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ABSTRACT 
    The rapid part of pressure-strain correlation is one of the key 
elements in DRSM that has received significant research 
attention. However, the existing model proposals still exhibit 
some apparent deficiencies when subjected to flows with rapid 
distortion. For instance, the initially isotropic turbulence 
subjected to rapid distortion, Sjögren & Johansson (2000) 
showed that all the existing rapid pressure-strain models would 
deliver the identical path in the anisotropy-invariant map (AIM) 
for homogeneous plane strain and shear flows. The RDT result 
shows two distinct curves reflecting different flow physics 
(POPE, 2000). Lee et al. (1990) shows RDT may give an 
accurate description of the turbulence at realistic strain rates in 
a study, using RDT and DNS, of turbulence subjected to a 
homogeneous shear flow. We believe that a good turbulence 
model should match RDT for rapid deformations. Present 
work presents a possible candidate to overcome these 
deficiencies through the inclusion of the strain and rotation 
rate tensors S and  in the expansion of the fourth rank M-
tensor. Numerical results show the test model proposed here is 
effective in reflecting the rapid distortion effects on turbulence. 

Ω

 
 

INTRODUCTION 
    In Differential Reynolds-Stress turbulence Models 

(DRSM), eddy-viscosity hypothesis for the constitutive 
relation between the Reynolds stress and strain rate is no 
longer required. As is based on the closure of the Reynolds-
stress transport equations originated from the Navier-Stokes 
equations, the DRSM is much better in recovering 
turbulence physics than the eddy-viscosity model (EVM). 
With the rapid development of computer technology and 
numerical solution algorithm, there is an increasing demand 
for the application of the DRSM to solve industrial 
aerodynamic problems in the last decade. 

However, the pace of DRSM application to practical 
engineering problems is often hampered by the deficiencies 
existed in the basic assumptions embodied in the current 
modeling framework. It is known that one of the main 
difficulties in closing the transport equations for the 
Reynolds stress lies in the modeling of the unknown 
pressure-strain correlation. From the Poisson equation for 
fluctuating pressure, the pressure-strain correlation have 
been conveniently separated into two parts (Launder et al. 
1975): the slow term ( s

ijΦ ) representing turbulence/ 

turbulence interactions and the rapid term ( ) the mean-
flow-gradient/turbulence interaction. The pressure-strain 
correlation is known to play a redistribution role among 
turbulence energy components. The rapid term represents 
the fast response of the Reynolds stresses to the variation in 

the mean flows in the redistribution process. It is sensitive 
to the nature of the mean-flow velocity gradients, e.g. in the 
form of shear or strain rates. In the rapid distortion limit 

r
ijΦ

( )S k ε →∞ , the rapid pressure-strain correlation becomes 
a dominant term over the slow part which is negligibly 
small. In the traditional rapid pressure-strain models, the 
Green’s function solution to the Poisson equation for 
fluctuating pressure can be used to express the pressure-
strain correlation in terms of two-point velocity correlations 
[3]. With this approach, a fourth-order M-tensor (see later 
for Eq.(4)) arises from the rapid pressure-strain correlation. 
Modeling of the rapid term then turns into the determination 
of the M-tensor form. The existing models (such as LRR 
(Launder et al., 1975), SSG (Speziale et al., 1991,), FLT (Fu 
et al., 1987)) all assume that the M-tensor of the rapid term 
is a function of the Reynolds-stress anisotropy tensor, 

( )2 1 3ij i j ijb u u k δ= − , alone. The logic of this approach is 
clear that the M-tensor can be approximated with a series of 
bij expansion.  Thus, different models reflect the truncation 
of this expansion at various degrees. This approach works 
reasonably well for flows close to local equilibrium or flows 
with less mean-flow distortion. For flows with large 
velocity gradients or mean-flow distortion, the current 
modeling strategy requires significant further extension to 
account for the rapid response in the pressure-strain 
correlation.  

