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ABSTRACT

The dynamics of the viscous How inside a lid-driven cav-
ity is investigated. The modes predicted by a global linear
stability analysis are compared to the results of a direct nu-
merical simulations (DNS). For a 2-D cavity, the successive
Hopf bifurcations are in fair agreement with the theoretical
predictions, although nonlinear energy tranfers can mod-
ify the hierarchy of the peak frequencies. For a 3-D case
with periodic spanwise conditions, centrifugal instabilities
can occur, The first bifurcation toward a steady state with
Taylor-Gortler-Like vortices is well reproduced. However,
the base flow then becomes highly three-dimensional, and
the dynamics observed in the nonlinear DNS departs from
the stability prediction. At Re=1000, based on the unitary
length of the cavity, the steady mode persist, and the tran-
sition toward an unsteady state is delayed as the Reynolds
number is further increased.

INTRODUCTION

The growing literature about cavity flows evidenced a sig-
nificant interaction between the external flow and the recir-
culating flow inside the cavity. At moderate Reynolds num-
bers (5000<Re<30 000), Taylor-Gortler-like (T'GL) vortices,
originating from the curvature of the main recirculating eddy
are identifiable. Their unsteadiness can be responsible of
low-frequency modulations of the shear layer/corner inter-
action, as noted in the experiments of Neary and Stephanoff
(1987), or in the simulations of Brés and Colonius (2008).

It is the aim of the present study to investigate sepa-
rately the dynamics of the viscous flow inside the cavity.
The lid-driven cavity problem, which is the flow inside a
cavity driven by a translating wall, constitutes an epitome
of such flows. The birth of instabilities and their nonlinear
evolution as the Reynolds number is increased are studied
by using global linear stability theory and direct numer-
ical simulations (DNS). The problem is of course largely
dependent on the cavity geometry, but it is thought that
the features of the particular aspect ratio retained in the
present work can help to shed light on the scenario leading
to the transition toward an unsteady and further turbulent
state. A square cross-section cavity is studied with peri-
odic boundary conditions in the direction transverse to the
lid. The spanwise extent is throughout denoted A = 27/,
where 3 is the transverse wavenumber. The use of periodic
conditions is motivated firstly by the possibility to compare
the primary instabilities with a global linear stability anal-
ysis. The global theory proves to be a powerful tool to
study strongly non-parallel flows like the lid-driven cavity
(Theofilis et al. 2004). Due to storage limitations of the
matrix of the resulting eigenvalue problem, the theory is

often restricted to two-dimensional base flows. The three-
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dimensional perturbation is then assumed periodic in the
third direction. Analysis of fully 3-D base flows is only in
its infancy, but promises to provide new informations on the
secondary bifurcations, or when endwalls are present. The
second interest of using periodic conditions is precisely to
cope with the increased complexity arising from the blocking
action of endwalls. For low Reynolds numbers, these end-
walls induce a quick destabilization of the steady flow toward
an unsteady one. Three-dimensional elongated TGL struc-
tures developing along the edge boundary of the primary
eddy are identified in the pioneering experiments of Kosefl
and Street (1984), and they are triggered by the curvature
of the primary eddy resulting from the motion of the lid.
The no-slip endwalls induce a pressure gradient, and thus a
spanwise velocity. The fluid particles spiraling toward the
endwall tend to be pulled into the primary core by the up-
stream corner vortex, and then spiral monotonically toward
the symmetry plane. The collision of the two flow streams in
opposite directions at the symmetry plane provides a means
of destabilizing the flow (Chiang and Sheu 1998) (Ekman
pumping). The influence of the endwalls can thus dominate
the dynamics for small spanwise extents (most of the avail-
able results used A < 3). Even for large extent (A = 6.55),
Albensoeder and Kuhlmann (2006) found that the bulk-
flow instability has a considerable influence, and that the
TGL vortices can exist only within a certain distance from
the endwalls. Comparisons between experimental data and
numerical results for impulsively started flows in a 3-D lid-
driven cavity of aspect ratio 1:1:2 at Reynolds number 1000
by Guermond et al. (2002) indicate the great sensitivity
of the transient flow on the spanwise boundary geometry.
Since the present investigation focuses on the onset and de-
velopment of the centrifugal instabilities, spanwise periodic
conditions allow to suppress the role of the endwalls. The
conditions of the onset of T'GL vortices are then investigated
for different spanwise aspect ratios, and increasing Reynolds
numbers. Another interest of the confined character of the
flow is to reduce the non-normality of the global modes, as
demonstrated by the study of the transient growth for an op-
timal perturbation. This point favors the confrontation with
asymptotic linear stability results, and thus the analysis of
the nonlinear effects.

