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ABSTRACT

A parallelized code based on spectral methods was de-

veloped for future investigations of mixed convection in a

turbulent plane channel flow using direct numerical simula-

tions (DNS). The accuracy of the code is demonstrated by

very good agreement of our data with those from literature

for both the Poisseuille and the buoyancy driven vertical

channel flow as an example for the two extremes of forced

and natural convection.

Also, some shortcomings of often used reference data for

natural convection are pointed out which will help to de-

velop modifications for turbulence models or wall functions

especially suited for natural convection.

In order to assess combined momentum and heat trans-

fer problems, the concept of second law analysis (SLA) is

introduced from which entropy production rates both due

to dissipation and heat transfer can be deduced.

As a first step we illustrate how the friction factor for

pure forced convection can be deduced from our DNS data

based on the entropy production rate due to dissipation.

Consistincy is demonstrated by comparing these results to

those based on the wall shear stress.

INTRODUCTION

Turbulent plane channel flow is probably one of the most

frequently investigated benchmark cases in computational

fluid dynamics since the wall-normal behavior of the flow

can easily be investigated without considering edge effects in

the streamwise and spanwise directions. For this geometry

many researchers have focused on forced convection (e.g.

Moser et al., 1999; Jiminez et al., 1991) and some on natural

convection (e.g. Boudjemadi et al., 1997; Versteegh and

Nieuwstadt, 1999) but only a few were interested in mixed

convection yet (e.g. Kasagi and Nishimura, 1997; Iida et al.

2002), although in engineering applications buoyancy effects

are almost always superimposed with other driving forces,

like moving walls or applied pressure gradients.

In a plane channel mixed convection can be realized in

numerous ways and the underlying physics differ just as

much. Starting from walls at constant but different temper-

atures, the horizontal channel flow is stratisfied either stably

(Iida et al., 2002) or unstably (Iida and Kasagi, 1997), de-

pending on the location of the hot wall. For the vertical

setup with an upward mainstream direction the buoyancy

force stabilizes the aiding flow near the hot wall and desta-

bilizes the opposing flow near the cold wall (Kasagi and

Nishimura, 1997). Any tilt between these extremes is con-

ceivable as well, hence, both effects will be blended.

In this paper the vertical channel is analyzed in detail.

Driving forces are due to buoyancy and a pressure gradient

applied in streamwise direction.

Often the final goal of an analysis of a turbulent shear

flow using DNS is providing data for the mean flow val-

ues and the correlation terms which appear in the turbulent

transport equations. With this knowledge, turbulence mod-

els can be adjusted and wall functions can be deduced for

RANS simulations.

Here, as an approach to a unifying theory of mixed con-

vection, we also provide the local entropy production rates

for a better understanding of the underlying physics. En-

tropy is produced in two different ways, due to dissipation

(Ṡ′′′

D ) and due to heat conduction (Ṡ′′′

C ) both occurring at a

certain temperature level inside the domain.

Dissipation acts as a source term in the thermal en-

ergy balance equation, which, however, is often neglected in

DNS. The time average of this quantity slightly differs from

the well known pseudo-dissipation ε, which is modelled for

RANS computations in an k, ε-model, for example. Only in

the limit of infinite Reynolds numbers both dissipation and

pseudo-dissipation are equal (Herwig and Kock, 2007). De-

termination of the dissipation rate directly from DNS data

therefore is an attractive alternative and helps to assess the

uncertainty involved in the conventional RANS results.

Therefore, the computed data of the present DNS-code

may contribute to:

• modelling of near wall turbulent flows

• understanding of the physics utilizing the concept of

entropy production

Both aspects will be illustrated after the numerical

method is introduced.

NUMERICAL METHOD

The nondimensionalized incompressible Navier-Stokes-

equations incorporating the Boussinesq approximation are
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integrated in velocity-pressure formulation using a third

order semi-implicit Adams-Bashforth/Backward Differenti-

ation scheme (ABBDI3).

