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ABSTRACT 
The transition to turbulence (Reynolds, 1883) has 

attracted people. Large eddy simulation (LES) and direct 
numerical simulation (DNS) of the transition to turbulence 
in straight channels employed the spatial cyclic boundary 
conditions between the inlet and outlet of the channel. 
(Moin and Kim, 1982; Kawamura and Kuwahara, 1985) 
Thus, these previous researches capture only the transition 
in time, although the spatial transition point where the 
laminar flow changes to turbulence could not be computed. 
Recently, some approaches tried to compute the transition 
point in straight channel for the flows having large 
disturbances at the inlet. (Oida and Kuwahara, 2003) 
However, computations of the transition points in the flows 
with various inlet-disturbances and also for various 
Reynolds numbers are still in an infant stage, although it is 
necessary to predict the transition points for airfoil 
optimizations and micro-fluids such as blood and fuel cell. 
Thus, we proposed the method called “stochastic 
determinism”, based on the deterministic Navier-Stokes 
equation and stochastic artificial disturbances. (Naitoh et al., 
2008) Here, we show the method in detail and also clarify 
the space-time structure after an impulsive start for a wide 
range of Reynolds numbers. 
 
 
STOCHASTIC DETERMINISM 

Convergence criterion for the matrix calculation in 
computational fluid dynamics has been based on 
mathematics until now. (Roache, 1972.) However, the 
numerical errors should be used adequately on the basis of 
physical evaluation, because we cannot simulate the 
unstable asymmetric flows such as Karman vortex streets 
without numerical disturbances. Asymmetric distribution of 
numerical errors in space brings the up-and-down 
asymmetric flows, although people have not mentioned 
explicitly. We should find the appropriate values of the 
numerical errors in the analytical domain, which correspond 
to the physical fluctuations. We propose the physical 
criterion of convergence, appearing after scales falling from 
our eyes, in which the level of numerical truncation errors is 
related to actual velocity fluctuation at the inlet. 
Combination of this physical criterion and the finite 

difference method extended based on the multi-level 
formulation (Naitoh and Kuwahara, 1992), which can 
calculate spatial derivatives of physical quantities and 
integrated quantities accurately, leads us to the new stage of 
computational fluid dynamics. 
Starting point of the methodology is related to the equation 

of the divergence of velocity in the multi-level formulation, 
which is transformed from the compressible Navier-Stokes 
equation while maintaining the Gibbs formula. (Naitoh and 
Kuwahara, 1992.) The formulation shows that the second 
derivative of velocity, the divergence of velocity, controls 
the physical quantities such as pressure, velocity, and 
temperature. Thus, in the following sections, we will focus 
on the control of the numerical error of the divergence of 
velocity. 
 
 
NUMERICAL METHOD 
The three-dimensional incompressible Navier-Stokes 

equation in non-conservative form is employed as the 
governing equation  (Eq. 1).  
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where ui, p, ρ, xi, and t denote the velocity component for i-
direction, pressure, density, Cartesian coordinate, and time, 
respectively. Explicit turbulence model is not used in the 
present report. Boundary conditions at the inlet 

are 0,0,
1

21 =
∂
∂

=+=
x
panduUou δ  , where Uo and 

δ denote the main constant velocity and random 
disturbance at inlet, while the well-known outlet condition 
of spatial derivative of all physical quantities along the 
direction 1x  being zero. (We must give artificially the 

disturbance δ  at the inlet, because all of the atmosphere on 
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the Earth at the upstream of the channel cannot be solved.  
Initial velocity distribution is set to be 

0)0(,)0( 21 ==== tuUotu at each point. 
In the present research, the numerical error ε  

[= xN
x
u

i

i
N

n
Δ

∂
∂∑ )/( ] is set to be proportional to δ 

corresponding to actual inlet-fluctuation of velocity, where 
N and Δx denote the total number of grids and grid size.  

