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ABSTRACT

Statistical properties of a coherent structure function

FCS are investigated using DNS data for homogeneous

isotropic turbulence and turbulent channel flows. The func-

tion FCS is defined as the second invariant Q of a velocity

gradient tensor normalized by the magnitude E of the ve-

locity gradient tensor. In homogeneous isotropic turbulence,

the probability density function (pdf) of FCS shows good

agreement at different Reynolds number. The volume frac-

tion of positive Q and the average of FCS converge to a

certain value at high Reynolds number. For the turbulent

channel flows, the pdf of FCS at different Reynolds num-

ber coincides very well at the distance from the wall in wall

units. The profiles of the conditional average of positive and

negative Q, the volume fraction, and the near-wall F 2CS are

in good agreement at different Reynolds number and those

profiles are given as a function of the distance from the wall

in wall units.

INTRODUCTION

Understanding the intermittency of turbulence has been

one of the central issues on the statistical theory of tur-

bulence. According to the local similarity theory by Kol-

mogorov (1941), the fluctuations of all scales result in the

normal probability distribution. The probability density

function (pdf) of velocity u is indeed given by a normal prob-

ability distribution (see for example Anselmet et al., 1984;

Vincent & Meneguzzi, 1991). As is well-known, however, the

longitudinal velocity difference normalized by the rms veloc-

ity∆u/
­
u2
®1/2

distributes like a skirt with exponential tails

and deviates from the normal probability distribution (see

for example Anselmet et al., 1984; Vincent & Meneguzzi,

1991; Tsinober, 2001; Ishihara et al., 2009). This is due to

the spatial fluctuation of turbulent energy dissipation ε. The

influence of the fluctuation of ε on the pdf of ∆u/
­
u2
®1/2

appears in small scales. This is the so-called intermittency

of turbulence.

Kolmogorov and Obukhov improved the Kolmogorov’s

hypothesis in 1941 taking account of the spatial fluctua-

tion of ε regarded as a lognormal distribution (Kolmogorov,

1962). Anselmet et al. (1984) showed that the lognormal

distribution agrees with the experimental data for the lower-

order moments of the structure function, while it deviates

for the higher-order (n > 10) moments. Many theories have

been proposed to predict the higher-order moments of the

structure function; e.g. the β model (Frisch et al., 1978), the

multifractal model (Meneveau & Sreenivasan, 1991), the log-

Poisson theory (She & Leveque, 1994), and the trinominal

model (Hosokawa et al., 1996).

The pdfs of ∂ux/∂x and ∂ux/∂y normalized by rms

velocity
­
u2
®1/2

also indicate the skirt-like distributions

(Vincent & Meneguzzi, 1991; Ishihara et al., 2009). Biferale

(1993) derived the pdf of the velocity gradient from a mul-

tifractal model and showed that the increase in the expo-

nential tails of the pdf is accompanied by the increase in

Reynolds number Re. However, it is difficult to compare

the pdf with different Re, and the pdf independent of Re is

expected for the statistical theory of turbulence.

In turbulence, coherent structures — eddies — exist and it

is revealed that the diameter and the maximum azimuthal

velocity of the coherent fine-scale eddies have the universal

scaling by the Kolmogorov microscale (η) and Kolmogorov

velocity (uk) in homogeneous isotropic turbulence, turbulent

mixing layers, and turbulent channel flows using direct nu-

merical simulation (Miyauchi & Tanahashi, 2001; Tanahashi

et al., 2004; Das et al., 2006). The most expected diameter

and maximum azimuthal velocity are 8−10η and 1.2−2.0uk,
respectively. The eddies and tube-like structures are often

extracted using the second invariant Q of the velocity gradi-

ent tensor proposed by Hunt et al. (1988). Since increasing

in the maximum and minimum of Q is accompanied by the

increase in Re, it is necessary to think out a new scaling to

compare the statistical properties of the pdf, the average,

and the volume fraction.