∂ui

∂xi
= 0 (1)

∂uj

∂t
+

∂ (ujui)

∂xi
+

∂p

∂xj
= Ku

∂2uj

∂x2
i

+ Kgθgj (2)

∂θ

∂t
+

∂ (θui)

∂xi
= Kθ

∂2θ

∂x2
i

(3)

Eq.(3) shows that viscous heating is neglected in the ther-

mal energy balance, nevertheless the entropy production rate

is evaluated after every outer time step. Viscous heating

will, however, be incorporated into the governing equations

in future versions of the code, see Eq.(6) below.

The spatial discretization is based on a pseudo-spectral

Chebychev-tau method with periodic boundary conditions

using Fourier series both in the streamwise (x) and spanwise

(z) directions. The nonlinear terms are treated implicitly in

a vorticity-velocity representation while aliasing is prevented

by applying the 3/2 rule in every direction. The pressure

field is solved directly utilizing the influence-matrix follow-

ing Kleiser & Schumann (1980) and the tau error arising

from the no-slip condition at the walls is corrected. The

mean pressure is adjusted dynamically to maintain a con-

stant mass flux, which is zero for pure natural convection

and nonzero for forced convection.

The code was written in C++ and parallelized with

OpenMP, with the FFTW3 library utilized for the spectral

transformations.

All calculations of this study were performed on a Linux-

Cluster with 8-16 AMD Opteron-Cores (2.3GHz) per node at

a parallel efficiency of 99.4% and above. Typical CPU-times

varied between 3-7 weeks with a typical required storage

between 6-26GB RAM for each test case.

CONTRIBUTION TO MODELLING

We finally want to contribute to the modelling of turbu-

lent mixed convection. If we want to do so by help of our

DNS data we first should demonstrate that they are reliable

for the two limiting cases of both natural and forced convec-

tion. First, in a comparison with DNS-data from Versteegh

and Nieuwstadt (1999) for the natural convection in a verti-

cal channel we show the quality of the present DNS-data.

Afterwards, some sample results are presented for forced

convection.

Natural convection

Tab.1 contains our results for the four different cases of

the study by Versteegh and Nieuwstadt (1999). Results for

the Reynolds number based on the friction velocity, Reτ ,

the Nusselt number Nu and their relative errors compared

to the corresponding results of Versteegh and Nieuwstadt

are shown. Also shown are the scaled step sizes ∆x+ and

∆y+
w (wall nearest ∆y+). All simulations were performed

in a domain of size Lx = 2Lz = 24δ, with δ as the channel

half width. The grid resolution is fixed at 384 × 65 × 192

in the x, y and z direction, respectively. The resolution as

well as the domain size and the Grashof numbers of all four

cases are very similar to those of the DNS of Versteegh and

Nieuwstadt, hence, direct comparison can be made.

In addition to scalar values like those presented in Tab.1,

one of the most important results from DNS are the var-

ious terms of the transport equation of the time averaged

Table 1: Four DNS cases for natural convection; comparison

with the data of Versteegh and Nieuwstadt (1999) in terms

of ∆Reτ
and ∆Nu

Gr Reτ ∆Reτ
Nu ∆Nu ∆x+ ∆y+

w

9.5 × 104 61.1 -0.4% 5.37 0.4% 3.82 0.07

15.0 × 104 72.6 2.4% 6.21 0.8% 4.54 0.09

35.2 × 104 100.3 1.2% 8.15 -0.5% 6.27 0.12

88.0 × 104 142.2 0.8% 10.87 -0.3% 8.89 0.17

turbulent kinetic energy k, which is modelled in every two-

equation turbulence model approach. In a vertical plane

channel flow this transport equation is:

∂k

∂t
= −u′v′

∂u

∂y
+ Kgu′θ′gx −

∂v′k

∂y
+ Ku

∂2k

∂y2
−

∂

∂y
v′q′

−Ku

[

(

∂u′

∂xi

)2

+

(

∂v′

∂xi

)2

+

(

∂w′

∂xi

)2
]

(4)