In the first part of the paper, the numerical methods for
the incompressible DNS solver and for the global stability
code are detailed. The dynamics for 3=0, corresponding to
the two-dimensional limit is summarized in a second part,
in order to underline the great difference with non-zero 3.
Three-dimensional centrifugal instabilities are then possible
and evolve in the form of nonlinear TGL structures, as de-
scribed in the third section for a cubical cavity (8 = 27) at
Re=1000. The flow bifurcates toward a steady mode, which
is predicted by the linear stability analysis. The effect of


미정댁
메인/컨텐츠


Contents

Sixth International Symposium on Turbulence and Shear Flow Phenomena

Seoul, Korea, 22-24 June 2009

varying the spanwise wavenumber is briefly entered upon in
the fourth section, where the particular case @ = 7 is seen to
lead an oscillatory state, where two spanwise wavelengthes
are competitive. The laminar/turbulent transition is inves-
tigated in the last part as the Reynolds number is increased.

ANALYSIS TOOLS

DNS solver

The 3D incompressible Navier-Stokes equations are
solved in dimensionless form. Since the velocity-pressure
formulation is retained, the strategy to be adopted is ei-
ther grid staggering or collocation to store working variables.
Since central differencing is used, we favor the first strat-
egy to avoid grid-to-grid oscillations. Spatial discretisation
of nonlinear terms are performed with a compact six-order
finite difference scheme with coefficients calculated for a
non-uniform Cartesian staggered grid. Viscous terms are
discretized with second-order accuracy in space and inte-
grated in time with a second-order implicit Crank-Nicolson,
requiring the solution of a linear algebraic system with a
block-tridiagonal matrix. Other terms are advanced with
a third-order Adams-Bashforth scheme leading to a classi-
cal semi-implicit method. Interpolation between node and
vertex grids is a crucial step performed with six-order La-
grange interpolation on a non-uniform grid. The satisfaction
of discrete divergence-free velocities is enforced by a pro-
jection method (Brown et al. 2001) ensuring second-order
accuracy in time for both velocity and pressure. The solution
of the Poisson pressure equation is obtained at each timestep
with a direct solver taking benefit of the block-tridiagonal
structure of the matrix for this system. To alleviate the
singularity of the Poisson system with four Neumann con-
ditions, a regularization is performed at the last step of the
Thomas algorithm. The spanwise boundary conditions of
the cavity are periodic, thus, a spectral collocation based on
a Fourier decomposition is used in the spanwise direction.

Global linear stability analysis

The proposed stability analysis is based on the classical
perturbation technique where the instantaneous flow q =
(u,v,w,p)* is the superimposition of unknown fluctuations
¢ on a given 2D steady basic flow Q: q(z,v, 2,t) = Q(z,y)+
cq(z,y) where ¢ <& 1 and §(z,y) = q(z,y)exp(i(Bz —
wt)) + complex conjugate. The perturbation is then non-
homogeneous in the z- and y-directions. Since a temporal
approach is adopted, the spanwise wavenumber 3 is a real
parameter, whereas the global circular frequency is the un-
known complex number w = wy + iw;. After introducing
this decomposition in the dimensionless 3D incompressible
Navier-Stokes equations, a linearization leads to the follow-
ing equations:

%_ﬁaﬂ_@_vﬁ_(@i @)1_6_ﬁﬁ=—mﬂ
Re dxr Az 8y Re = az Ay
A;S_U?_iﬁﬁ_fg)—j—’z—zﬂ:D:—iw@
%+§—Z+w@=0

where Az = 92/02% + 82/8y%. These equations can be
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written as a complex non-symmetric generalized eigenprob-
lem, with eigenvalue w and eigenvector § : [A(Re,3) —
wB(Re, 3)]@ = 0. The problem is discretized on a non uni-
form Cartesian grid refined near the walls. A finite-difference
scheme, optimized in the wavenumber space, along with a co-
ordinate transform are used to evaluate the first and second
derivatives (Merle et al. 2007). Lastly, the eigenvalue prob-
lem is solved with an Implicitly Restarted Arnoldi Method
(Lehoucq et al. 1997). As a result, the imaginary and real
parts of w pertain respectively to the growth/damping rate
and the frequency of an instability mode. If w; < 0 the per-
turbation decreases in time so the flow is stable, whereas if
w; > 0 the flow is unstable.