Kobayashi (2005) proposed a coherent structure function

FCS — the second invariant normalized by the magnitude of

the velocity gradient tensor. The function FCS indicates the

coherent structure scaled by the strength of the shear stress

and is useful to compare the statistical properties because

FCS has maximum and minimum as −1 ≤ FCS ≤ 1. FCS
was used for a subgrid scale model in large-eddy simulation

— the coherent structure model — and the model was demon-

strated in a series of canonical turbulent flows (Kobayashi,
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Reτ Remc Domain size Nx×Ny ×Nz Reλ RelE N3

180 3276 4πδ × 2δ × 2πδ 192× 193× 160 60.1 201 1283

400 8200 3πδ × 2δ × πδ 384× 385× 192 97.1 516 2563

800 17760 2πδ × 2δ × πδ 512× 769× 384 119.5 692 3243

1270 30320 2πδ × 2δ × πδ 864× 1239× 648 175.4 1519 5123

Table 1: Numerical conditions of DNS for turbulent channel flows (left) and homogeneous isotropic turbulence (right).

2005), MHD duct flows (Kobayashi, 2008), and complex

flows — a backstep flow, a diffuser flow, and staggered jets

(Kobayashi et al., 2008). Wang et al. (2006) discussed the

influence of near-wall anisotropy on the turbulence topolo-

gies predicted using large-eddy simulation in terms of the

second and the third invariants in the invariant phase plane.

In this study, the statistical properties of FCS are inves-

tigated for homogeneous isotropic turbulence and turbulent

channel flows using the data of direct numerical simulation

(DNS) at several values of Reynolds number.

COHERENT STRUCTURE FUNCTION

The coherent structure function FCS is the function of

the second invariant Q normalized by the magnitude of the

velocity gradient tensor E, and is defined as follows.

FCS =
Q

E
(1)

Q =
1

2
(WijWij − SijSij) , E =

1

2
(WijWij + SijSij)

(2)

Sij =
1

2

µ
∂uj

∂xi
+
∂ui

∂xj

¶
, Wij =

1

2

µ
∂uj

∂xi
− ∂ui

∂xj

¶
(3)

where Sij is the strain-rate tensor and Wij is the vorticity

tensor. FCS has the maximum and minimum as follows.

−1 ≤ FCS =
WijWij − SijSij
WijWij + SijSij

≤ 1 (4)

There is the following relation at the maximum and mini-

mum:

FCS → −1 (WijWij → 0), FCS → 1 (SijSij → 0)

(5)

NUMERICAL CONDITIONS AND METHODS

Table 1 shows the numerical conditions of DNS for tur-

bulent channel flows and homogeneous isotropic turbulence.

Reτ is the friction Reynolds number based on the half-width

of channel height δ, the friction velocity uτ , and the kine-

matic viscosity ν. The Reynolds number Remc is based on

the mean centerline velocity, δ, and ν. Nx, Ny, and Nz

denote the grid points in streamwise (x), normal (y), and

spanwise (z) directions. In table 1, Reλ is the Reynolds

number based on the rms of velocity, the Taylor’s micro-

scale, and ν, and RelE is based on the rms of velocity, the

integral length based on energy spectrum, and ν. N indi-

cates the grid point in a direction.

For turbulent channel flows, spectral methods are used

in the streamwise (x) and spanwise (z) directions, and a

fourth-order central finite difference scheme is used in the

normal (y) direction. Computations were carried out un-

til the turbulent flow field attains a statistical steady state.

For homogeneous isotropic turbulence, spectral methods are

used in homogeneous directions. Figure 1 shows the mean

Figure 1: Mean streamwise velocity profiles of turbulent

channel flows at various Reτ .

streamwise velocity profiles of turbulent channel flows at var-

ious Reτ . These statistics were confirmed to be consistent

with those obtained by Moser et al. (1999).

Hereafter all results are obtained from instantaneous

DNS data, and hi denotes the average in homogeneous di-
rections.

RESULTS AND DISCUSSION

Figure 2 shows the total and local pdfs of Q for turbulent

channel flows at y+= 5, 20, 150, and the center at Reτ =

180, 400, 800, and 1270, where the superscript + denotes the

properties in the wall units. Each position of y+=5, 20, and

150 is located at viscous sublayer, buffer layer, and log-law

layer, respectively, as shown in the figure 1.

