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ABSTRACT

Symmetry analysis of the evolution equation for the two-

point correlation tensor Rij (xk, rl, t) in the case of planar

generation of turbulence in an otherwise calm semi-infinite

body of fluid has revealed some interesting solutions con-

cerning the statistical properties of turbulence and how they

develop with distance from the generation source. The first

solution concerns the classical case of shear-free turbulent

diffusion. Here, the turbulent kinetic energy is distributed

according to a power law x−n where n is a constant larger

than one, and x is the normal distance to the forcing plane.

The integral length scales of turbulence increase linearly

with x. A second case is considered when the symmetry

of scaling of space is broken by introducing confinement

to the flow. The turbulent kinetic energy decays with x

as exp (−x) and the integral length scales remain constant

along x. The purpose of the present work is to investigate

the propagation of the interface separating the turbulent

from the non-turbulent (turbulent/non-turbulent interface,

TNTI) flow regions, for the two cases using particle image

velocimetry (PIV) and large eddy simulation (LES).

INTRODUCTION

The problem considered in this work is the propagation of

turbulent motions from a planar source of energy into an in-

finite body of fluid without mean velocity gradients. At the

level of the one-point, second-order velocity moments this

condition corresponds to a zero mean rate of production of

turbulent stresses from their governing equations. The rel-

evance of this case has been recognized in several contexts,

e.g. turbulence at the air-water interface, determination

of the empirical constants in the two-equation k − ε-type

models, in atmospheric and geophysical turbulence investi-

gations, to name a few (e.g. Lele, 1985, Hopfinger et al.,

1982).

The fluid motion in this setting can be described as par-

tially turbulent. It gives rise to the concept of the TNTI

which separates the vortical, turbulent region from the es-

sentially irrotational non-turbulent region, which is, how-

ever, not completely void of the velocity fluctuations. The

TNTI is a thin, spatially and temporaly irregular layer, con-

torted on a range of length scales. It propagates into the

turbulent region by the entrainment process. It has been es-

tablished that the prevailing mechanism responsible for the

entrainment is the small-scale “nibbling”, as opposed to the

large-scale “engulfment” process (Westerweel et al., 2005).

Oberlack and Guenther (2003) have applied the method

of symmetry analysis of differential equations to the equa-

tions governing the two-point correlation of velocity, defined

by Rij (xk, rl, t) ≡ 〈ui (xk, t) uj (xk + rl, t)〉. The analysis

has been carried out by utilizing an asymptotic expansion

of Rij in the r-space, thereby avoiding the influence of the

viscosity on the large scales and recovering an additional

scaling symmetry present in the Euler equations. It has been

shown that the analysis and the results are entirely appli-

cable to the multi-point statistical correlations of arbitrary

order. The analysis has revealed new similarity solutions

(scaling laws) which are manifestations of particular broken

symmetries admitted by the original system.

The analysis firstly recovers the classical, diffusion-like,

heat-equation-like, solution in the case that all the symme-

tries are valid. This similarity solution is characterized by a

power-law decay of the turbulent kinetic energy with the dis-

tance from the forcing plane, x−n, in the limit t → ∞ and

the linear growth of the integral length scales with time.

The propagation of the TNTI has been shown to take place

according to

H (t) ∼ [(t− t0) /τ ]m (1)

where H (t) is the distance of the TNTI from the forcing

plane, τ is a timescale and t0 is a temporal virtual origin

(Hopfinger et al., 1982).

The second similarity solution, the decelerating diffusion-

wave solution, is obtained by considering the symmetry

breaking of scaling of space. The turbulent kinetic energy

now exhibits an exponential decay with the distance from

the grid, exp (−x), in the steady state limit and the integral

length scales remain constant in time. The TNTI propagates

according to

H (t) ∼ ln [(t− t0) /τ ] (2)

Similar theoretical and experimental results have been

obtained recently albeit in the setting of isotropic turbu-

lence. In the experiments utilizing multiscale, fractal grids

in a wind tunnel to create an isotropic turbulent field, Hurst

and Vassilicos (2007) have discovered regions with an ex-

ponential decay of turbulence and constant integral length

scales. George and Wang (2009) have analyzed the similar-

ity solutions to the energy equation in the spectral space

and recovered an exponential temporal decay of turbulence

when the (integral) length scales are kept constant.

