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ABSTRACT

Turbulence models often involve Reynolds averaging,

with a closure providing the Reynolds stress u′v′ as func-

tion of mean velocity gradients dū/dy, through a turbulence

constitutive equation (equation 1). The main limitation of

this linear closure is that it rests on an analogy with kinetic

theory. For this analogy to be valid there has to be scale sep-

aration. The aim of this work is to better understand this

hypothesis from a microscopic point of view. Therefore, fluid

elements are tracked in a turbulent channel flow. The flow

is resolved by direct numerical simulation (DNS). Statistics

on particle trajectories ending on a certain distance y0 from

the wall are computed leading to estimations of the turbulent

mixing length scale and the Knudsen number. Comparing

the computed values to the Knudsen number in the case of

scale separation we may know in which region of the flow and

to what extent the turbulence constitutive equation (equa-

tion 1) is not verified.

INTRODUCTION

Diverse industrial applications and environmental issues

often involve complex turbulent flows. A better under-

standing of the nature of transport process in these flows is

challenging since available turbulence models do not provide

accurate predictions for complicated configurations possess-

ing recirculations, anisotropy or stagnation points (Wilcox,

1998; Pope, 2000).

Turbulence models often involve Reynolds averaging,

with a closure providing the Reynolds stress u′v′ as func-

tion of mean velocity gradients dū/dy, through a turbulence

constitutive equation:

−u′v′ = νT
dū

dy
(1)

The main limitation of this linear closure (equation 1) is that

it rests on an analogy with kinetic theory. For this analogy

to be valid there has to be scale separation between the mean

velocity variations and the turbulent Lagrangian free path

whose mean value is the turbulent mixing length. The aim

of this work is to better understand this hypothesis from a

microscopic point of view using DNS data.

Since turbulent transport process depend to a large ex-

tent upon the dynamics of fluid particle motion, considerable

benefit may be taken from analysing the Reynolds stress

from a Lagrangian point of view. This perspective has

been explored by Deardorff and Peskin (1970)for channel

flow computed on relatively coarse meshes. Later, Bernard

et al. (1989)and Bernard and Handler (1990) investigated

the mechanisms for momentum transport in the wall re-

gion of channel flow by using ensembles of computed par-

ticle paths with direct numerical simulation (DNS). The

authors showed that the gradient mechanism overpredicts

the Reynolds stress and that significant positive contribu-

tions to Reynolds stress come from non-gradient transport

processes.

A comprehensive description of the physics of momen-

tum transport in the near wall region can be obtained by

the Lagrangian analysis. In particular, it is of interest to

better describe the turbulence constitutive equation as well

as the reasons of the inadequacies of a linear closure. The

insights provided by these analysis may be of considerable

benefit in the construction of a non-local Reynolds stress

model such as those proposed in Hamba (2005) and Huang

(2004) enlightened by the Lagrangian analysis. Many stud-

ies (Hinze et al. 1974; Schmitt, 2007a,b) have mentioned

the inadequacies of a linear closure for simple shear flow.

Our contribution here is to apply the Lagrangian point of

view for determining the Knudsen number through which

the degree of validity of the scale separation hypothesis can

be established.

In the present study, fluid elements are tracked in a tur-

bulent channel flow in pursuit of these objectives. The flow

is resolved by DNS. Statistics on particle trajectories which

have terminal points on a certain distance y0 from the wall

are computed. With the view afforded by these data a

description of the inadequacy of the turbulent constitutive

equation emerges through estimations of the turbulent mix-

ing length scale and the Knudsen number. The computed

Knudsen number is compared to the Knudsen number in the

case of scale separation enabling the detection of flow regions

where the turbulence constitutive equation (equation 1) is

not verified.

The next section provides background on the method of

Lagrangian analysis employed here. It describes how the

Reynolds stress is estimated based on the analogy with the

kinetic theory of gases. Following this the computational

aspects of the approach, including that of channel flow sim-

ulation and the particle data sets are given. The chief results

concerning the turbulent mixing length scale and the Knud-
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sen number are then presented, including the evolution with

distance from the wall of the mean and probability density

function (PDF) of these quantities. An overall assessment

of the inadequacies of the turbulence constitutive equation

is then made and some implications of this for the modelling

of the Reynolds stress are described. In the last section con-

clusions are given together with outline of future work.