As shown in figure 2, the maximum and minimum values

of Q increase as the Reynolds number increase. The large,

positive value of Q indicates intermittent fine-scale coherent

eddies (Tanahashi et al., 2004). The pdf at y+ = 20 has the

widest skirts because strong fine-scale coherent eddies exist

in the buffer layer. It is difficult to normalize the pdf of Q

independent of the Reynolds number.

Figure 3 shows the pdf of Q∗ for homogeneous isotropic
turbulence at various Reλ. where Q

∗ is normalized Q by

the Kolmogorov length and the rms velocity. This scaling

improves the dependence of the pdf of Q on Reynolds num-

ber. As a result, the fine-scale coherent eddies are scaled by

the diameter and the maximum azimuthal velocity of them-

selves (Miyauchi & Tanahashi, 2001; Tanahashi et al., 2004;

Das et al., 2006). However, each pdf of Q∗ still deviates at
different Reλ.

The coherent structure function FCS , however, reveals a

different scene of the pdf. Figures 4 and 5 show the pdf of

FCS at y
+= 5, 20, 150, and the center of channel with the

pdf for homogeneous isotropic turbulence (HIT) at various

Reynolds number. The pdf of FCS at different Reτ shows

quite good agreement at each location of y+. Note that no

pdf at Reτ =180 is shown in the figure at y+ = 150 because

the profile of mean velocity deviates from the log-law. As
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Figure 2: Total and local pdfs of Q for turbulent channel

flows at y+= 5, 20, 150, and the center at Reτ = 180, 400,

800, and 1270; the superscript + denotes the properties in

the wall units.

Figure 3: Pdf of Q∗ for homogeneous isotropic turbulence
at various Reλ; Q

∗ is normalized Q by Kolmogorov length

and rms velocity.

Figure 4: Pdf of FCS at y+= 5, 20, and 150 at various

Reynolds number.

the location of y+ moves to the center of the channel, the

sharp profile of the pdf approaches the broad profile of the

pdf of the homogeneous isotropic turbulence. This indicates

that the pdf of FCS depends on a distance from the wall.

For the homogeneous isotropic turbulence, the pdf of

FCS at different Reλ coincides very well as shown in fig-

ure 5. Moreover, it is found that the pdf at the center of

channel deviates from the pdf of homogeneous isotropic tur-

bulence. The pdf at the center of channel shifts toward the

negative FCS . It is thought that the center of the channel

is not the same as the homogeneous isotropic turbulence.

This is because the shear stress from walls affects the co-

herent structures at the center of channel and the coherent

structures align in the streamwise direction (Tanahashi et

al., 2004).

These pdfs independent of Reynolds number are ex-

pected to lead a new scaling model of the structure function.

Figure 6 shows the conditional average and the volume

fraction of FCS for positive or negative Q (or FCS) in the y
+

direction. The profiles of the averaged FCS and the volume

fraction agree well regardless of the Reynolds number as a

function of y+.

In homogeneous isotropic turbulence, as increasing in

Reλ = 60.1, 97.1, 119.5, and 175.4, the volume fraction

of positive Q decreases to 0.441, 0.432, 0.431, and 0.431
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Figure 5: Pdf of FCS at the center of channel with the

pdf for homogeneous isotropic turbulence (HIT) at various

Reynolds number.

Figure 6: Conditional average, volume fraction of FCS for

positive or negative Q (or FCS) in the y
+ direction.

as shown in figure 7. It seems that the volume fraction of

positive Q converges to a certain value of around 0.431 at

high Reynolds number as well as hFCSi approaches around
− 0.0854 as shown in figure 7. In the range of the present

Reλ,
­
F 2CS

®
does not converge to a certain value in figure

7. It is necessary to investigate it at higher Reλ including

whether
­
F 2CS

®
converges or not.

Figure 8 shows the F 2CS profiles at various Reynolds

number in the y+ direction. Under all conditions for all

Q, Q < 0, and Q > 0, the near-wall distributions of F 2CS
are in good agreement for high Reτ , although the profiles

at Reτ = 180 deviate owing to the effect of low Reynolds

number. This would be used for a wall model in large-eddy

simulation and has been already used for the subgrid scale

model in large-eddy simulation (Kobayashi, 2005).