An additional similarity solution is obtained by introduc-

ing constant system rotation with the axis perpendicular to

the forcing plane, and thereby breaking the symmetry of

scaling of time. The turbulent kinetic energy now decays

according to x−2 and the TNTI ceases to propagate beyond

a certain distance which is the asymptote to the function

governing the position of the TNTI

H (t) ∼ exp [− (t− t0) /τ ] (3)
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Figure 1: Sketch of the experimental setup

This case has been investigated mainly in the steady

state limit, and several characteristics of the turbu-

lent field have been emphasized, e.g. the quasi-two-

dimensionalization with distance to the grid, the appear-

ance of coherent vortices which are alligned with the axis

of rotation, the interaction of inertial waves and turbulent

motions, the modulation of the energy spectrum by rota-

tion, etc (e.g. Dickinson and Long 1975, Hopfinger et al.,

1978, Godeferd and Lollini, 1999). The investigations of the

unsteady problem of tracking the TNTI has revealed difficul-

ties in balancing proper TNTI propagation with the effects

of rapid quasi-two-dimensionalization and its treatment is

out of scope of the present paper.

EXPERIMENTS

For the measurements we used the experimental setup

described in Holzner et al. (2006). A screen of squared bars

(diameter d = 1mm, mesh-size M = 4mm) is installed near

the upper edge of a water filled glass tank with dimensions

200 x 200 x 300mm3. The grid is connected to a linear

motor, which drives the vertical oscillation on a supporting

frame connected to the grid through four rods of 4mm in di-

ameter. The motor, operated in a closed loop with feedback

from a linear encoder, runs at a frequency of f = 9Hz and

an stroke amplitude S = 8mm for all the experiments. The

PIV experiments were conducted by using a high-speed cam-

era (Photron Ultima APX, 1,024x1,024 pixels) at a frame

rate of 50 Hz. The beam of a continuous 25 Watt Ar-Ion

laser is expanded through a cylindrical lens and forms a pla-

nar laser sheet about 1 mm thick, which passes vertically

through the mid-plane of the tank. Polystyrol particles with

a mean diameter of 40 µm were used as passive flow trac-

ers. The density of the fluid was matched with the density

of the tracers of 1.05 g/cm3 utilizing sodium cloride. Ad-

ditional visualisation experiments using Pearlescence, which

are plate-like particles that align with shear, were carried

out for a better visualization of the flow.

Detection of the TNTI position

The propagation of the TNTI is analysed by using the

level-based technique described in Holzner et al. (2006).

This method uses a fixed out-of-plane vorticity threshold

to distinguish between turbulent and calm ambient fluid.

The threshold is calculated by multiplying the noise level

of the out-of-plane verticity by a factor of four. Holzner

et al.(2006) derived this factor by comparison with the re-

sults of dye measurements among others. The propagation

of the TNTI estimated from the Perlescence experiments

also qualitatively confirms the chosen threshold. For each

time instant and for each position x, the position of the

TNTI is the lowest point y∗ (x, t) at which the magnitude of
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Figure 2: Sketch of the computational domain with position

of turbulence sources

the out-of-plane vorticity exceeds the threshold. The instan-

tanious mean position of the TNTI is the horizontal average

over the point detected by the method. Similar methods

were used by Westerweel et al. (2002) (see also Westerweel

et al. (2005) and references therein).

SIMULATIONS

Numerical experiments in the LES framework have been

performed, aiming to assess conformance of the methodology

to the above outlined constraints of the statistical quantities

of turbulence. The symmetry groups of the Navier-Stokes

equations are equally admittable by all the evolution equa-

tions of the statistical quantities of turbulence which are

derived from them using the operations of averaging or

convolution filtering (Oberlack, 1997). Consequently, any

closure relationship used in the statistical equations should

also conform to the constraints imposed by the symmetry

groups.

In the present LES work the unknown filtered velocity

field is governed by the following equations in Cartesian ten-

sor notation

∂ui

∂t
+

∂

∂xj
(uiuj) = −

∂p

∂xi
+

∂

∂xj
(Sij − τij) + fi (4)

∂ui

∂xi
= 0 (5)

Here, ui are the components of the filtered velocity field,

p is the effective pressure field, fi is the volumetric force,

Sij ≡ (∂jui + ∂iuj) /2 is the rate of strain tensor and

τij ≡ ũiũj − uiuj (where ũi ≡ ui) is the tensor arising

from the filtering of the nonlinear term in the Navier-Stokes

equations. Formally, additional terms arise in the equations

governing evolution of the filtered velocity field, such as the

results of non-commutativity of the differential and filtering

operators, but these are usually represented within a model

for the unknown tensor τij or can be avoided by using co-

mutative filters and/or discretisation formulae.

