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ABSTRACT 
Direct numerical simulation (DNS) is used to explore 

similarities and differences between fully-developed 
supersonic turbulent plane channel and axisymmetric non-
swirling pipe flow bounded by isothermal walls. The 
comparison is based on equal friction Mach number, friction 
Reynolds number, Prandtl number, ratio of specific heats 
and viscosity exponent. The channel half width and pipe 
radius are chosen to define the friction Reynolds numbers.  

To what extent and why mean flow quantities, second-
order turbulence statistics and terms in the Reynolds stress 
equations coincide or diverge in both flows is investigated. 
The role of the fluctuating pressure in causing characteristic 
differences among correlations involving pressure 
fluctuations is identified. 

 
 

INTRODUCTION 
Compressible wall-bounded turbulent flows are an 

important element of high-speed flight. They appear both in 
external flows over aerospace vehicles and in engine inlets 
and combustors. Although compressible wall-bounded 
turbulence has attracted researchers since the fifties of the 
last century, the underlying phenomena are not understood 
in all respects, even today. The direct numerical simulations 
(DNS) of supersonic turbulent channel flow by Coleman et 
al. (1995) and the companion work of Huang et al. (1995) 
on data analysis and modelling issues contributed strongly 
to a better understanding of ‘compressibility’ effects in 
shear flows bounded by isothermal walls. Foysi et al. (2004) 
gave an explanation for the reduction of pressure-strain 
correlations in supersonic channel flow compared to 
incompressible isothermal channel flow by linking it to the 
sharp wall-normal density variations in the framework of a 
Green-function-based analysis of the pressure field. It is 
natural to ask whether analogous effects hold in 
compressible flows through pipes and what the similarities 
or differences are between channel and pipe flow. 

Comparisons between incompressible turbulent channel 
and pipe flow have been performed earlier. However, they 
were focussed on mean velocity profiles, friction laws and a 
few higher order statistics only. Nieuwstadt & Bradshaw 

(1997) used DNS data to show that the similarity fails 
beyond the second-order moments and offered an 
explanation based on a simple model. Wosnik et al. (2000) 
presented a theory of the mean velocity and skin friction for 
fully-developed turbulent channel and pipe flow including 
Reynolds number effects. Nickels (2004) developed a 
functional form for the velocity profile of turbulent wall-
bounded shear flow subjected to a strong pressure gradient 
which is based on the concept of a universal critical 
Reynolds number for the sublayer.  

It is our objective to identify similarities and differences 
between fully-developed compressible channel and pipe 
flow up to second-order turbulence statistics and to provide 
explanations for the corresponding behaviour based on an 
analysis of the Reynolds stress balances and the pressure 
field. The results may motivate work on differences and 
similarities of other turbulent flows, e.g. plane and 
axisymmetric free shear flows. 

 
 

1  DETAILS OF DIRECT SIMULATIONS 
The 3D Navier-Stokes equations for compressible flow 

of a thermally perfect gas in cylindrical (x,r,φ)-and 
Cartesian (x,y,z)-coordinates are the starting point of our 
analysis. The viscous stresses do not contain the bulk 
viscosity, since it has a negligible effect in the flow regimes 
under consideration. The dynamic viscosity is proportional 
to the nth power of the temperature, with n = 0.7. Specific 
heats are assumed to be constant at a ratio of γ = 1.4 for air. 
The Prandtl number, Pr = 0.71, is kept constant as well. The 
remaining flow parameters that uniquely characterize 
compressible turbulent flow are the Mach and Reynolds 
numbers. Parameters that are most pertinent to fully-
developed turbulent channel and pipe flow are the friction 
Reynolds and Mach numbers, viz: 

www TRuM,lluRe γμρ ττττ === +      (1) 
with the length scale l=h,R representing the channel half 
width h and the pipe radius R. The mean values of the 
dynamic viscosity and the speed of sound are computed at 
constant wall temperature wT . The mean density at the 
wall, wρ , and the wall shear stress, wτ , are a result of the 
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computation. The friction velocity reads .u ww ρττ =  

We follow common practice and apply a tilde and an 
overbar to define Favre and Reynolds averages, and double 
and single dashes to specify Favre and Reynolds 
fluctuations, e.g. u , ′′ ρ′ .   
 Uniform body forces which equal the mean pressure-
gradients drive channel and pipe flow. Non-dimensionalized 
with inner variables these pressure-gradients are 
proportional to the inverse of the Reynolds number. For 
pipe and channel flow, we have: 

τττρ
μ
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dx
pd

u
p

pipeww

w
,x =−− +
pipe =                (2a) 

τττρ
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chww

w
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ch =                   (2b) 

We choose equal friction Reynolds and Mach numbers in 
our DNS with values specified in Table 1. Hence, the mean 
pressure-gradients differ in both flows. Bulk Reynolds and 
Mach numbers, defined with cross-sectionally averaged 
mean density and velocity are also included in Table 1. 
 