ESTIMATES OF THE REYNOLDS STRESS BY ANALOGY

WITH THE KINETIC THEORY OF GASES

In the following section we briefly describe how the tur-

bulent constitutive equation is obtained when the mixing

length scale is small compared to other macroscopic length

scales. Details about this description may be found in Ten-

nekes and Lumley (1972).

Let us consider a steady channel flow homogeneous in

the x, z plane. Here x, y and z represent the streamwise,

the vertical and the transverse direction, respectively. The

corresponding velocity components will be denoted by u, v

and w. Finally, the total velocity will be given according to

the Reynolds averaged decomposition by u = ū + u′. The

overline will therefore represent a mean value in terms of the

Reynolds averaged decomposition.

In the classical kinetic theory of gases (Tennekes and

Lumley, 1972) −ρu′v′ is estimated as follows. The mean

free path of molecules is denoted by y∗. A molecule coming

from y − y∗ has a positive velocity v′. On the average, a

molecule coming from y − y∗ collides with another molecule

at the reference level y = y0. As a result of this collision the

molecule coming from below adjusts its momentum in the x

direction to that of its new environment. This adjustment

takes place by absorption of an amount of momentum equal

to M = m (ū(y0) − ū(y0 − y∗)). The quantity M is equal

to the amount of momentum lost by the environment at the

reference level y0. The right-hand side of this equation may

be expanded in a Taylor series:

M = my∗
∂ū

∂y
+

1

2
m (y∗)2

∂2ū

∂y2
+ ... (2)

If
∂ū

∂y
>>

1

2
y∗

∂2ū

∂y2
the second and higher order terms in the

expansion may be neglected. If we define l, a characteristic

length scale as:

l =

∂ū

∂y

1

2

∂2ū

∂y2

(3)

then the condition expressed above writes as:

y∗ << l (4)

If this condition is fulfilled, the momentum M can be ex-

pressed as M = my∗
∂ū

∂y
. Considering that per unite area

and time there are Nv0 collisions, with v0 the average free

path velocity, we finally obtain −ρu′v′ = ρv0y∗
∂ū

∂y
. By

denoting the viscosity ν = v0y∗ we obtain the turbulence

constitutive equation:

−ρu′v′ = ρν
∂ū

∂y
(5)

Equation 5 can be applied if the condition expressed in

equation 4 is satisfied. This condition may as well be given

in terms of a Knudsen number defined by:

Kn =
y∗

l
(6)

Table 1: Numerical simulation characteristics.

Reynolds number Mesh

Reτ = 180 192 × 192 × 192

Reτ = 590 256 × 384 × 384

Friction velocity Viscosity

uτ = 0.05m/s ν = 3 × 10−3m2/s

uτ = 0.05m/s ν = 8 × 10−5m2/s

In conclusion, the simple gradient turbulence constitu-

tive equation (equation 5) is valid if the Knudsen number is

small Kn << 1. Finally, the gradient transport model used

for establishing the turbulence constitutive equation rests on

the hypothesis that fluid particles essentially maintain their

momentum over a small mixing length y∗ before blending

in with the surroundings. This assertion requires that the

momentum of fluid particles be preserved over y∗ and that

y∗ must be less than the distance over which a linear ap-

proximation to ū is satisfactory. In that case, the Knudsen

number is small and scale separation takes place. The ex-

tension to which these conditions are fulfilled in channel flow

can be explored with the present data. The numerical simu-

lations by which the data are obtained are described in the

following section.

NUMERICAL SIMULATION

Particle paths were computed using DNS of channel

flow at two different Reynolds numbers, Reτ = 180 and

Reτ = 590, based on the friction velocity uτ and the chan-

nel half-width H, or Re = 3280 and Re = 12500 based on

the velocity at the center of the channel and H. Some pa-

rameters for both simulations may be found in table 1. In

the following the superscript + will denote quantities nor-

malized by the friction velocity uτ and the viscosity ν. For

both Reynolds numbers 200, 000 fluid elements were tracked.

The resolution of the incompressible Navier-Stokes equations

for a turbulent channel flow is based on a pseudo-spectral

code using a Chebyshev formulation in the wall-normal di-

rection and a Fourier expansion in the periodic directions

(Godeferd and Lollini 1999, Laadhari 2002).