Concrete numerical method is based on the multi-level 
formulation (Naitoh and Kuwahara, 1992) generalized from 
the MAC method. (Harlow and Welch, 1965)  Magnitude of 
ε  can be controlled by the number of iterations in the SOR 
method. 
In order to get the solutions of higher-order of accuracy, 

the correlation of velocity based on Eq. (2) is also included. 
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where V in Eq. (2) denotes the control volume, which can 

be taken at several sizes from a cell to channel. In the 
present report, the volume V is that between the inlet 
surface and each grid surface which is orthogonal to the 
channel axis. (Naitoh et al, 2008) 
Finite-difference scheme with a third-order of accuracy is 

used for the convection term and also the other terms in 
space are with second-order central difference, while the 
Euler scheme of first order and the Runge-Kutta scheme of 
forth-order of accuracy are tested in time. 
Homogeneous and orthogonal grid system with regular 

grid distribution is used, because each direction should be 
same for capturing vortices. Grid systems of 2,500 x 50 x 50 
points and 5,000 × 100 × 100 points are tested. 
 
 

 
 
 
Fig. 1 Instantaneous velocity distributions in the cross-
section of x3/D=0.5 and x1/D=0～50 in a straight channel 
from initial impulse flow to t = 100. (Inlet disturbance is 
0.015%. Re=20,000. Grid points = 5,000×100×100. 4th 
order Runge-Kutta.   δ=Δ

∂
∂∑ xN

x
u

i

i
N

n

)/( )  

 

 
RESULTS 

Figure 1 shows the instantaneous velocity distributions 
computed with the inlet-disturbance against the inlet-
velocity Uo of about 0.015% for Re =20,000. We can see 
that the instability due to strong shear stress in the upstream 
region brings the transition at the middle part of the channel. 
Instability cannot start at downstream region, because the 
thicker boundary layer is in weaker shear stress. 
 

 
Fig. 2 Time-averaged velocity distribution. (Inlet 
disturbance is 0.015%. Re=20,000. Grid points = 
5000×100×100. The 4th order Runge-Kutta. Experiment by 
Laufer.) 
 

 (a) 

  (b) 
 
Fig. 3 Turbulence intensities and energy spectrum computed 
for t = 50–100. (a)Turbulence intensities, (b) Energy 
spectrum: Upper line for x2/D=0.1. Middle line for x2/D=0.3. 
Lower line for x2/D=0.5. (Inlet disturbance is 0.015%. 
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Re=20,000. Grid points = 5000×100×100. The 4th order 
Runge-Kutta.) 
 

Computational mean velocities agree fairly well with the 
well-known experimental data (Laufer, 1950, Nikuradse, 
1932). (See Fig. 2.) The magnitude of turbulence intensity is 
close to the value well-known (Kawamura and Kuwahara, 
1985), while the energy spectrum plotted against frequency 
also has the gradient of -5/3 partially. (See Fig. 3.)   

We examined the influence on the flow of grid size, also 
by using smaller number of grids of 2,500 x 50 x 50.  (See 
Fig. 4.) Computation with 5,000 x 100 x 100 does not differ 
from that of 2,500 x 50 x50 very much. 
 

 (a) 

    (b) 
  
Fig. 4 Turbulence intensities and energy spectrum computed 
for t=100 – 200. (a) Turbulence intensities, (b) Energy 
spectrum: Upper line for x2/D=0.1. Middle line for x2/D=0.3. 
Lower line for x2/D=0.5. (Re=20,000. Grid points = 
2500×50×50. 1st order Euler shcme. K.Naitoh et al., 2008) 
 

 
 
Fig. 5 Influence of inlet turbulence on the transition point. 
(Re=20,000. Grid points = 5,000×100×100. 4th-order 
Runge-Kutta  scheme is used.  δ=Δ
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Then, computations show that the transition point from 

laminar to turbulent flow moves according to increasing 
disturbances at the inlet. (Fig. 5)  

  Combination of physical evaluations of numerical errors 
and the numerical method based on the multi-level 
formulation makes it possible to simulate the transition 
point in space for various inlet-disturbances. 
 
 
PHYSICS UNDERLYING THE TRANSITION 
 Next, we reveal the space-time structure for a wide range of 
Reynolds numbers. 
 Figure 6 shows the relation between Reynolds number and 
the transition point, while the turbulence intensity at the 
inlet is fixed. Increasing Reynolds number brings earlier 
transition.  
 Figure 7 shows the attractor (path of particle) around the 
transition points computed. An important point is that the 
early stage of the transition for low Reynolds number of 
6,000 shows two-dimensional oscillation, although 
relatively high Reynolds numbers suddenly bring three-
dimensional flow. The present approach may clarify the 
essential feature underlying the transition to turbulence. 
 