Table 1: Flow parameters 

Flow Reτ Mτ Rem Mm 
Pipe 245 0.077 3181 1.30 

Channel 246 0.078 2986 1.26 
 
The fifth-order compact low-dissipation upwind scheme of 
Adams and Shariff (1996) and the compact sixth-order 
scheme of Lele (1992) are chosen to discretize convection 
and molecular transport terms of the governing equations. A 
classical third-order ‘low-storage’ Runge-Kutta advances 
the solution in time. The geometric singularity due to 1/rn-
terms in the equations is treated by placing no grid point on 
the cylinder axis (Mohseni & Colonius, 2000). Equidistant 
grids are chosen in streamwise and circumferential 
(spanwise) directions and grid-clustering is adopted in the 
wall-normal direction. The computational domains to 
simulate pipe/channel flow have sizes of 10R×2πR×R and 
4πh×4πh/3×2h, respectively. The cylindrical grid for 
supersonic pipe flow comprises 256×91×128 points in 
(x,r,φ)-directions while the Cartesian grid for supersonic 
channel flow has 192×151×128 points in (x,y,z)-directions. 

 
 

2  MEAN FLOW VARIABLES AND SECOND ORDER 
TURBULENCE STATISTICS 

In channel and pipe flow, the streamwise pressure-
gradient has an effect on the whole flow domain, the 
importance of which - concerning the turbulence structure - 
decreases as the Reynolds number increases. This can be 
concluded from the linear relations for the total shear 
stresses in both flows which read as follows when 
correlations between fluctuations of viscosity and velocity 
gradients are neglected: 
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In eq. (3b) we have replaced the radial coordinate, r, by y, 
which is zero at the wall and is defined through y=R-r. 
Furthermore, we have substituted the radial velocity 

component, setting .vur −=  A comparison of viscous and 
Reynolds shear stresses for the flow parameters given in 
Table 1 is presented in Figure 1. In this and the following 
figures dotted/solid lines represent channel/pipe flow, 
respectively. All curves seem to lie on top of each other. 
 

 

Fig. 1: Reynolds and viscous shear stress, together 
with total stress for channel and pipe flow, according 

to eqs. (2a,b). 
 
Figure 2 shows profiles of the van Driest transformed mean 
velocity )y(uVD

++ for channel and pipe flow. The curves 
seem to collapse in the viscous sublayer. A closer look, 
however, reveals subtle differences even close to the wall 
which result from differences in the mean viscosities of 
channel and pipe flow, as explained below. In the fully 
turbulent region the channel has a flatter velocity profile 
than the pipe which points towards distinct differences in 
the integral parameters. 
 

 

Fig. 2: Van Driest transformed mean velocity versus y+. 
 
The integrated wall-normal momentum equations read for 
channel and pipe flow: 

(channel)      vvpp w ′′′′−= ρ                   (4a) 

( ) ( )
( ) (pipe) 

Ry1
Ryd

wwvvvvpp
Ry

0

w ∫ −
′′′′−′′′′−′′′′−= ρρρ     (4b) 

They reveal an important qualitative difference between 
pipe and channel flow resulting from the transverse 
curvature term. Plots of these profiles in figure 3, show 
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indeed characteristic differences which seem small in this 
specific normalization. They amount to less than 1% of the 
wall pressure, but have a more sensible effect on the 
transverse Reynolds stresses, measured in terms of the wall 
shear stress, as will be seen later. 
 

 

Fig. 3: Mean pressure normalized with wall pressure. 
 

A key to the understanding of fully developed 
compressible turbulent channel and pipe flow lies in the 
rapid wall-normal changes in mean fluid properties, 
ρ and ( )Tμ , caused by viscous heating. In figure 4 we 
compare mean density and temperature profiles, normalized 
with wall values, rather than viscosity profiles. The mean 
viscosity behaves like the mean temperature, rises steeply in 
the wall layer and has a plateau in the core. 

  

 
Figure 4: Mean density and temperature for channel and 

pipe flow, normalized with wall values. 
 