When turbulence is subjected to rapid distortion, the 
description of turbulence evolution simplifies significantly, 
leading to the so-called rapid-distortion theory (RDT) 
equations (Taylor & Batchelor, 1949). In this limit, the 
physics of rapid pressure-strain correlation can be studied in 
relative isolation as the complicating effects of slow 
pressure-strain correlation and dissipation are absent. 
Larsson’s DNS data (Larsson, 1996) show, gradually 
increasing the mean strain rate, DNS should give results 
converging towards the RDT solution. In DNS data of Lee 
et al. (1990), it is observed that the Reynolds-stress 
anisotropy tensor is compatible with that in sublayer of a 
turbulent channel flow at a comparable shear rate made 
dimensionless by turbulent kinetic energy and its dissipation 
rate; and this shear rate produces structures in homogeneous 
turbulent shear flow similar to the ‘streaks’ that are present 
in the sublayer of wall-bounded turbulent shear flows. It is 
also shown that this shear rate is so high that the anisotropic 
behavior of structural quantities predicted by the rapid 
distortion theory is remarkably compatible with that 
predicted by DNS. They pointed out that RDT contains the 
essential mechanism responsible for the development of 
turbulence structures in the presence of high shear rate, 
typical of the near-wall region in a turbulent shear flow. 
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This means that the RDT is not only a limiting state, it 
exists in real flows. Thus, RDT results are important 
references to the rapid pressure-strain model proposals. 

In recent years, some new pressure-strain models 
(Johansson & Hallbäck,1994; Sjögren & Johansson, 2000; 
Girimaji et al., 2003)  have been presented to capture the 
anisotropy evolution in the rapid limit, but problems still 
exist. It will be shown later that it is almost an impossible 
task for the class of rapid pressure-strain models developed 
with the present modeling strategy to adequately capture the 
anisotropy invariants evolution in the rapid limit. The same 
defect in these models, for instance, leads to undamped 
oscillations of the anisotropy in the case of initially 
anisotropic turbulence subjected to rapid rotation. The 
correct response should be a damped oscillation of 
anisotropy tensor toward the initial value of the structure 
anisotropy tensor (Mansour et al. 1991). When the evolution 
of initially isotropic turbulence was subjected to rapid 
distortion, Sjögren & Johansson (2000) showed that all 
existing rapid pressure-strain models are unable to 
differentiate the very different flow physics related to the 
homogeneous shear and plane strain flows on the 
anisotropy-invariant map (AIM). It is highlighted in the 
results of RDT analysis that the plane strain and plane shear 
give rise to two distinct evolution paths (Pope, 2000). 

In the present paper, the cause of deficiencies in the 
rapid pressure-strain models is investigated. It is realized 
that the M-tensor requires a new modeling strategy to cure 
the model defects. The present work finally leads to the 
proposal of a new rapid pressure-strain model capable to 
reflecting turbulence behaviors at the rapid distortion limit. 

 

ANALYSES OF DEFICIENCIES IN CLASSICAL 
RAPID PRESSURE-STRAIN MODELS 
    In the rapid distortion limit, the rapid pressure dominates 
the fluctuating pressure field, the slow pressure can thus be 
neglected. Hence, the second-moment equation can be 
reduced to the RDT form 
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Here,  is the rapid diffusion term (it will disappear in 

homogeneous turbulence) and 

r
ijd

r
ijΦ  the rapid pressure-strain 

correlation term which is the only term needs modelling. 
If we scrutinize the above transport equation of the 

homogeneous turbulence a little further in terms of the 
Reynolds-stress anisotropy tensor , then, in the RDT limit, 

where the effects of slow pressure-strain correlation and 
dissipation are absent, we have: 

ijb

 
dbij dt = Pij

b + Φij
br = Tij

  (2) 

Here, 
  
bij = uiu j 2k − 1 3( )δ ij . In the modelling of the rapid 

term , it is first written as r
ijΦ

(2r l
ij mlij mlji

m

Uk M M
x
∂

Φ = +
∂

Here, the fourth-rank M-tensor is given by the integral of 
the two-point velocity correlation. 

Within the current “one point” modeling strategy for the 
pressure-strain correlation, the M-tensor is considered 
expandable in a polynomial of the Reynolds-stress 
anisotropy tensor , i.e., ijb

( )mlij ijM f b=                         (4) 
Johansson & Hallbäck (1994) derived the most general 
expression for the rapid pressure-strain models in the 
context of the current approach for the Reynolds stress 
models. 