Figure 9 shows the pdf of Q (top), E (middle), and FCS
(bottom) at Reλ = 60.1 in comparison with an initial veloc-

Figure 7: Volume fraction of positive Q (top), hFCSi (mid-
dle), and

­
F 2CS

®
(bottom) as a function of Reλ.

ity field. The initial velocity field is satisfied with the energy

spectrum of −5/3 power, and random phase angles of the ve-

locity are given, namely, the angle of the velocity vector is

random. The initial velocity field gives the larger second in-

variants Q and magnitude of shear stress E relevant to the

energy dissipation over the kinematic viscosity ε/ν. Those

large values of Q and E are due to the high wave number

unphysical fluctuations. After the sufficient time integration

to develop turbulence, such high wave number fluctuations

are dissipated, and then the velocity field at Reλ = 60.1

is obtained. The time integration leads to the high pdf for

FCS < −0.5 at Reλ = 60.1, whereas the pdf for FCS > 0.5

of the initial field is close to that of Reλ = 60.1. Note that

the numerical simulations at Reλ = 60.1 in Figs. 9 and

10 were implemented using the 4th order central finite dif-

ference method, so that the pdf deviates a little from that

obtained by the spectral method in Fig. 5.

Since FCS is Q divided by E, the contribution of the

Q value to the pdf of FCS is unclear. Let us look at the

conditional pdf of FCS by the Q values in Fig. 10. In the

initial field, the positive and negative, large Q values do not

mainly contribute to the pdf of FCS , whereas at Reλ =

60.1 the positive and negative, large Q values contribute to

the pdf of the positive and negative, large FCS . The small

Q values mainly contribute to the pdf of the small FCS .

Therefore, as shown in Fig. 5, the difference of the pdf of
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Figure 8: F 2CS profiles at various Reynolds number in the

y+ direction; (top) for all Q, (middle) for Q < 0, (bottom)

for Q > 0.

FCS between the HIT and channel center is due to the pdf

of the positive and negative, large Q values. The higher pdf

at the center of channel than that of the HIT at FCS = −1
results from the negative, large Q values, whereas the lower

pdf at the center of channel than that of the HIT around

FCS = 0.8 is due to smaller contribution of the positive,

large Q values than the HIT. Another conditional pdf by the

classification of vortex sheet and tube structures (Horiuti,

2001) would be more useful to look at the contribution of

the coherent structure to the pdf of FCS . It remains as the

future study.

CONCLUDING REMARKS

The statistical properties of the coherent structure func-

tion FCS was examined using DNS data at various Reynolds

number for homogeneous isotropic turbulence and turbulent

channel flows, and some concluding remarks are drawn be-

low.

FCS is defined as the second invariant of the velocity

gradient normalized by the magnitude of the velocity gradi-

ent. Since FCS has maximum value 1 and minimum value

-1, the statistical properties using FCS are useful to com-

pare themselves at different Reynolds number. Despite the

Figure 9: Pdf of Q (top), E (middle), and FCS (bottom) at

Reλ = 60.1 in comparison with an initial velocity field.

different Reλ, the pdf of FCS shows good agreement. For

the channel flows, the pdf at different y+ coincides very well

for different Reτ .

Moreover, the conditional average, the volume fraction of

FCS for positive and negative Q, and near-wall F
2
CS profiles

are given as a function of y+, and yet those profiles are in

good agreement at different Reτ . In particular, it seems

that the volume fraction of positive Q and the average of

FCS converge to a certain value at high Reynolds number

for homogeneous isotropic turbulence.

It is expected that these statistical properties are used for

a constrain to the existing models of the structure function,

a new scaling model in statistical theory of turbulence, and

a new wall model in large-eddy simulation.
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at Reλ = 60.1, Qmin = −1.40 × 104, Qmax = 2.42 ×
104,∆xq = 3.82× 102; (bottom) for an initial velocity field,
Qmin = −1.30×105, Qmax = 2.04×105,∆xq = 3.34×103.

Young Scientists KAKENHI (B), Grant No. 20760119, and

HK gratefully acknowledges its support.

REFERENCES

Anselmet, F., Gagne, Y., Hopfinger, E. J., & Antonia,

R. A., 1984, “High-order velocity structure functions in tur-

bulent shear flows”, J. Fluid Mech., Vol. 140, pp. 63—89.

