
메인/컨텐츠



a-                     b- 

 
Figure 3: Phase locked zones at 

! 

y
+

= 20 for the wavenumbers 

! 

k
+

= 0.178  (a) and 

! 

k
+

= 0.044  (b). 
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Figure 4: Type I intermittency emerging from dyadic wavelet decomposition of the DNS data at 

! 

y
+

= 20. Comparison 

with experimental data at 

! 

y
+

= 10 . 
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Figure 5: Flatness of the amplitudes.    Figure 6: Carrier wavenumber. See the text for details. 
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