Tij = q1ΙbS + q9ΙbbS⎡⎣ ⎤⎦Gij
1( ) + q2Gij

2( ) + q3Gij
3( ) + q4Gij

4( )

      + q5ΙbS + q10ΙbbS( )Gij
5( ) + q6Gij

6( ) + q7Gij
7( ) + q8Gij

8( )

⎫
⎬
⎪

⎭⎪
    (5) 

Here the G  represent the following tensor bases formed 

by the Reynolds stress anisotropy, the strain rate and the the 
rotation tensors, , 

ij
(λ )

ijb Sij = 0.5 ∂Ui ∂x j + ∂U j ∂xi( )  and 

Ωij = 0.5 x j∂Ui ∂ − ∂ ∂xiU j( ), respectively. Mathematically, 

they are 
( ) ( )
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where , , the  , may depend on the 
second and third invariants of , namely  and 

. Any dependence on the Reynolds number is 
not relevant in the rapid distortion limit.  

ΙbS = bkl Slk

bklblmbmk

ΙbbS = bklblmSmk
qi

ijb  ΙΙb = bklblk

ΙΙΙb =

    The transport equations for the invariants  and  in 
RDT limit can be derived from Equation (2), through some 
elaborate tensor algebra, that finally lead to 

bΙΙ bΙΙΙ

dΙΙb dt = 2q2 + 2q1 + q6( )ΙΙb + 2q5ΙΙΙb
⎡⎣ ⎤⎦ΙbS

            + 4q3 + 2q9ΙΙb + 2q10ΙΙΙb⎡⎣ ⎤⎦ΙbbS

dΙΙΙb dt = q3ΙΙb + q5ΙΙb
2 2 + q6 + 3q1( )ΙΙΙb

⎡⎣ ⎤⎦ΙbS

             + 3q2 + q10ΙΙb
2 + q6ΙΙb( ) 2 + 3q9ΙΙΙb

⎡
⎣

⎤
⎦ΙbbS

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

        (6) 

In pure rotation ( 0=S ), we easy get 
d ΙΙb dt = 0 , 

  dΙΙΙb dt = 0 .  (7) 
So, current model predictions fail to give damped 
oscillations in the turbulence anisotropy. The cause can be 
attributed directly to the absence of the rotation termΩ in 
Eq. (6), in general, In general, the missing of the strain term 

 there may also be undesirable. Sij

    To further elucidate the implication of Equations (6), it is 
appropriate to consider the behaviour of these two equations 
in the case of homogeneous two-dimensional mean flows. 
For initially isotropic turbulence subjected to two-
dimensional mean flows in RDT limit, Reynolds stresses 
will have one principal axis that is always perpendicular to 
the plane of the flows. We set the eigenvalues of the 
principal axis to be  ( is thus an invariant also, 
and , ). In this case, we are easy to 

33b 33b
023＝b 031＝b

)                          (3) 
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get
33bbSbbS −=ΙΙ . Then, the time evolution for this 

component is given as 

  

db33 dt = q1Ιbs + q9ΙbbS⎡⎣ ⎤⎦a33 + q3 −2ΙbS 3( )+
    q5ΙbS + q10ΙbbS⎡⎣ ⎤⎦ b33

2 − ΙΙb 3( )+ q6 −ΙbbS 3( )
 (8) 

Now we can write Equations (3), and (5) in more simple 
form 

  

dΙΙb ΙbS dt( )= dΙΙb dτ = f1 ΙΙb ,ΙΙΙb( )− f2 ΙΙb ,ΙΙΙb( )b33(
dΙΙΙb ΙbS dt

)
= dΙΙΙb dτ = g1 ΙΙb ,ΙΙΙb( )− g2 ΙΙb ,ΙΙΙb( )b33( )

db33 ΙbS dt = db33 dτ =
h1 ΙΙb ,ΙΙΙb( )− h2 ΙΙb ,ΙΙΙb( )b33 −

h3 ΙΙb ,ΙΙΙb( )b33
2 − h4 ΙΙb ,ΙΙΙb( )b33

3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

(9) 

It is important to note that the Equations (9), representing a 
dynamic system of order three, are self-closed in terms of 
function of , and in two-dimensional mean flows. 

bΙΙ bΙΙΙ 33b
     Thus, all two-dimensional flows will have the same path 
on the AIM. The above analysis shows two important 
deficiencies in the current rapid pressure-strain models, no 
matter how high and how complex the expansion in the 
Reynolds-stress anisotropy tensor is. The cause of the 
problem may be connect with the absence of the strain rate 
and rotation rate tensors, S and , in Eq (6) which are 
insensitive to flows. 