In Fig.1 each term is illustrated as a function of the wall

normal coordinate y for Gr = 9.5 × 104 and compared to

the data set of Versteegh and Nieuwstadt. Especially the

graphs for shear production and convection of k by Versteegh

and Nieuwstadt show some unnatural oscillations while the

present data are very smooth.
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Figure 1: Comparison of the various terms in the transport

equation of k with the data of Versteegh and Nieuwstadt

(1999); full line: own data

As a cross-check for the correctness of the DNS data, the

right hand side of Eq.(4) must be zero in a quasi-steady tur-

bulent flow. Fig.2 demonstrates the accuracy of the present

data with an error for ∂k/∂t = 0 which is three orders of

magnitude below the magnitude of the individual terms of

the k-equation. In contrast, the corresponding error of the

reference data (Versteegh and Nieuwstadt, 1999) is more

than one order of magnitude higher, which is already close

to the magnitude of the contributing terms themselve. Since

the data of Versteegh and Nieuwstadt represent only one side

of the channel, the error in Fig.2 was mirrored at the axis of

the channel.
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Figure 2: Statistical error of the k-equation (lower figure)

in comparsion with the contributing terms (upper figure);

full line: own data, broken line: Versteegh and Nieuwstadt

(1999)

Table 2: Sample parameters and results for forced convec-

tion

ReDh Reτ Nu Nx × Ny × Nz ∆x+ ∆y+
w

32000 448.16 13.88 192 × 131 × 192 14.67 0.13

37333 512.62 15.60 224 × 145 × 224 14.38 0.12

42667 575.46 17.19 256 × 163 × 256 14.12 0.11

Forced convection

In pure forced convection the temperature field does not

affect the velocity field which means that Kg in Eq.(2) is es-

sentially zero. However, heat transfer with temperature as a

passive scalar can be computed simultaneously and a Nus-

selt number can be deduced. With our own DNS code three

heat transfer situations with increasing Reynolds numbers

according to Tab.2 have been calculated. For these Reynolds

numbers the domain size was chosen to be Lx = 2Lz = 2πδ

following Moser et. al (1999). Tab.2 shows the main results

in terms of Reτ and Nu as well as the resolutions in terms

of ∆x+ and ∆y+
w .

The results for Reτ , the mean flow values and the

Reynolds stress terms in the transport equations show very

good agreement with the data of Moser et al. (1999), al-

though our resolution is not as high as that in their study.

With ReDh and Reτ according to Tab.2 we also know the

friction factor λf since

λf,w =
8τw

ρu2
m

= 128

(

Reτ

ReDh

)2

(5)

Here, the index w indicates that the friction factor is

computed via the wall shear stress. A double logarithmic

plot of λf over ReDh corresponds to the line for a hydrauli-

cally smooth wall in the famous Moody-chart.

The results are shown in Fig.3 and compared to the DNS

data of Moser et al. (1999), of the KAWAMURALAB and

the THTLAB. Experimental results are approximated by the

solid line representing the Dean-correlation (Dean, 1978).

The Colebrooke formular for pipe flows (Colebrooke, 1939)

which according to the hydraulic diameter concept can be

included here, is shown as a dotted line. In the laminar

regime the friction factor is λf = 96/ReDh with three nu-

merical results (own data) exactly on this line.
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Figure 3: Comparison of the friction factor λf for forced

convection with other DNS data in a “Moody chart”

For higher Reynolds numbers the friction factors of the

present data correspond very well to those of Moser et al.

(1999) and the THTLAB, which both were also gained by

spectral methods. The data of the KAWAMURALAB from

a finite volume method are shown for several domain sizes

and resolutions at certain values of Reτ . A closer look to

these data reveals that λf has the tendency to grow, if the

domain is enlarged or the resolution is increased. In our

data, however, λf becomes slightly smaller if the resolution

is increased.

The slope of the Dean-correlation is very well captured

for ReDh > 104. For smaller Reynolds numbers the curve

approaches Colebrooke’s formular. This tendency is also

shown by the data of KAWAMURALAB, although with

some higher scatter. The data from THTLAB for Reynolds

numbers ReDh below 2 × 104 have no clear tendency and

show some scatter at moderate Reynolds numbers, where

the influence of relaminarization effects should still be neg-

ligible, however.