DYNAMICS OF THE CAVITY FOR 5=0

The case =0 corresponds to the two-dimensional lid-
driven cavity flow. Numerous papers deal with the deter-
mination of the critical Reynolds number for the first Hopf
bifurcation toward an unsteady state for 2-D cavity flow.
Even if a value of Re.=8000 is probable from these studies,
a scatter is still noticeable for the precise values of Ree :
7763 in Poliashenko and Aidun (1995), 7998 in Fortin et al.
(1997), 7972 in Cazemier et al. (1998), 8018 in Auteri et al.
(2002), 8375 in Tiesinga et al. (2002), 7400 in Peng et al.
(2003), 8031 in Sahin and Owens (2003), 8000 in Abouhamza
and Pierre (2003), or between 8000 and 8050 in Bruneau
and Saad (2006). Re. depends on the method (bifurcation
analysis in Poliashenko and Aidun (1995), Tiesinga et al.
(2002), reduced-order model in Cazemier et al. (1998), sta-
bility analysis in Sahin and Owens (2003), Abouhamza and
Pierre (2003), DNS in Auteri et al. (2002), Peng et al. (2003),
Bruneau and Saad (2006)), on the spatial discretization as
shown in Gervais et al. (1997), or on the time integration al-
gorithm in Bruneau and Saad (2006). In the present study,
the critical Reynolds number is predicted to be 8035 from a
global stability analysis with a 1502 grid. A value of 7865
is estimated with a v/Re — Re. fitting from the DNS kinetic
energy growth with a 1262 grid. A value of 7974 in closer
agreement. with the preceding references is obtained for a
2502 grid. After the first bifurcation, a periodic flow with
the frequency of 0.44 is obtained. The perturbation field
from the DNS, depicted in figure 1, is in excellent agree-
ment with the stability eigenfunction for the most unstable
mode, and indicates that Kelvin-Helmholtz-like instabilities
develop along the dividing streamline ¥ = 0.

Figure 1: U-velocity perturbations for the DNS at Re=7900
(flow is from right to left).

When the Reynolds number is further increased, a se-
quence of successive Hopf bifurcations is observed. The most
unstable frequencies and the successive critical Reynolds
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Table 1: Critical Reynolds numbers Re., and most unstable
frequencies for the first five Hopf bifurcations predicted by
the global linear stability analysis with a 1502 point grid.

Re. 8135 8731 9054 9135 10129
0.446 0.445 0.617 0.617 0617 +
wr[2m - 0.617 0.441  0.438 0.710 T
Stab. - - 0.534 0.534 0431 w;
- - - 0.715  0.530 T
- - - - 0.766 -

Table 2: Principal "linear” peak frequencies obtained for a
2502 point grid DNS for increasing Reynolds numbers.

Re 8000 8500 9000 10000
0.45 0.445 0.442  0.617

wr /2w - - 0.618  0.436
DNS - - 0.534 0.52
- - - 0.70

number predicted by the global linear theory are given in
table 1. They are in fair agreement with the principal peaks
observed in the DNS velocity spectra, reported in table 2.
Only the "linear” frequencies are given, meaning that the
harmonics and interaction frequencies due to the nonlinear
effects are discarded.

The comparison for a relatively high Reynolds number
Re= 10* indicates that, in the case 3=0, the global linear
theory can help interpreting the dynamics of the cavity flow.
The basic flow for Re= 104 is indeed depicted in figure 2. A
large primary eddy and three secondary eddies located near
the cavity corners are visible. The global stability approach
shows that this quasi-periodic state corresponds to four un-
stable modes (f1=0.61, fo=0.71, f3=0.44 and f4=0.53) in
the spectrum of figure 2. DNS simulations exhibit similar
"linear” frequencies (table 2), although the hierarchy be-
tween the peaks is slighly modified. The frequency 0.44
remains for instance the second most unstable mode due to
nonlinearities. Moreover, some nonlinear self-interactions of
unstable modes are observed, which generate harmonics and
nonlinear mutual interactions of modes (f; + f;, nf;, ... with
(i,3) € [1,...,4] and n € N). An important energy transfer
is induced between some characteristic scales.

[
—-

i
=
.

Figure 2: Basic flow for the streamline function at Re=10%
on the left, and eigenvalues spectrum at Re=10% from the
global stability analysis.

Therefore, as the temporal complexity of the flow in-
creases in this sequence of bifurcations when Re increases,
the spatial complexity increases as well. Motions occur on
smaller length scales and on a broader range of length scales.
When the Reynolds number is still increased, a tendency to-
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ward a reduction of the number of spectral peaks is observed,
reminding an inverse cascade of energy characteristic of two-
dimensional flows.

