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INTRODUCTION

The subgrid-scale (SGS) modeling environment provided

by the Adaptive Local Deconvolution Method (ALDM) has

been recently extended to Large-Eddy Simulations (LES) of

passive-scalar transport. The resulting adaptive advection

algorithm has been described and discussed with respect

to its numerical and turbulence-theoretical background in

Hickel et al. (2007). Results demonstrate that this me-

thod allows reliable predictions of the turbulent transport of

passive-scalars in isotropic turbulence and in turbulent chan-

nel flow from small to moderate Schmidt numbers. Due to

the strong influence of the molecular Schmidt number Sc on

the Batchelor characteristic scales, difficulties in the mode-

ling of the passive-scalar transport arise when the diffusive

structures are several order of magnitude smaller than the

viscous scales (Sc À 1). In this paper, we present the results

from implicit LES of the flow in a confined rectangular-jet

reactor and an analysis of the mixing of a passive-scalar with

high Schmidt number: Sc = 1, 250. The numerical study is

carried out in collaboration with experimentalists from Iowa

State University.

IMPLICIT LES

We consider LES of turbulent flows which are governed

by the Navier-Stokes equations and by the incompressible

continuity equation. A finite-volume discretization is ob-

tained by convolution with the top-hat filter G:

∂ūN

∂t
+ ∇ · N̄N (uN )− ν∇ ·∇ūN = −∇ · τ̄SGS (1)

∇ · ūN = 0 (2)

where an overbar denotes the filtering ū = G ∗u. The non-

linear term is abbreviated as ∇·N(u) = ∇·uu+∇ p, where

u is the velocity field and p is the pressure. The employed

filter approach by Leonard (1974) implies a subsequent dis-

cretization of the filtered equations. The subscript N in-

dicates the resulting grid functions obtained by projecting

continuous functions on the numerical grid. This projection

corresponds to an additional filtering in Fourier space with

a sharp cut-off at the Nyquist wavenumber ξC = π/h, where

h is a constant grid spacing. The subgrid-stress tensor:

τSGS = N(u)−NN (uN ) (3)

originates from the discretization of the non-linear terms

and has to be modeled in order to close Eq. (2). To cer-

tain extents, common explicit models are based on sound

physical theories. Solved numerically, however, the discrete

approximation of the explicit SGS model competes against

the truncation error of the underlying numerical scheme. A

theoretical analysis performed by Ghosal (1996) comes to

the conclusion that even a fourth-order central difference dis-

cretization has a numerical error which can have the same

order of magnitude as the SGS model. This fact is exploited

for implicit large-eddy simulation where no SGS model terms

are computed explicitly. Rather the truncation error of the

numerical scheme is used to model the effects of unresolved

scales. A recent review on previous implicit LES approaches

is provided, e.g. by Grinstein and Fureby (2004).

The Modified Differential Equation (MDE) for an im-

plicit LES scheme is given by:

∂ūN

∂t
+ G̃ ∗ ∇̃ · ÑN (ũN )− ν∇ ·∇ūN = 0 (4)

∇ · ūN = 0 (5)

where ũN denotes an approximant of the velocity uN . The

local Riemann problem is solved by a consistent numerical

flux function ÑN . The symbols G̃ and ∇̃ indicate that G

and ∇ are replaced by their respective numerical approxi-

mations. In fact G̃ ∗ ∇̃ can be a nonlinear operator. The

truncation error is accordingly:

GN = G ∗∇ ·NN (uN )− G̃ ∗ ∇̃ · ÑN (ũN ) (6)

For implicit SGS modeling the discretization scheme is

specifically designed so that the truncation error GN has

physical significance, i.e.:

GN ≈ −G ∗∇ · τSGS (7)

THE ALDM APPROACH

With the adaptive local deconvolution method (ALDM)

the local approximation ũN is obtained from a solution-

adaptive combination of deconvolution polynomials. Nu-

merical discretization and SGS modeling are merged en-

tirely. This is possible by exploiting the formal equivalence

between cell-averaging and reconstruction in finite-volume

discretizations and top-hat filtering and deconvolution in

SGS-modeling. Instead of maximizing the order of accuracy,

deconvolution is regularized by limiting the degree of lo-

cal interpolation polynomials and by permitting lower-order

polynomials to contribute to the truncation error. Adapti-

vity of the deconvolution operator is achieved by weighting

the respective contributions by an adaptation of WENO

smoothness measures (Shu, 1997). The approximately de-

convolved field is inserted into a consistent numerical flux

function. Flux function and nonlinear weights introduce free

parameters. These allow the control of the truncation error

which provides the implicit SGS model.