 
 
Fig. 6 Relation between Reynolds number and the transition 
point. (Grid points = 2500×50×50. The 1st order Euler 
shcme is used.)  
 
 
FINER SOLUTION OF THE BOUNDAY LAYER 
In the previous sections, we employed the grid system 

based on the Cartesian coordinate, which has a constant size 
of grid for each direction of three-dimensional space.  (See 
Fig. 8(B).) The homogeneous grid size for each direction 
will be necessary to resolve the transition to turbulence 
accurately. Only the aspect ratio of grid of 1.0 
[ )31,31(0.1/ −=−==ΔΔ jixx ji

] brings the accurate 

resolution of turbulence, although most of the previous 
computational fluid dynamics has used rectangle grid 
system such as Fig. 8(A) in the boundary layer. The 
orthogonal grid system based on the Cartesian coordinate 
should be also used, because non-orthogonal grid systems 
produce a lot of artificial viscosity unreal.  
However, the homogenous and orthogonal grid system 

also has a week point, which cannot resolve the boundary 
layer in detail, because the grid points are distributed 
homogenously in the analytical domain. Thus, we propose a 
new methodology of “cradle grid system”, which can 
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compute the boundary layer in detail, while maintaining the 
homogenous and orthogonal grid system. 
First, we prepare two grid systems of Figs. 8(B) and (B’), 

which have same grid size, although the grid system (B’) is 
translated in parallel with the distance of δξ . Cradle grid 
system of Fig. 8(C), i.e., combination of Figs. 8(b) and 
8(B’), brings us some more grid points close to the wall in 
order to analyse the boundary layer, while maintaining 
homogenous and orthogonal grid system. 
We must propose also the numerical algorithm, how to use 

the new grid system in Fig. 8(C).  Alternately in time, we 
employ the two grid points of Fig. 8(B) and (B’). Then, the 
mathematical interpolation of Hermit is used for 
interpolating the physical values between Grid (B) and Grid 
(B’)  (See Fig. 9 and Eqs. (3) and (4).) 
 
 

   
(a) 
  

 
(b) 
 
Fig.7 Attractor (path of particle) around the transition point, 
which is seen from the main flow direction of x1.  
(Grid points = 2,500×50×50. The 1st order Euler shcme is 
used.)  (a) Re=6,000 (b) Re=20,000. 
 

 
 
Fig. 8 Cradle grid system. 
 
 

 
 
Fig. 9 Computational algorithm on the cradle grid system.  
 
 
 
 
                (3) 
 
 
 
 
 
 
 
               (4) 
 
Careful consideration is ncessarey for the interporation. 

We propose the details for interporation in Fig. 10. The 
Hermit interpolation is done only for the terms except for 
temporal derivatives. 
 Here, we set to be .2/xδδξ =  Figure 11 shows the time-
averaged velocity distribution computed by using the cradle 
grid system. We can see more grid points inside the normal 
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grid system of Fig. 8(B), while the numerical results of 
mean velocities and turbulence intensities are similat to 
those on the homogenous and orthogonal grid system on 
only Fig. 8(B). (See Figs. 11 and 12.) 
[This methodology essentially differs from the immersed 
boundary methods. (Kim, J., Kim, D., and Choi, H., 2001.)] 
 

 
Fig. 10 Five steps of computational algorithm on the cradle 
grid system. 
 

 
Fig. 11 Time-average velocity distribution due to cradle grid 
system. (experiment by Laufer.) 
 

 
Fig. 12 Turbulence intensities due to the cradle grid system. 
 

VALIDITY OF STOCHASTIC DETERMINISM 
In this section, we clarify the reason why the above 

approach (stochastic determinism) works well. 
Fundamentally, fluids such as air are not a continuum 

because of their discrete molecules. Let us consider the 
smallest size of vortices, the Kolmogorov scale. This is on 
the order of 100 – 1000 times as large as the mean free path 
in high Reynolds number flows. Thus, the molecular 
discontinuity brings small stochastic value of 0.1 % at most 
in the Kolmogorov-scale vortex at the edge of continuum 
assumption. (See Fig. 13.) Moreover, the instability area 
before the transition may bring a characteristic scale smaller 
than the Kolmogorov scale. This smaller scale leads to 
larger stochasticity. Thus, this gap between the phenomenon 
and continuum mechanics clearly exists and leads to 
stochasticity. Continuum assumption cannot evaluate the 
stochasticity. For these reasons, the deterministic models 
such as the incompressible Navier-Stokes equations based 
on continuum assumption are essentially defective for 
solving the transition. 
 