COMPARISON OF GLOBAL STABILITY AND 3-D DNS
FOR A SQUARE CAVITY AT RE = 1000

The nature of the cavity instabilities are very different
when a 3-D flow with spanwise periodic conditions is consid-
ered (3 # 0). Centrifugal instabilities can occur for a critical
Reynolds number Re. one order of magnitude smaller. The
neutral curves for the four least-stable instability modes are
depicted in figure 3. They represent the limit of stability
of a mode in the parameter space (Re, 3). The first critical
Reynolds number Re. =~ 780, for 3 ~ 15, is associated with
a steady mode, thereafter referred to as the S1 mode. The
unsteady modes, referred to as the travelling modes T1, T2,
T3, become unstable respectively for (Rec,3) ~ (840, 15),
(920, 7.5), and (960, 14). Note that the corresponding most
amplified wavenumber is very close for the S1 and T'1 modes,
whereas the preferred wavenumber of T2 is well distinct.

o

20
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90 800 900 1000 1100 1200

Re

Figure 3: Neutral curves for the first four eigenmodes (grid
1254).

In their experiments for a square cavity with a spanwise
aspect ratio of 3, Benson and Aidun (1992) identify an un-
steady flow, whose frequency is very close to the one of T1,
as noted by Theofilis et al. (2004). To understand which
mode is selected when the effects of endwalls are not taken
into account, direct numerical simulations were performed
with refined grids (Chicheportiche et al. 2008) for a cubi-
cal lid-driven cavity at Re = 1000 with periodic conditions
in the spanwise direction. The four least-stable instability
modes from the global linear theory at this Reynolds num-
ber are given in table 3. The four modes S1, T1, T2, T3 are
thus potentially unstable. The amplification rate and the
frequency of each modes converge with two digits after the
decimal point when the grid is refined. Moreover the values
are in very good agreement with the work of Theofilis et al.
(2004), Albensoeder et al. (2001), Spasov et al. (2003), Non
et al. (2006). The DNS calculations are performed for a cubi-
cal cavity, 7.e. with a spanwise extent A = 1, corresponding
to 8 = 2n. The flowfield is validated with the benchmark
of Albensoeder and Kuhlmann (2005). A three-dimensional
steady Taylor-Gértler-Like flow is observed when periodic
spanwise boundary conditions are used.

To confirm that the final non-linear 3-D structures are
indeed induced by the S1 instability, the perturbation fields
during the linear phase are extracted. For that purpose,
the 2-D basic flow is subtracted from instantaneous fields
taken at one instant in the middle of the exponential growth
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Table 3: Maxima of amplication rate and circular frequency
of the first four eigenmodes from the stability analysis, given
for 1252 and 1502 point grids.

S1,8=17.0 T1, 3=17.0

Re = 1000 w;j wr Wi Wy
1252 0.1422 0.0000 0.0088 0.6967
1502 0.1430 0.0000 0.0995 0.6971

T2,8=17.0 T3, 3 =150

Re = 1000 w; wr wi wr
1252 0.0118 0.4962 0.0162 1.3721
1502 0.0117 0.4966 0.0168 1.3730

phase. The resulting perturbation field is compared to the
S1 eigenmode from the stability analysis in figure 4. We ob-
serve a great similarity between these fields. Moreover, the
S1 mode is clearly a centrifugal instability which is related
to TGL vortices. This steady mode dominates the other
unsteady unstable modes predicted by the theoretical ap-
proach. The level of convergence is quantified by extracting
the growth rate w; in the exponential growth of w. As the
grid is reflined, the growth rate from DNS converges toward
a value which is very close to the growth rate of the mode
S1 for @ = 18.85 (Chicheportiche et al. 2008).

Figure 4: Isocontour of perturbative field for the wu-
component of velocity from DNS (100 x 100 x 64 points)
on the left, and S1 stability mode (150 x 150 x 44 points) on
the right. The lid motion is indicated by the arrow.

Mode selection in the transverse direction

Figure 5: Neutral curves for the S1 mode replicated for dif-
ferent multiple of the critical wavelength 2w /k.: solid line:
ntg = 1 TGL vortex pairs; dashed line: ntg = 2; dash-
dotted line: nypg = 3; dash-double-dotted line: npq = 4.