Fluid particle trajectories are computed by numerical in-

tegration of the equation of particle motion. The Lagrangian

velocity is extracted from the nearest grid information using

an eight-point Hermite interpolation scheme. Initially, fluid

particles are randomly distributed in the flow. The parti-

cles are then tracked by continually updating their position

using an Adams-Bashforth time advancement scheme.

ESTIMATION OF THE TURBULENT MIXING LENGTH

SCALE

In this section we will describe how we estimate the tur-

bulent mixing length and the Knudsen number for each fluid

element tracked in the flow. The estimation of individual

turbulent mixing lengths will then lead to a PDF of the

turbulent mixing length. The statistical samples for build-

ing this PDF will be given by individual turbulent mixing

lengths.

We first consider the time series Z = u′v′(t) for a

given fluid element, starting retrospectively from the mo-

ment when y = y0. As suggested by Bernard et al. (1989),

a possible measure of the mixing time relevant to the present

objective is the time τ at which the autocorrelation function
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of u′v′(t), C(τ) = 0. Fulfillment of this condition implies an

end to the correlation between u′ and v′. In essence, this

time period is that necessary for the correlation of u′ and v′

to evolve out of the prior dynamics of the motion.

The memory associated to the time series Z = u′v′(t) is

therefore obtained throughout the characteristic timescale

t∗ of the autocorrelation function C(τ). Here, t∗ will be

considered as the first time τ for which C(τ) = 0. This is

illustrated in Figure 1. The characteristic timescale t∗ is

the mixing time for each considered trajectory. As shown in

Figure 2, t∗ is a variable quantity.

After determining t∗ for each considered fluid element we

can build a PDF of t∗ for all particles in the flow ending at

y = y0.

t+

C
(t

+
)
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yo/H=1 ; Re=3280
yo/H=1 ; Re=12500

t*

Figure 1: Example of the autocorrelation C(τ), of u′v′

for each particle ending at y0 = H for Re = 3280 (green

squares) and Re = 12500 (magenta triangles).

particles ending at y=yo

t*
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Figure 2: Example of the mixing time t∗ for different fluid

elements ending at y0 = H for Re = 3280 (green squares)

and Re = 12500 (magenta triangles).

The mixing timescale t∗ can also be used for determin-

ing the individual mixing length scale y∗ by the following

relation:

y∗ =
√

(y0 − y(t0 − t∗))2 + (x0 − x(t0 − t∗))2 (7)

y∗ represents the distance that a fluid elements needs to

cover before it looses the information about its initial mo-

mentum u′v′. This mixing length scale is determined here

for each fluid element ending at y = y0. Once again, after

obtaining y∗ for all fluid elements ending at y = y0 a PDF

of the mixing length scale can be built. An example of the

PDF for the mixing length scale y∗ is presented in Figure 3.

y*
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100

PDF Re=3280
f(y)=1.15 y -̂0.55
PDF Re=12500

Figure 3: PDF of the mixing length scale y∗ for all fluid

elements ending at y0 = H for Re = 3280 (green squares)

and Re = 12500 (magenta triangles).

ESTIMATION OF THE KNUDSEN NUMBER

The results described in the previous section can be used

for estimating the individual Knudsen number. The Knud-

sen number is given by the ratio of the turbulent mixing

length scale y∗ and a characteristic length scale of the mean

gradient denoted by l. Therefore, the Knudsen number can

be written as:

Kn =
y∗

l
(8)

Here, Kn depends on the particle and on the ending position

y0. The characteristic length scale of mean gradient l can

be obtained from:

l =

dū

dy

d2ū

dy2

(9)

One has l ∼ y0 in the log-low region. Therefore, for each

fluid element ending at y = y0 the Knudsen number is given

by:

Kn =
y∗

y0

(10)

The values of Kn for different fluid particles ending at y = y0

are presented in Figure 4. As it was shown in the previous

section, the turbulence constitutive equation (equation 1) is

valid if the Knudsen number is small Kn << 1. We can see

here that for the set of particles chosen for this example, the

condition of small Knudsen number is not verified.