Obviously, density and temperature differ in both flows 
at any distance from the wall and the question is why this is 
so. In order to clarify this, we study the mean internal 
energy equation for the pipe, integrated from the wall to a 
position y and normalized with reference quantities at the 
wall:  
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Again, correlations involving fluctuations of molecular 
transport coefficients are neglected. This equation which 
has to be integrated a second time to obtain the mean 
temperature distribution in the pipe, ,TT w contains on its 
left-hand side the mean molecular heat flux, the turbulent 
heat flux and the heat flux into the wall, in terms of the non-
dimensional heat flux, ( )wpwwq TucqB τρ= . The right-
hand side comprises the integrated effects of direct and 
turbulent kinetic energy dissipation ( 2

ww τμεε =+ ). Mean 
pressure-dilatation as well as pressure-dilatation correlation 
have been neglected, since they are known to be small up to 
supersonic speeds (Coleman et al., 1995, Huang et al., 
1995). An equation, similar to (5) is obtained for channel 
flow, just by setting the brackets, ( ++− Ry1 ), in (5) equal 
to one. Hence an obvious difference between channel and 
pipe flow arises from wall curvature, and this difference 
disappears only in the limit of very high Reynolds number 
R+. Figure 5 contains profiles of the relevant terms in eq. 
(22) for both flows, normalized with the wall heat fluxes. At 
a certain position y/h in the channel, the mean molecular 
and turbulent heat fluxes surpass those in the pipe at y/R. In 
contrast to this is the integrated direct dissipation rate 
everywhere in the channel lower than in the pipe, as a result 
of lower mean velocity gradients. The integrated turbulent 
dissipation rate is lower in the wall-layer of the channel, but 
overshoots that of the pipe in the core region. 

 

 

Figure 5: Profiles of the mean molecular and turbulent 
heat fluxes and of the integrated effects of direct and 

turbulent dissipation rate, normalized with the wall heat 
flux, for channel and pipe flow, according to eq. (5). 

 
In figures 6-8 we present profiles of the three normal 
Reynolds stresses, normalized with wτ , versus the semi-

local coordinate, wwyy ρρμμ+∗ = . It is interesting to 
note that in the wall-layer of the pipe each of the normal 
Reynolds stresses collapses onto the corresponding curve 
for the channel. While the peak values of the streamwise 
and spanwise (circumferential) stresses still pretty much 
coincide, those of the wall-normal Reynolds stress do not. 
Furthermore, we observe differences between channel and 
pipe flow in their fully-turbulent regions for the wall-normal 
and spanwise stresses. An explanation for this behaviour has 
to start from the Reynolds stress transport equations.  
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Figure 6: Streamwise Reynolds stress versus y*. 
 

 
Figure 7: Wall-normal Reynolds stress versus y*. 

 

 

Figure 8: Spanwise (circumf.) Reynolds stress versus y*. 
 
Anticipating differences in the pressure-strain correlations, 
we present profiles of the RMS-pressure fluctuations in 
figure 9, normalized with the wall shear stress. The pressure 
fluctuations in the channel lie consistently below those for 
the pipe. Even the wall value is roughly 10% lower. The 
three components of the RMS vorticity fluctuations are 
plotted in figure 10, normalized with the friction velocity 
squared and the viscosity at wall-temperature.  
 

Here, again, does the fully-turbulent flow in the channel 
core produce weaker vorticity fluctuations than that of the 
pipe. The opposite is true for the spanwise component zω′  
close to the wall.  
 

 
Fig. 9 : RMS pressure fluctuations normalized with the  

wall shear stress versus y/R, y/h. 
 

 
Fig. 10 : RMS vorticity fluctuations, normalized with the 

friction velocity squared and the wall viscosity. 
 

 
3 REYNOLDS STRESS TRANSPORT 
 For fully-developed pipe flow the transport equation for 
the streamwise Reynolds stress uu ′′′′ρ   reads: 
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where the labels of the various terms have the following 
meaning: Pxx: production, TTxx: turbulent transport, VDxx: 
viscous diffusion, PSxx: pressure-strain rate redistribution, 
DSxx: turbulent dissipation rate, Mxx: mass-flux variation 
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(viscous and pressure work). The corresponding equation 
for channel flow is easily obtained from (6) by setting 
( ) 1Ry1 =−  and .zr ∂∂=∂∂ ϕ  Comparing the equations 
for channel and pipe flow term by term one notes that there 
are no explicit differences. Figures 11a,b, however, reveal 
subtle differences among the amplitudes of the terms, when 
normalized with μτ 2

w , as suggested by Foysi et al. (2004).   
Concerning the production term, there is practically no 
visible difference, at least up to its peak. In the fully 
turbulent flow region ( ) the source terms Pxx, DSxx, 
PSxx and even the turbulent transport term TTxx show 
differences between channel and pipe flow, in the sense that 
the amplitudes of these terms are consistently smaller in the 
channel. This is in line with the observation that the wall-
normal and spanwise velocity fluctuations in the channel 
core are lower than in the pipe’s core. Of special 
importance, in this context, is the fact that the pressure 
strain correlation in the channel is reduced compared to that 
in the pipe. As a consequence the wall-normal and spanwise 
Reynolds stresses receive less energy than the 
corresponding stresses in the pipe, which is indeed the case. 
We like to emphasize a further interesting point observed 
close to the wall, figure (11a), namely the fact that the 
viscous diffusion and dissipation terms in the channel have 
higher amplitudes than those in the pipe. To show that this 
is a physical effect, the wall-value of the viscous diffusion 
term can be expressed in non-dimensional form as: 