The spanwise wavenumber is selected by the periodic
conditions to be close to a multiple of the wavelength cor-

responding to the maximal amplification, referred to as the
critical wavelength A. = 27/k.. In the previous configura-
tion where the spanwise dimension is A = 1, this leads to
an observed spanwise wavenumber k. = 3 x 2r/A = 18.85,
close to the critical wavenumber k. = 17 (sce table 3). This
selection mechanism has been described by Albensoeder and
Kuhlmann (2006), by varying A. A similar study by varying
3 = 27 /A has been conducted with the present DNS solver,
and is in fairly good agreement with the results of Alben-
soeder and Kuhlmann (2006). The neutral curves for the
first bifurcation from the 2-D basic flow toward a steady 3-
D flow are plotted in figure 5 for a number nrq = {1, 2, 3,4}
of TGL vortex pairs. They are at equally spaced span-
wise extent A = npgAe. A logarithmic scale is chosen for
the wavenumber since the neutral curves become flatter as
npg increases. When A is close to a multiple of the critical
wavelength, the bifurcation is supercritical, and follows the
linear stability theory. For g corresponding to intersection
of the neutral curves, nonlinearities yield a subcritical bifur-
cation. A possible hysteresis is noted by Albensoeder and
Kuhlmann (2006) whether the Reynolds number is increased
or decreased. Oscillating flows are observed in these inter-
mediate regions where two multiples of the wavelength are
competitive. The topology of one oscillating case, obtained
for 3 = 7, is investigated. The residual curves, plotted in
figure 6, show a low-frequency oscillating pattern. The inter-
mediate flowfields are characterized. For example, 3-D plots
of the y-component of the vorticity are presented in figure
7, and indicate a switching between two and three pairs of
counterrotating Taylor-Gortler-like vortices.

hgm{rmlduau

o 200 400 800 800 1000 1200

Figure 6: Residuals for the cavity with @ = 7: solid line : w;
dashed lines : v and v; dash-dotted line : p.

Figure 7: Instantaneous isosurfaces of y-vorticity, 8 = 7.
From left to right, and top to bottom: ¢ = 761, 942, 1019,
1071.
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SECOND BIFURCATION TOWARD AN UNSTEADY
STATE

The Reynolds number is varied between 700 and 2500, for
the square cavity with a fixed transverse dimension A = 1.
After a primary bifurcation around to Reynolds number 780
beyond which the flow become three-dimensional and steady,
a second bifurcation toward an unsteady state appears be-
tween Re=1100 and 1200. This bifurcation is characterized
by a frequency near fp =~ 0.12. Physically this unsteadi-
ness corresponds to a transverse motion of Taylor-Gortler
vortices with a larger amplitude at the edge of the vortex
than at its root. After this secondary bifurcation, for higher
Reynolds number, the transition process is then very rapid.
Some spectra and temporal evolutions for spanwise veloc-
ity component w are reproduced in figure 8, and the degree
of order is characterized by the phase portraits in figure 9.
For 1200 < Re < 1300, the spatial organization shown in
figure 4 still remains true on average. At this Reynolds num-
ber range, the flow is mainly periodic, with some harmonics
noticeable in the spectra, and indicating nonlinear effects.
For Re > 1300, a new low frequency appears, fi ~ 0.053,
and the loop observed in the phase plots are now spread-
ing around the previous limit cycle. When the Reynolds
number increases these frequencies interact between them
leading to important non-linear coupling. A large degree
of randomness is then observed in the time histories of the
fluctuations, even if the mean flow structure remains orga-
nized (with three pairs of TGL vortices) until Re=1800 (see
Fig. 10). The unsteadiness remains located in the vicinity of
the TGL structures. The movement is always of pendulum
type, with the curved streamwise vortices oscillating back
and forth. For higher Reynolds number, Re > 1800, the
phase plots are progressively more isotropic whose trajecto-
ries eventually no longer be periodic and characteristics of a
turbulent state.

CONCLUSIONS

In this investigation, a three-dimensional steady Taylor-
Gortler-Like flow is found for a square lid-driven cavity with
periodic spanwise boundary conditions. The first bifurcation
corresponds to the steady mode S1 of a stability analysis.
The mechanism for selection of the number TGL vortex
pairs in the spanwise direction is very similar to the results
of Albensoeder and Kuhlmann (2006). The oscillating fow
observed for 3=7 has been detailed, and shows the com-
petition between two spanwise flow arrangement. When the
Reynolds number increases, the flow becomes unsteady keep-
ing a large regularity. Some intermittency of the TGL vortex
pairs is first noted. The spanwise coherence is then altered
by the developing turbulence.

In future work, the second bifurcation will be analyzed by
studying the stability of the nonlinear stationary solution of
the three-dimensional Navier-Stokes equations. This study
requires both the development of a specific algorithm to ob-
tain the base flow and using a direct method of resolution,
without matrix, of the eigenvalue problem.
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Figure 9: Phase portraits at point (1/6;1/6; 1/2). From left
to right and from top to bottom: Re = 1100, 1200, 1250,
1300, 1350 and 2000.

Figure 10: Mean velocity w in the plane y = 1/2. From
the left to the right and from top to bottom: Re =
1300;1500;1600;1800.
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