Ω

 
 

A NEW PROPOSAL FOR THE RAPID PRESSURE-
STRAIN MODEL  
As discussed above, we think the current expansion of M-
tensor is insufficient and should include the effect of strain 
and rotation rate tensors. Although the mean-flow quantities 
do not appear directly in the M-tensor expression, the two-
point nature of the correlations of the fluctuating velocity 
gradients suggests that they are inherently related to the 
mean velocity gradients. While M-tensor involves 
information that is not contained in Reynolds-stress 
anisotropy tensor [4], mean-flow quantities can affect M-
tensor by change the lost information. This is likely true in 
many cases, a nonlinear expression in the mean velocity 
gradient should be considered more general. In the present 
work, the nonlinearity in the mean velocity gradients is 
considered in the M-tensor. Here we assume, 

  
Mlikj = Mlikj

b b( )+ Mlikj
Ωb b,Ω*( )                    (10) 

with 
  
Ω* = 0.5 ⋅ (Ui, j −U j ,i )( ) Ul ,mUl ,m

.  is expansion of 

tensor alone. This make new model can be easy to 
combine with current turbulence theory. In this paper, we 
select the form of FLT model (Fu, et al., 1987) to displace 

 and 

( )bM b
likj

b

( )bM b
likj ( )*,ΩΩ bM b

likj
 is the expansion of tensor  and 

. 

b
*Ω ( )*Ω,bΩM b

likj
 can be seen as a correction term of ( )bM b

likj
. 

Here, we select a linear expansion form of ( )*Ω,Ω bb
likjM , 

  

M likj
Ωb = α1 Ω*

ljδki + Ω
*

ijδkl + Ω
*

lkδ ji +Ω
*

ikδ jl( )+α2 Ω*b− bΩ*( )
li
δkj

        +α3 Ω*b− bΩ*( )
kj
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ij
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        + Ω*b( )
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ik
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ij
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lk
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⎛
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⎞

⎠
⎟
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        +α6 Ω*
ljbki +Ω

*
ijbkl +Ω

*
lkbji +Ω

*
ikbjl( )

(11) 

    In determining the coefficients, two kinematical 
constraints (continuity, normalization) lead to 

α1 = 0 α2 = e1 +
7
3

e2 α3 = −
7
2

e1 +
1
6

e2

α4 = e1 α5 = e2 α6 = −2.5 e1 + e2( )

⎫

⎬
⎪

⎭
⎪

             (12) 

As can be seen from the above, we reduce 6 free 
coefficients to 2 free coefficients. Considering 2 free 
coefficients in FLT model, the new model has 4 free 
coefficients. In the end, the 4 free coefficients are set as, 

t = 0.5+ 0.4ΙΙW( )F r = −2F e1 = −0.2F

e2 = 0 ΙΙW = Ωmn
* Ωnm

* F = 1+ 27ΙΙΙb − 9ΙΙb

⎫
⎬
⎪

⎭⎪

    (13) 

Thus, the model is closed. 
 
 
COMPARISONS WITH RDT RESULTS 

Because of the deficiencies mentioned above, the current 
rapid pressure-strain models work very poorly in RDT limit. 
In the present model validation, a number of homogeneous 
flows have been considered including plane strain, plane 
shear, turbulence subjected to pure rotation, axisymmetric 
contraction and axisymmetric expansion flows. In the 
following figures, “present model” refers to the rapid 
pressure-strain correlation model developed in the present 
work, “RDT” is for the data of RDT, “GL” the Gibson-
Launder model and “SSG” the Sarkar, Speziale & Gatski 
model. 