The performance of the optimized implicit model was

evaluated by simulations of different flow configurations.

Large-scale forced and decaying three-dimensional homoge-

neous isotropic turbulence were considered at a wide range

of Reynolds numbers. For transitional flows the model per-

formance was tested on the simulation of the instability and
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breakdown of the 3D Taylor-Green vortex. For all test cases

the implicit model shows an excellent agreement with theory

and experimental data. It is demonstrated that ALDM per-

forms at least as well as established explicit models (Hickel

et al., 2006).

IMPLICIT SUBGRID-SCALE MODELING FOR PASSIVE-

SCALAR TRANSPORT

We consider the turbulent transport of passive-scalars,

which do not measurably affect the velocity field. This case

represents a one-way coupling of the scalar to the fluid.

Hence, the closure problem is restricted to the scalar trans-

port equation, where the flux function F is formally linear

in c:

∂c

∂t
+∇.F(u, c) = 0 with: F(u, c) = uc− 1

ReSc
∇c (8)

Turbulence modeling and discretization for the momentum

equations remain unchanged (Hickel et al., 2006). However,

the evolution of a non-uniform scalar field is subject to the

velocity dynamics. Small-scale fluctuations of velocity and

scalar are correlated in the presence of a scalar concentration

gradient. The projection of Eq. (8) on a grid with finite

resolution results in the modified equation:

∂cN

∂t
+∇.FN (uN , cN ) = τSGS (9)

The subgrid tensor: τSGS = F(u, c) − FN (uN , cN ) origi-

nates from the grid projection of advective terms and repre-

sents the effect of the action of subgrid scales and has to be

approximated by a SGS model.

The various regimes (Fig. 1) that exist for the va-

riance spectrum of passive-scalars at different Schmidt num-

bers (Batchelor, 1959) have to be recovered by the SGS

model. In the ALDM framework, implicit SGS modeling is

accomplished by calibrating free discretization parameters.

An analysis of the typical wave numbers, for low Schmidt

number and high Schmidt number scalars, revealed that dif-

ferent parameters are required for each of these regimes.

This approach for passive-scalar mixing has already been

validated for several canonical flows by Hickel et al. (2007).

The computation of the experimental setup presented here

will then assess the high Schmidt number model in a com-

plex configuration.

EXPERIMENTAL SETUP

The mixing of very high Schmidt number passive-scalars

was recently studied under the conditions of laboratory ex-

periments by the group of Rodney Fox at Iowa State Uni-

versity (Feng, 2006).

In this experiment, a confined coplanar jet configuration

is investigated, where the flow is seeded by Rhodamine par-

ticles, representing a passive-scalar with a Schmidt number

of Sc = 1, 250. A non-scaled three-dimensional sketch of

this test rig is displayed in Fig. 2. The shear flow is ge-

nerated through out three inlet channels of identical height

(d = 20 mm), separated by two splitter plates, with a liquid

phase flowing at different velocities. Free stream velocities

are 0.5, 1.0, and 0.5 m/s in the top, center and bottom inlet

channels respectively, corresponding to a Reynolds number

of Re = 50, 000, based on the distance d and the velocity

difference between central and lateral channels.

The measurements are carried out in a Plexiglas test

section with a rectangular cross-section measuring 60 mm

(height) by 100 mm (width) and with an overall length of

1 m, so that the aspect ratio height:width for each inlet

channel is 1:5. Particle Image Velocimetry (PIV) is used

to measure the instantaneous velocity field in five planar

cross sections of the observed flow, corresponding to the

five stations, S1 to S5, at x/d = 1, x/d = 4.5, x/d = 7.5,

x/d = 12 and x/d = 15 respectively. Scalar concentration

measurements are carried out simultaneously at the same

locations using Planar Laser-Induced Fluorescence (PLIF),

so that velocity-scalar correlations can be computed. A

experimental database was then generated, including first-

and second-order moments for velocity and scalar concen-

tration, as well as cross-correlations. For further details of

the experimental configuration, please refer to the latest pu-

blications of the group on this topic by Feng et al. (2005)

and Feng (2006).

In close collaboration with the experimentalists and in

the framework of the validation and assessment of the pre-

viously presented implicit LES approach, we perform im-

plicit LES of the mixing and transport of a passive-scalar

in this confined rectangular-jet reactor configuration. In the

following section, some details of the numerical setup are

given.