Biferale, L., 1993, “Probability distribution functions in

turbulent flows and shell models”, Phys. Fluids A, Vol. 5,

pp. 428—435.

Das, S. K., Tanahashi, M., Shoji, K., & Miyauchi, T.,

2006, “Statistical properties of coherent fine eddies in wall-

bounded turbulent flows by direct numerical simulation”,

Theor. Comp. Fluid Dyn., Vol. 20, pp. 55—71.

Frisch, U., Sulem, P. L., & Nelkin, M., 1978, “A sim-

ple dynamical model of intermittent fully developed turbu-

lence”, J. Fluid Mech., Vol. 87, pp. 719—737.

Horiuti, K., 2001, “A classification method for vortex

sheet and tube structures in turbulent flows”, Phys. Fluids,

Vol. 13, pp. 3756—3774.

Hosokawa, I., Oide, S., & Yamamoto, K., 1996,

“Isotropic turbulence: Important differences between true

dissipation rate and its one-dimensional surrogate”, Phys.

Rev. Lett., Vol. 77, pp. 4548—4551.

Hunt, J. C. R., Wray, A. A., & Moin, P., 1988, “Eddies,

stream, and convergence zones in turbulent flows”, In Center

for Turbulence Research Report, CTR-S 88. Stanford, CA:

Center for Turbulence Research.

Ishihara, T., Gotoh, T., & Kaneda, Y., 2009, “High-order

velocity structure functions in turbulent shear flows”, Annu.

Rev. Fluid Mech., Vol. 41, pp. 165—180.

Kobayashi, H., 2005, “The subgrid-scale models based

on coherent structures for rotating homogeneous turbulence

and turbulent channel flow”, Phys. Fluids, Vol. 17, 045104.

Kobayashi, H., 2008, “Large eddy simulation of magne-

tohydrodynamic turbulent duct flows”, Phys. Fluids, Vol.

20, 015102.

Kobayashi, H., Ham, F., & Wu, X., 2008, “Application of

a local SGS model based on coherent structures to complex

geometries”, Int. J. Heat Fluid Flow, Vol. 29, pp. 640—653.

Kolmogorov, A. N., 1941, “The local structure of turbu-

lence in incompressible viscous fluid for very large Reynolds

numbers”, C. R. Dokl. Acad. Sci. USSR, Vol. 30, pp.

301—305.

Kolmogorov, A. N., 1962, “A refinement of previous hy-

pothesis concerning the local structure of turbulence in a

viscous incompressible fluid at high Reynolds number”, J.

Fluid Mech., Vol. 13, pp. 82—85.

Meneveau, C. & Sreenivasan, K. R., 1991, “The mul-

tifractal nature of turbulent energy dissipation”, J. Fluid

Mech., Vol. 224, pp. 429—484.

Miyauchi, T. & Tanahashi, M., 2001, “Coherent fine scale

structure in turbulence”, In IUTAM Symposium on Geom-

etry and Statistics of Turbulence (ed. T. Kambe et al.). pp.

67—76. Kluwer.

Moser, R. D., Kim, J., & Mansour, N. N. 1999 Direct

numerical simulation of turbulent channel flow up to Reτ =

590. Phys. Fluids 11, 943—945.

She, Z-S. & Leveque, E., 1996, “Universal scaling laws in

fully developed turbulence”, Phys. Rev. Lett., Vol. 72, pp.

336—339.

Tanahashi, M., Kang, S. -J., Miyamoto, T., Shiokawa,

S., & Miyauchi, T., 2004, “Scaling law of fine scale eddies in

turbulent channel flows up to Reτ=800”, Int. J. Heat Fluid

Flow, Vol. 25, pp. 331—340.

Tsinober, A., 2001, “An Informal Introduction to Tur-

bulence”, Kluwer Academic Publishers, The Netherlands.

Vincent, A. & Meneguzzi, M., 1991, “The spatial struc-

ture and statistical properties of homogeneous turbulence”,

J. Fluid Mech., Vol. 225, pp. 1—25.

Wang, B.-C., Bergstorm, D. J., Yin, J., & Yee, E., 2006,

“Turbulence topologies predicted using large eddy simula-

tion”, J. Turbulence, Vol. 7, pp. 1—28.

*

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

340

미정댁
메인/컨텐츠