30y 〉∗

w
2

222

w
2
w

xx

dy
uudVD

+
′

= τ

μτ
                 (7) 

 

 

Fig. 11a: Terms of the streamwise Reynolds stress budget  
versus y*. Production (Pxx), dissipation (DSxx) and  
viscous diffusion (VDxx). 
 
Inspection of profiles of the non-dimensional streamwise 
RMS velocity fluctuations indeed reveals slightly higher 
curvature close to the channel wall (not shown here), and 
this is consistent with the higher spanwise RMS vorticity 
fluctuation in figure 10. In line with the near-wall effects of 
the streamwise Reynolds stress, we observe higher 
amplitudes of the pressure-diffusion and pressure-strain 
terms in the wall-normal Reynolds stress (figure 12), which 
might be physically related to subtle changes of the splatting 
mechanism during sweep events. The transverse curvature 
of the pipe might inhibit the spanwise spreading of fluid 

during such an event (ramp effect), and this would then be 
reflected in corresponding damping effects of the other two 
components. 
 

 

Fig. 11b: Terms of the streamwise Reynolds stress budget  
versus y*. Pressure-strain correlation (PSxx), turbulent  
transport (TTxx), mass flux variation (Mxx). 

 
In the fully-turbulent regions of channel and pipe, 

effects very similar to those discussed in the streamwise 
Reynolds stress balance are also found in the wall-normal, 
the spanwise (circumferential) and the shear stress balances, 
whose equations are not written down here due to lack of 
space.  
 

 

Fig. 12 : Terms of the wall-normal Reynolds stress  
budget versus y*. Pressure-diffusion (PDyy), other symbols 
as in Fig. 11. Not all terms are plotted. 
 

Profiles of the corresponding production, pressure-
strain, pressure-diffusion, viscous diffusion, turbulent 
transport and dissipation terms are displayed in figures 12, 
13 and 14. In the core region of the channel all pressure-
strain terms have lower amplitudes than the corresponding 
terms in the pipe. Using a Green-function-based analysis of 
the pressure fluctuations in compressible channel flow, it 
has been shown by Foysi et al. (2004) that the decrease in 
pressure-strain correlations as the Mach number increases is 
linked to the decrease in mean density from the wall to the 
core region. Applying the same argument here, we conclude 
that the stronger mean density variations in the channel, 
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compared to those in the pipe lead to stronger reductions of 
the pressure-strain correlations. Concerning the lower levels 
of the turbulent dissipation rates in the channel core, as 
compared to those in the pipe, it makes sense to relate them 
to the lower levels of the corresponding vorticity 
fluctuations. 
 

 

Fig. 13 : Terms of the spanwise (circumferential)  
Reynolds stress budget versus y*. Not all terms are plotted 
for better visibility. Symbols as in figure 11. 
 

 

Fig. 14 : Terms of the Reynolds shear stress budget versus 
y*. Not all terms are plotted for better visibility. Symbols as 
in figure 11. 
 
 
CONCLUSIONS 

A comparison of DNS data of supersonic turbulent 
channel and pipe flow at equal friction Reynolds and Mach 
numbers leads to quite similar mean viscous and Reynolds 
stresses in the whole flow domain and to similarities in the 
near-wall layer for the normal Reynolds stresses. 
Differences between compressible channel and pipe flow 
appear in the fully turbulent regions for the mean velocity 
and the normal Reynolds stresses. Main cause of these 
differences is the transverse curvature of the pipe wall 
which affects not only the mean pressure profile, but also 
lowers the mean temperature increase and mean density 
decrease from the wall to the centreline, and consequently 
raises the amount of redistributed fluctuating kinetic energy 
compared to that in the channel. Subtle, presumably 

transverse curvature effects are also observed in wall 
proximity for the viscous diffusion and dissipation rates of 
the streamwise Reynolds stress, the pressure-diffusion and 
pressure-strain rates of the wall normal stress, the 
dissipation and viscous diffusion rate of the Reynolds shear 
stress and the circumferential RMS-vorticity component. 
When a sweep event carries high-speed fluid to the pipe 
wall, like an impinging jet, and transfers energy to the three 
velocity components, transverse curvature might act like a 
ramp and inhibit the spreading of fluid in circumferential 
direction, causing the observed effects.  
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