COMPUTATIONAL DETAILS

The flow is described by the incompressible Navier-

Stokes equations, that are discretized on a staggered Carte-

sian mesh. For time advancement, the fractional step me-

thod with an explicit third-order Runge-Kutta scheme is

used. The time-step is dynamically adapted to satisfy a

Courant-Friedrichs-Lewy condition with CFL = 1.0. The

pressure-Poisson equation and diffusive terms are discretized

by second-order centered differences. The convective terms

of the momentum and passive-scalar transport equations are

discretized by the ALDM, which also provides a SGS model.

The Poisson solver employs the stabilized Bi-Conjugate

Gradient (BiCGstab) method. The presented results are

obtained by the Simplified Adaptive Local Deconvolution

(SALD) algorithm (Hickel and Adams, 2006) which is an

implementation of the implicit LES method ALDM with im-

proved computational efficiency (Hickel et al. 2006).

The computational domain is divided into two parts.

The inlet is composed of three channels, one in the cen-

ter and two lateral ones, where the bulk velocity is twice as

low. The three channels are periodic in stream- and spanwise

directions, while bounded by solid walls in the transverse di-

rection. The measurement section of the domain is confined

by side walls in spanwise and transverse directions, while

inflow conditions are taken from the inlet channels. The

computational domain has a total extent of 60d × 3d × 5d

and is discretized by 14.4× 106 finite volumes.

NUMERICAL RESULTS

In this section, the main results obtained from the im-

plicit LES are presented and compared to the measurements.

A qualitative analysis is first undertaken. Fig. 3 shows

instantaneous velocity (left) and scalar concentration (right)

fields from the implicit LES. The three inlet channels (bot-

tom) and the long reactor part (long upper part) of the

computational domain can be identified on these snapshots.

The jet expansion close to the splitter plates and its fur-

ther development downstream towards a flat channel flow are

observed. The two mixing layers generated by the splitter

plates reach a stable position after approximately x/d = 10,
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due to the confinement between the top and bottom walls.

A further analysis is concerned with the comparison bet-

ween experimental data and numerical results. Since the

flow is confined in the spanwise direction as well, there is

no homogeneous direction at all in this configuration. The

numerical quantities presented here are hence only temporal

statistics over about 1800 samples, and no spatial averaging

is used. Despite this high number of samples, the statistics

appear to be not totally smooth for some second-order mo-

ments. Among the five available observation positions of the

experimental setup, only three are analyzed in the following:

S1 (x/d = 1), S3 (x/d = 7.5) and S5 (x/d = 15).

Figs. 4 and 5 depict the comparison between experi-

mental data and numerical results based on the averaged

streamwise velocity and scalar concentration respectively.

The flow topology and expansion of the jet are found to

be in agreement with the experiment. First order moments

for both dynamics and passive-scalar concentration from the

implicit LES match globally very well with the experimen-

tal data. Indeed, comparisons at the two other measurement

stations of the test rig exhibit the same concordance.

The main challenge of this work is, however, the com-

parison of second-order moments. Even though the flow-

dynamic quantities, namely the streamwise and cross-stream

Reynolds stresses, as well as the shear-stress, are not pre-

sented here for the sake of concision, numerical results were

found to match satisfactorily the measured data. The two

peaks of scalar concentration variance (Fig. 6) at the first

observation station S1 shows the high mixing regions cor-

responding to the position of the splitter plates. At this

station, the resolution in the experiment is not sufficient

to capture the real amplitude of those peaks. Therefore

we think that the discrepancy with the implicit LES is not

dramatic at this position. Further downstream, where the

mixing is weaker, both numerical and experimental data

agree quite well.

A further analysis is concerned with the velocity-scalar

concentration correlations, that experimentalists could mea-

sure using simultaneously PIV / PLIF acquisition chains.

Both correlations < u′c′ > and < v′c′ > have been nor-

malized by the rms velocity and scalar concentration fluc-

tuations, yielding to the velocity-concentration correlation

coefficients:

< u′c′ >N=
< u′c′ >

< u′ >rms< c′ >rms
(10)

< v′c′ >N=
< v′c′ >

< v′ >rms< c′ >rms
(11)

The comparison of both quantities with the numerical re-

sults is shown in Figs. 7 and 8 and demonstrate an almost

perfect agreement. The key-features of the flow present in

the experiment are found in the simulation as well. At the

closest position to the splitter plate S1, scalar concentra-

tion and velocity are totally uncorrelated in the core regions

of the three inlet channels, giving levels close to 0. The

longitudinal coefficient (Fig. 7) exhibits two separated high

correlation regions, in the whole confined reactor, even if at

S5, these regions almost take the form of two plateaus. The

lateral coefficient (Fig. 8) is antisymmetric and the ampli-

tudes in the zones of high correlation remain quite the same

along the observation domain.