The localized dynamic version of the Smagorinsky model

was used to approximate the effects of the unresolved mo-

tions. In their analysis of several sub-grid scale modelling

approaches Razafindralandy et al. (2007) concluded that

this particular form of closure theoretically satisfies all the

symmetry constraints of the Navier-Stokes equations. In

the framework of eddy-viscosity models the deviatoric part

of the sub-grid scale tensor is taken to be localy proportional

to the resolved rate of strain
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τij = 2νsgsSij +
2

3
kδij (6)

where k = τii/2. This modelling approach parametrizes

the sub-grid stress with k and νsgs (Fureby et al., 1997)

according to

k = cI∆2‖Sij‖2 (7)

νsgs = cD∆2‖Sij‖ (8)

Here, the unknown parameters cI and cD are dynami-

cally determined by utilizing scale-similarity of filtered quan-

tities at different filtering levels and solving an overdeter-

mined system of equations in the least-square sense (Ger-

mano et al, 1993).

Computational method

The simulations have been performed utilizing Open-

FOAM computational continuum mechanics library. The

library implements the finite volume method (FVM) of dis-

cretizing partial differential equations. Computational grids

are allowed to consist of general polyhedra. Second order

discretization is employed in space and time, employing the

standard central differencing in space and backward differ-

ence scheme in time. Table 1 summarizes the numerical

parameters used in the present work.

The experimental turbulence tank has been represented

as a computational box, Fig. 2, (Lx, Ly , Lz) with periodic

boundary conditions imposed on boundary planes perpen-

dicular to the forcing plane. At the boundaries parallel

to the forcing plane several boundary conditions have been

compared - symmetry plane, zero-gradient and the advec-

tive (which imposes a value of a variable by solving local

advection equation Dui/Dt = 0) boundary condition. The

different boundary conditions have been found to produce

only minor changes in the solution when the distance of the

boundary to the forcing plane is appropriately chosen.

Forcing

The volumetric force is given by the following expression

(Godeferd and Lollini, 1999)

fz (x, y, zg , t) =

(2πf)2S

2

[
δ1i cos

(
2π

M
x

)
cos

(
2π

M
y

)
sin (2πft) + βi

]
(9)

The above formulation features parameters of the oscil-

lating grid used in the experiments, which makes it possi-

ble to compare the outcomes of the two investigations and

βi is the uniformly distributed random number in interval

[−0.25, 0.25].

These parameters are used to determine the Reynolds

number of the system as

Re =
fS2

ν
= 576 (10)

The analytical results assume a constant level of energy

at the forcing plane, and the volumetric force should mimic

this behaviour as well. Figure 3 shows the signal of the

maximum velocity within the domain normalized with the

mean value of the statistically steady part. It can be seen

that, besides the initial transient, the energy in the forcing

region remains to a good approximation constant. Spectral
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Figure 3: An example of behavior of the maximal kinetic

energy within the domain (〈·〉T denotes time averaging, Ek

is the kinetic energy)
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Figure 4: Fourier transform of the autocorrelation coefficient

(κ denotes the wavenumber)

Table 1: Summary of the simulation domains

Name Nx ×Ny ×Nz Lx/M × Ly/M × Lz/M

fLES1 20× 120× 20 25× 150× 25

fLES2 40× 240× 40 25× 150× 25

fLES3 40× 120× 40 50× 150× 50

fLES4 60× 360× 60 25× 150× 25

cLES1 20× 600× 20 2.5× 150× 2.5

cLES2 30× 450× 30 2.5× 75× 2.5

content of the autocorrelation coefficient, Fig. 4, shows that

the energy containing scales correspond to the grid spacing

M in the forcing region. As the distance to the forcing re-

gion increases the energy gets transfered to the large scales,

signifying merger of initial turbulent structures.

As the rate of energy input per unit mass, 〈fiui〉, is pro-

portional to the computational cell volume withing FVM,

forcing has been implemented in such a manner to ensure

the approximate equivalence of the forcing region for dif-

ferent grid resolutions by keeping the depth of the forced

volume proportional to the grid stroke S.
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