For the present DNS the domain size in this moderate

Reynolds number regime was enlarged to 2Lx = 5Lz = 10πδ

while keeping the resolution much higher than needed at

192 × 131 × 192. Despite the bigger domain size and the

high resolution it was difficult to achieve convergence for

the friction factor. In fact, shear stresses can be evaluated

on both walls in a plane channel flow and hence, two fric-

tion factors exist. However, in a quasi-steady turbulent flow

both should be the same if the time averaging period is long

enough. For the Reynolds number ReDh = 32000 the dif-

ference was less than 0.32% of the mean value but for low

Reynolds numbers the difference grew to more than 1.5% at

ReDh = 4000. This indicates that for a staedy state analysis

of mixed convection ReDh should be above 104 in order to
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avoid low Reynolds number effects and long time integration

for steady state profiles.

Furthermore, Moser et al. (1999) analyzed the behavior

of the mean velocity profile u+(y+) and stated that a shear

flow would not incorporate low-Renolds number effects for

Reτ higher than 395. This is confirmed with the present

DNS data where only the highest three simulations reveal a

universal velocity profile.

A similar analysis is suggested for the case of natural

convection before it is extended to mixed convection.

CONTRIBUTION TO PHYSICAL UNDERSTANDING

During the postprocessing of a DNS the auto-correlation

functions Rii(x) = ui(x0)ui(x0 + x) and its spectral trans-

forms, the energy spectra, can be analyzed. As a criterion

that the resolution is high enough, the range of the energy

spectra should extend at least three orders of magnitude,

thus capturing the cascade process of turbulent kinetic en-

ergy.

Dissipation in this context more or less is only a vague

concept which illustrates the transfer of kinetic energy to the

smaller turbulent scales where it finally dissapears. What

exactly is dissipation in mathematical terms?

In turbulence models of RANS simulations the term

−
(

∂u′

j/∂xi

)2
is referred to as the dissipation of turbu-

lent kinetic energy. Since this term is always negative it

acts as a sink in the transport equation of k. A common

(mis)conception would consequently be to add the dissipa-

tion due to the mean velocity field to this dissipation of

turbulent kinetic energy in order to achieve the over all

dissipation rate. This, however, is only the so-called pseudo-

dissipation.

Instead, the real dissipation appearing as a source in the

thermal energy balance and hence, transforming kinetic into

thermal energy is slightly different. If the dissipation is taken

into account correctly then Eq.(3) must be modified.

With dissipation included as a source of thermal energy,

a sink due to buoyant acceleration of the flow must be con-

sidered as well, in order to fullfill the overall energy balance.

Since for pure natural convection, for example, no net heat

is produced inside the channel, the heat fluxes through both

walls then have to be the same. The extended thermal

energy equation including all these effects now reads (c.f.

Eq.(3))

∂θ

∂t
+

∂ (uiθ)

∂xi
= Kθ

∂2θ

∂x2
i

− EcKgθujgj

+EcKu
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)2

(6)

A more general concept to account for irreversible pro-

cesses based on a second law analysis (SLA) should link the

dissipation to the entropy production in the flow field. Dissi-

pation in Eq.(6) basically is the term Ṡ′′′

D which contributes

to a nondimensionalized entropy production rate:

Ṡ′′′ =
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)2

︸ ︷︷ ︸

Ṡ′′′

D

+
ε

EcPr

(

∂θ

∂xi

)2

︸ ︷︷ ︸

Ṡ′′′

C

(7)

The local entropy production rate can be integrated over

the whole domain to compute the overall entropy production

rate.

Ṡ =

∫

V

Ṡ′′′ dV (8)

If the entropy production is evaluated for RANS compu-

tations it must be splitted into a mean and a turbulent part,

for details see Herwig and Kock (2007).

Ṡ′′′

D,C = Ṡ′′′

D,C
+ Ṡ′′′

D′,C′ (9)

Fig.4 illustrates the time averaged and nondimensional-

ized mean and turbulent parts of the entropy production

rates across the channel for forced convection at ReDh =

32000.
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Figure 4: Time and spatial averaged (x and z directions)

entropy production rate due to dissipation Ṡ′′′

D and heat

conduction Ṡ′′′

C splitted into a mean and a turbulent part

at ReDh = 32000

As expected the entropy production due to the mean

values has its peaks at the walls where the mean gradients

are steepest. Also, the maxima of the entropy production

due to turbulent dissipation Ṡ′′′

D′
is located at the walls, al-

though not as high as its mean counterparts. In the middle

of the channel both contributions to entropy production due

to dissiaption have a local minimum. This is different for the

entropy production due to heat conduction since Ṡ′′′

C′
takes

a local maximum on a fairly low level. In contrast to the

entropy production due to dissipation this local maximum

is much higher than its mean counterpart Ṡ′′′

C
.