From the turbulent fluxes, the resolved turbulent visco-

sity and diffusivity can be computed, based on the assump-

tion that the turbulent fluxes are proportional to the velocity

or scalar concentration gradients (Batchelor, 1949). These

proportionality ratios are such that:

νT =
− < u′v′ >

∂U/∂y
(12)

Γ22 = ΓT =
− < v′c′ >

∂c/∂y
(13)

where the subscript 22 corresponds to the component (2,2)

of the turbulent diffusivity tensor, which is not diagonal in

this case, since the mean scalar concentration gradient is

not aligned with the turbulent flux vector. The profiles are

shown in Figs. 9 and 10. The agreement between experiment

and simulation is once again very satisfactory, and the main

features of the flow are recovered, even if the results at the

station S1, the closest one to the splitter plates, are not ap-

propriate for an analysis. Indeed, due to the presence of the

division by the velocity or scalar concentration gradient re-

spectively, these profiles show non-physical peaks. However,

at S3 and S5, the maxima appear always at the location of

the shear-layers, whereas these quantities tend to 0 close to

the top and bottom walls. The amplitudes of the resolved

part of the turbulent viscosity νT are in good agreement

with the experiment for the stations upstream, but not per-

fectly recovered at the furthest one, S5. The trend for the

turbulent diffusivity ΓT is opposite: the prediction of the

implicit LES is better far from the splitter plates as at the

first stations S1 and S3.

A measure of the turbulent Schmidt number can conse-

quently be estimated:

ScT =
νT

ΓT
(14)

The most classical subgrid-scale is based on the assumption

of a constant turbulent Schmidt number of the order of 1.

The results show that this assumption could hold, in this

case, far away from the high mixing regions, but not in the

intense shear and transport regions. In those places, the

turbulent Schmidt number can clearly exhibit variations of

more than several hundreds percent from a constant Schmidt

number assumption (ScT ≈ 1). Indeed, experimental values

for the turbulent Schmidt number were for instance around 4

at the station S3, in the both shear-layers. Numerical values

at these places were however remained in a smaller range

of variation from the constant turbulent Schmidt number

hypothesis.

Other relevant quantities for the modeling of the passive-

scalar transport, such as the other component of the turbu-

lent diffusivity tensor

Γ12 =
− < u′c′ >

∂c/∂y
(15)

were measured experimentally and the corresponding im-

plicit LES results agreed satisfactorily with them. These

are not presented here for concision but will be discussed

during the TSFP6 presentation.

CONCLUSION

In this paper, the numerical results from an implicit

LES of the mixing of a passive-scalar (Sc = 1, 250) in a

confined coplanar reactor configuration are presented and

analyzed. The agreement with experimental data for first-

and second-moments is very satisfactory in the whole mea-

surement region of the experiment. Some relevant quantities

for the modeling of the passive-scalar transport equation,

such as the resolved turbulent viscosity and diffusivity, are
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computed and described, as well as the turbulent Schmidt

number. The very good overall agreement between experi-

ment and simulation validates the presented implicit LES

modeling environment for passive-scalars at high Schmidt

numbers.
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Figure 1: Critical test cases for predicting the proper sub-

grid diffusion in Large-Eddy Simulations of scalar mixing.

Top: Low Schmidt number regime. Bottom: High Schmidt

number regime at moderate Reynolds number. scalar

variance; kinetic energy; · · · · · numerical cutoff

wavenumber

Figure 2: Sketch of the experimental setup (for the sake of

clarity, the front and back walls are not depicted)

Figure 3: Snapshot of the streamwise velocity (left) and

scalar concentration (right) fields
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Figure 4: Mean streamwise velocity profiles at 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 5: Mean scalar concentration profiles at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 6: Scalar variance at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 7: Normalized < u′c′ > at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 8: Normalized < v′c′ > at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 9: Turbulent viscosity at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 10: Turbulent diffusivity at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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Figure 11: Turbulent Schmidt number at the 3 measurement stations. Symbols: experiment; solid line: implicit LES
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