Figure 1 illustrates the performances of the GL, SSG 
and the present model against RDT data in a plane strain 
case. The existing models can only give reasonable results 
at very small time, at large evolution time the results seem 
to diverge with RDT data in the streamwise energy 
component.  The reason is clear that there is no dissipative 
mechanism in the Reynolds stress governing equations due 
to the assumption of rapid distortion, then, all energy 
components will grow exponentially after a certain time. 

The homogeneous plane shear case is illustrated in 
Figure 2.  To save the space, only two components 
variations are given.  The new model seems to match the 
results well.  But the very important behaviour is from the 
phase plot of the Anisotropy Invariant Map (AIM) which is 
showing in Figure 3.  There, it is clearly seen that the 
present model exhibits two distinct curves, one for the plane 
strain and the other for the plane shear flows.  They are also 
close to the RDT data.  The results obtained with the 
existing pressure-strain models, e.g., from GL and SSG 
model, give only one curve on the AIM.  The reason had 
been discussed before that the existing modelling strategy 
fails to capture the “large scale” effect. 

Figure 3 shows the development of the Reynolds stress 
anisotropy tensor subjected to a frame rotation. As indicated 
in Eq.(7) the absence of shear leads to no growth or decay in 
the second or third invariants of the Reynolds stress 
anisotropy tensor. This is equivalent to see the model results 
of Figure3(b) where d b33 /dt =0 for the existing models, GL 
and SSG.  The behaviour of the other Reynolds stress 
anisotropy tensor components are basically of damped 
oscillation in time evolution as shown in Figure 3(a).  The 
present model is able to reflect the decay of the b33 
component, damping also occurred in b11, but as can be seen 
that the modelled frequency is somehow not matching.  The 
reason may be that the present model included only the 
linear expansion in the modelling of the M-tensor, high 
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frequency damping may be related to higher order 
expansion in vorticity. 

Figures 5 and 6 present the results for axisymmetric 
contraction and axusymmetric expansion.  In the case of 
contraction, since the flow is basically accelerating, the 
streamwise turbulent kinetic energy component decreases in 
the time evolution.  RDT results suggest that it should 
remain so.  The conventional model results however lead to 
exponential growth after the initial decay, in contradictory 
to the RDT.  The continued decay is obviously a ‘large 
scale’ effect, not a consequence of energy dissipation. The 
new model is able to reflect this subtle behaviour. 
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Figure 2. Reynolds-stress anisotropies for 

homogeneous shear flow. (a) the cross-stream 
compoenent, (b) the shear stress component. 
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Figure 3.  AIM paths in plane strain and homogeneous shear 
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                                         (b) 
Figure 1. Comparison of Reynolds stress development 
in plane strain distortion from three turbulence models 
with RDT data. (a) the streamwise component, (b) the 

normal component. 
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    In the case of axisymmetric expansion flow, 

turbulence is experiencing a decelerating mean flow field, 
this would cause the turbulence energy increase from the 
beginning of the expansion.  This is also shown here in 
Figure 6. 

 
 

CONCLUSION 
It is shown that the anisotropy evolution can be 

analyzed through an approach where a set of invariants are 
computed instead of the individual anisotropy components. 
The analysis is given for two dimensional mean flows and 
pure rotation flow. It is shown that all classical pressure-
strain models give the same trace in the anisotropy-invariant 
map for plane strain and homogeneous shear flow, and 
undamped oscillations of the anisotropy measures for a pure 
rapid rotation in rapid limit. 

A new approach to improving the prediction of the 
anisotropy evolution in rapid limit, where the M -tensor of 
rapid pressure-strain correlation is expandable in the 
Reynolds-stress anisotropy tensor ( ) and mean rotation 

rate tensor ( ). This extension allows two different traces 
in the anisotropy-invariant map for plane strain and 
homogeneous shear flow, and a damped oscillatory solution 
for the anisotropy components in the situation of pure 

rotation, which are not even qualitative captured by classical 
rapid pressure-strain models. 
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Figure 4. Reynolds-stress anisotropies development 
subject to rotation  

We believe that a good turbulence model should match 
RDT for rapid deformations and classical modeling for 
weak deformations. Present work presents a possible way to 
extend classical model to rapid deformations field. 
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Figure 5.  Reynolds-stress components for 
axisymmetric contraction 
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Figure 6.  Reynolds-stress components for 
axisymmetric expansion 
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