TURBULENT MIXING LENGTH AND THE KNUDSEN

NUMBER EVOLUTION WITH WALL DISTANCE

The mean values of the turbulent mixing length scale

y∗ and timescale t∗ for fluid particles ending at different
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fluid elements ending at y=yo
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Figure 4: Example of the Knudsen number Kn for differ-

ent fluid elements ending at y0 = H for Re = 3280 (green

squares) and Re = 12500 (magenta triangles).

y0 are presented in figure 5 and 6, respectively. Both the

mean turbulent length scale and timescale reach high val-

ues for all wall distances. Even though individual mixing

length scales and timescales are highly variable quantities,

the mean length scale and timescale weakly depend on the

distance from the wall. A slight increase in the mean of t∗

can be seen as y+ increases. In average, a particle whose

ending trajectory is far from the wall needs more time for

loosing the information on u′v′ that it initially contained.

This may lead us to think that particles whose ending tra-

jectories are far from the wall come from lower turbulence

regions. However, while t∗ increases with y+, y∗ does not

present a monotonic evolution and we could say that it re-

mains rather constant. Therefore, in average particles that

need more time to loose their initial information do not nec-

essary travel a longer distance. These particles are contained

in regions of the flow with lower velocity and lower tur-

bulence than the average at this distance. Finally, as the

Reynolds number increases, mean values of t∗ and y∗ de-

crease, traducing the fact that turbulence increases and that

less time and distance is needed for better mixing.
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Figure 5: Mean turbulent mixing length scale y∗ evolution

with distance from the wall.

Figure 7 illustrates the evolution with wall distance of the
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Figure 6: Mean turbulent mixing timescale t∗ evolution with

distance from the wall.

average Knudsen number. The Knudsen number remains

rather high even far from the wall. Whatever the wall dis-

tance, in average fluid particles travel well beyond the region

of linear variation in ū during this same period. On average

the low Knudsen number assumption fails whatever the wall

distance.
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Figure 7: Mean Knudsen number evolution with distance

from the wall.

Figures 8 and 9 illustrate the PDF of the turbulent mix-

ing length scale y∗ for different y0. The PDF of y∗ has an

exponential behaviour for small values of y∗ (Figure 9). The

PDF is not a delta function around the mean value of y∗.

The same statement can be made when it comes to the PDF

of Knudsen numbers (figures 10 and 11). Therefore, both y∗

and Kn reach large values far from the mean. This leads to

the conclusion that there is no scale separation and that the

small Knudsen number hypothesis fails often in this type of

flow whatever the wall distance.

CONCLUSION

Ensembles of paths arriving at a given distance above the

channel wall were used to evaluate a Lagrangian expression

of the Reynolds stress. Then the autocorrelation function of

the Lagrangian expression of the Reynolds stress was used
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Figure 8: PDF of the turbulent mixing length scale y∗ for

different distances from the wall y0 for Re = 3280.
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Figure 9:

for determining the turbulent mixing timescale and length

scale. Finally, the corresponding Knudsen number was com-

puted.

The values of the computed Knudsen number were com-

pared to the values imposed when establishing the turbulent

constitutive equation with the gradient transport model.

The PDF of the Knudsen number presents an exponential

behaviour for small Knudsen number values, whatever the

wall distance. This PDF is not represented by a delta func-

tion around a small mean value. Therefore, the computed

results show that the small Knudsen number hypothesis fails

practically in every region of the flow, whatever the wall dis-

tance.

In subsequent studies it is planned to propose a non-local

approach for predicting the Reynolds stress and to establish

the influence of the Reynolds number and of the flow config-

uration on the proposed non-local kernels. This expanded

database may reveal additional information about the re-

lationship between the Reynolds stress and the Lagrangian

paths of fluid elements. In addition to this, it is interesting

to develop conditional sampling of particle paths used for

obtaining the Reynolds stress. For example, particle paths

conditioned by sweeps or ejections may play particularly im-

portant roles in the determination of turbulent mixing length
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Figure 10: PDF of the Knudsen number Kn for different

distances from the wall y0 for Re = 3280.
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Figure 11: Zoom of PDF for small values of the Knudsen

number Kn with corresponding exponential adjustment, for

Re = 3280 (green and blue squares) and Re = 12500 (ma-

genta and orange triangles).

or time scales.
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