According to Eq.(7) the graphs of dissipation and con-

duction cannot be compared directly as it remains to choose

ε = ∆T/T and the Eckert number Ec = u2
ref/(cp∆T ) as

well as the Prandtl number Pr. In fact, one key aspect of

entropy production is the temperature level apearing in ε at

which thermal energy is produced and conducted.

Now, the integrated local entropy production due to dis-

sipation Ṡ′′′

D is directly linked to the kinetic energy losses

of the flow, i.e. the total pressure drop, as it represents

the transformation of kinetic into inner energy. Hence, after

some mathematical manipulations the friction factor based

on entropy production follows (c.f. Herwig et al., 2008).

λf,s =
16

ReDh

∂

∂x

(

Ṡ
D

+ ṠD′

)

(10)

=
16

ReDh

1
∫

−1

Lz
∫

0

(

Ṡ′′′

D
+ Ṡ′′′

D′

)

dz dy (11)

After inserting Eq.(8) into Eq.(10) it turns out that dif-

ferentiation and integration with respect to x cancel.

With Eq.(11) the friction factor λf,s can be computed

by integration over the time averaged local dissipation rate.

These results can be compared to the friction factors λf,w

of the three highest Reynolds numbers from the previous

section, see Tab.3.

The small relative error demonstrates the good agree-

ment with the standard procedure of evaluating the wall
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Table 3: Comparison of the computed friction factors based

on the wall shear stress (λf,w) and the local entropy pro-

duction due to dissipation (λf,s)

ReDh λf,w λf,s rel. error

32000 0.02511 0.02466 1.8 %

37333 0.02413 0.02372 1.7 %

42667 0.02328 0.02292 1.5 %

shear stress. It is interesting to see how the error in Tab.3

decreases while the Reynolds number increases. This is due

to the fact that for the higher Reynolds numbers the flow

domain was slightly better resolved as it follows from ∆x+

and ∆y+w in Tab.2. Thus, a better resolution of the small-

est turbulence scales is achieved such that their contribution

to the dissipation can be considered. At ReDh = 10667, for

example, the relative error is only 0.08%, since the flow field

resolution is almost twice as good as for the highest Reynolds

number in Tab.2 and 3. For ReDh = 10667 step sizes are

∆x+ = 8.40 and ∆y+
w = 0.05.

This behavior also explains, why the friction factor λf,s

is always smaller than λf,w when the resolution is not high

enough to capture the smallest scales. This in turn can be

used as a benchmark cross check for a proper resolution.

For the assessment of the two contributing parts,

mean and turbulent dissipation, it is noted that both

integral values are of the same order of magnitude and for

ReDh = 42667 are almost identical.

A time and/or spatially averaged entropy production

rate does not reveal anything about the time depending

physics. Therefore, the following two maps illustrate the

two-dimensional distribution (in a x, y-plane) of both, the

entropy generation due to dissipation and heat conduction

at a certain time step of forced convection at ReDh = 32000.

Regions of low entropy production are blue and those of high

entropy production are red. In streamwise direction only

half of the solution domain is shown.
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Figure 5: Entropy production due to dissipation at a certain

time step for forced convection at ReDh = 32000

Both figures reveal the well known wall bounded elon-

gated structures of a turbulent shear flow. For entropy

production due to heat transfer those structures appear even

in the center of the channel. The structures close to the

wall for the entropy production due to dissipation and heat

conduction show some similarity which demostrates the con-

nection of the two contributing mechanisms. This is due to

the fact that steep temperature gradients an hence high en-

tropy production due to heat conduction occur where fluid
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Figure 6: Entropy production due to heat conduction at a

certain time step for forced convection at ReDh = 32000

is strongly convected to a region of different temperature.