 
 
Fig. 13 Stochatic level related to window-size for 
acveraging. If the window-size is close to the mean free 
path of molecule, the number density varies very much 
according to the translation of the window. The ratio of 
mean free path and average window size is equal to the 
stochastic level. (Stochasticity = Mean free path / Window 
size) 
 

In order to evaluate the smallest characteristic scale in 
the instability area before the transition, we use the 
governing equation averaged in a smaller window 
(stochastic determinism window) than that for continuum 
mechanics. 

The equation averaged in the stochastic determinism 
window leads to the divergence of velocity nonvanishing, 
while the physical quantities such as velocity and pressure 
an averaged in the stochastic determinism window include 
weak indeterminacy.  

Moreover, inlet disturbances and turbulence also lead to 
small density variations such as a very weak compressibility, 
i.e., divergence of velocity nonvanishing. 

Therefore, mass conservation in these equations can be 
described by the unified form of  
 

ε=
∂
∂∑

−= i

i

i x
u

31

     

                                             (5) 
 
where ui, xi, and ε  denote the quantities of stochastic 
determinism velocity components for the i-direction, 
stochastic determinism pressure, Cartesian coordinates, and 
divergence of velocity, respectively. 
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One of the reasons why the previous attempts such as 
those of Moin and Kawamura could not compute the 
transition point in space is that the criterion of ε  in Eq. (5) 
was set to zero based on mathematics, not on fluid physics 
taking into account weak compressibility and discontinuity. 
Evaluations of ε  in the previous reports were too small to 
represent the actual physical fluctuations of velocities. 
[Increasing inlet-disturbance will reduce the characteristic 
scale in the instability area, related to the thickness of 
laminar boundary layer (L.B.L.) and also the 
inhomogeneous velocity distribution in the layer. Thus, we 
change of the size of the stochastic determinism window 
according to the inlet-disturbance.] 
 
 
CONCLUSIONS 
1. Present numerical approach 
There are many application problems of the present 

method, which are blood flows, flows inside fuel cell, and 
laminar airfoils. 
 Why could not the previous approaches of computational 
fluid dynamics simulate the transition point in space? There 
are four reasons. First, people have used only the 
mathematical evaluation of numerical errors, which we 
explain above. Second, the correction method based on the 
multi-level formulation reduces local concentration of 
numerical errors. Third, most of people would try to 
compute the channel flows in the short region of L/D < 50. 
Finally, the third-order upwind scheme famous as the 
implicit LES (Kuwahara et al, 2005) is relatively tough for a 
wide range of grid size, although homogenous grid 
distribution leads to less concentration of grids around solid 
walls. 
 The cradle grid system with smaller value of δξ  will be 
able to resolve the boundary layer, while capturing the 
transition. 
2. Stochastic determinism and quantum mechanics 
  Stochastic determinism window, smaller than that for 
continuum mechanics, brings us the weak indeterminacy of 
physical quantities such as velocity and pressure. However, 
the method with indeterminacy is also useful to analyse the 
phenomena, as is seen in the quantum mechanics with 
indeterminacy principle. 
 In this report, we used δ=Δ∂∂∑ xNxu ii )/]/[( . In the 

future, we should employ the dimensionless form of 
 δe

i

i
N

n

CN
x
u

=
∂
∂∑ )/(  

and the dimensionless Navier-Stokes equation with the 
Reynolds number, where Ce will be between 10-2 and 102. 
3. Random number generator 

In the present report, we controlled the stochastic level by 
varying the number of iterations for the SOR method. 
However, we can control the stochastic level also by the 
other approach having two steps. First is to reduce 
extremely the numerical errors of the divergence of 
velocity. After that, we put artificial disturbance made by 
random number generator into each grid point.  
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