The regions of high dissipation are very small and wall

bounded but do not show a streamwise connection. Instead,

even close to the wall regions of high dissipation coexist

next to regions of low dissipation. The same applies to the

entropy production due to heat conduction, however, with

lower extreme values as Fig.4 has already shown.

In order to convey a better three dimensional image of

the locally distributed entropy production rate, Fig.7 illus-

trates the distribution of a certain iso-value of the entropy

production due to dissipation. Again, only half of the so-

lution domain is shown in streamwise and only a third in

spanwise direction.

Figure 7: Iso-surface of an arbitrarily chosen isovalue of the

entropy production due to dissipation in forced convection

at ReDh = 48000

The iso-surfaces of dissipation are in fact three dimen-

sional structures which follows from the different visable

shapes at the two walls. Close to the wall the iso-surfaces

seem to be smoother and streamwise orientated. Closer to

the center the isosurfaces become rougher and complex in

their structure showing much more similarity to the struc-

tures already identified in Fig.5 and Fig.6.

The structures of the local entropy production rate due

to dissipation in Fig.7 are related to the isosurfaces of vor-

ticity, not only mathematically but also visually as Fig.8

demonstrates.

Correspondance is cleary seen, especially for the iso-

surface facing the wall. Although, the structures seem more

tube-like, bigger and less smooth. However, the two isoval-

ues for entropy production and vorticity were chosen abri-

traily in order to have visible structures in the same region

of the channel. Modifications of the iso-values do change the

shape and size of the structures.
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Figure 8: Isosurface of an arbitrarily chosen isovalue of the

vorticity |∇ × u| for forced convection at ReDh = 48000

CONCLUSION AND OUTLOOK

The two limiting cases of mixed convection for the ver-

tical channel with constant but different wall temperatures

were examined. It could be shown that the results from our

code for both, forced and natural convection agree very well

with the DNS data from literature.

Especially our DNS data for natural convection re-

vealed some shortcomings of the reference data and demon-

strated the ability to compute the contributing terms of the

Reynolds stress budgets with high accuracy.

In the case of forced convection the friction factor λf

was used as a comparison parameter. Very good agreement

to other DNS data was shown. A clear tendency of our

own data for λf in the range of low to moderate Reynolds

numbers (Reτ = 66 − 575) appears, with λf on a straight

line for Re → ∞ in the “Moody chart”. In order to investi-

gate forced convection without the influence of low-Reynolds

number effects, Reτ should be above 400.

A similar analysis for natural convection must be

performed as well, using the Grashof number Gr as the

crucial parameter. With parameters above the “critical

values” the analysis of mixed convection is expected to

be free of low-Reynolds number effects, too, although the

stabilizing and destabilizing mechanisms encountered in

mixed convection may be responsible for a more complicated

behavior of the flow.

The concept of a second law analysis for mixed convec-

tion was introduced as a valuable tool for the assessment of

convective heat transfer problems. The governing equations

were not yet modified although the computed dissipation can

be easily carried over as a source term to the thermal energy

balance. For the consistency of the overall energy balance it

was shown that when buoyancy is involved the production

of kinetic energy, which acts as a sink term in the thermal

energy balance, must also be incorporated.

As a first example for the significance of the entropy

production rate it was shown how the friction factor for

forced convection can be deduced from the integrated lo-

cal entropy production due to dissipation. The results were

compared to the traditional way using the wall shear stress

and showed good agreement with an error of 1.5% for the

highest Reynolds number presented in this paper. The fric-

tion factor λf,s was always smaller than λf,w which is due

to the still insufficient resolution of the smallest turbulent

scales in the present DNS data.

The relation between the dissipation rate and the ab-

solute value of the vorticity was illustrated qualitatively as

their mathematical representations already suggest this sim-

ilarity. Finally, the structures of the entropy production rate

due to dissipation and heat conduction were compared. It

was shown that in both cases elongated coherent structures

exist. The entropy production rate due to heat conduction,

however, is not as much concentrated in the near wall region

as the entropy production due to dissipation.

With our approach to analyse turbulent mixed convec-

tion flows with the tools of DNS and second law analysis

(SLA) we hope to further contribute to the modelling and

understandingof complex turbulent flows in the near future.
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