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ABSTRACT

Flows past rough surfaces are different from those past

smooth walls and have been, in the past, studied exper-

imentally because of their importance in several practical

applications. Three regimes were observed, laminar, fully

turbulent and transitional. The first one does not present

any difference with that for smooth walls. In the second

one has been observed experimentally that the resistance

does not depend on the Reynolds number. A confirmation

of this behaviour by DNS is not presently available, however

the DNS has been used to understand the physics of rough

flows. In particular it has been shown that the normal to

the wall velocity fluctuations (u2) play a fundamental role.

In the present study the transitional regime, where the re-

sistance depends on Re and on the shape of the obstacles,

has been studied by DNS, and has been confirmed that also

in this regime u2 at the plane of the crests is the critical

quantity.

INTRODUCTION

Nikuradse [1933] in his landmark paper on turbulent

rough walls recalled the experimental results by Darcy [1858]

and other scholars. The friction factor Cf appears in the

Darcy formula which gives the resistance for any kind of

conducts. To generate a chart with Cf in a function of

ǫ/D (ǫ is a quantity representative of the roughness and D

is the pipe radius) and the Reynolds number Re = UD/ν,

in the past, a large number of experiments were designed.

Moody [1944] reported that Pigott [1933] analysed 10, 000

experiments in real pipes and that Nikuradse [1933] cre-

ated artificial rough pipes. From these data von Karman

[1931] derived theoretical formulae for the friction factor in

the laminar (Cf = C/Re) and in the fully turbulent regime

(Cf = 1./(1.14−2log(ǫ/D))2). However, von Karman [1946]

in a different paper reported his clear vision of the near wall

turbulence. At Pg.31, he wrote ”the frictional resistance in

smooth pipes can be regarded as a fictitious combination of

resistances that correspond to the individual kinds of vor-

tices. Assuming that a relationship exists between size of

vortices and roughness.” With today’s knowledge this sen-

tence means that to have a turbulent flow the near wall

vortical structures must be generated and the roughness al-

lows to vary their shape.

Nikuradse [1933] presented a large number of measure-

ments in circular ducts with walls covered by sand grain;

he showed that by plotting the friction factor versus the

Reynolds number, three regimes are encountered: at low

Re, the friction follows the law of laminar smooth walls, and

does not depend on the roughness, at high Re, the friction

depends on the kind of roughness, and not on Re. In the

transitional regime, the friction depends on Re and on the

kind of roughness. Moody [1944] wrote that the Nikuradse

results in two regimes were satisfactory, and, instead, that

these were not adequate for the transitional regime. This

regime was analysed in detail by Colebrook & White [1937],

concluding that the sharp transition observed by Nikuradse

[1933] was difficult to reproduce. They suggested that the

individual protuberances should play a role, and that a grain

begins to contribute to the resistance when the local speed is

large enough to shed eddies behind the obstacle. Colebrook

& White [1937] from their results found a threshold value

of the size of the grain in wall units equal to 14, which is

comparable to the size of the streamwise vortices in the wall

region of turbulent flows past smooth walls. At that time

the physical interpretation was qualitative for the difficulty

to perform detailed measurements. Bandyopadhyay [1987]

was interested in the transitional regime of rough boundary

layers, in particular for ”k” type roughness observing that

a fully turbulent regime is achieved when k+ > 40 (k is the

height of the square bars). The Direct Numerical Simulation

can be a useful tool to understand the physics of transitional

rough walls. The DNS, in fact, in the last years demon-

strated its capability to produce a better comprehension of

the fully turbulent regime, as it was shown by Leonardi et

al. [2003a].

Regards the fully turbulent regime Nikuradse [1933] in-

troduced the equivalent height KS which is a quantity with-

out an exact physical meaning, but useful and necessary for

a good fit of the experimental data by the simple expression

U+ = 8.48+5.75 log((y + δ)/KS), 5.75 = log10/κ. (1)

Several years later, for rough surfaces of simple shape, as

square or two-dimensional rods, a classification of rough

surfaces as ”k” and ”d” type was introduced by Perry et

al. [1969]. In addition attempts were made to express the

roughness function through a combination of geometrical

parameters. We believe that it is important, as suggested

by Belcher et al. [2003], to find a better parametrisation

for rough surfaces, in particular dealing with real rough

flows, as those in turbine blades, or in micrometereologi-

cal applications. In predicting real flows, turbulence models

are required, therefore, a better parametrisation could be

achieved through the variables in the turbulence models, for

instance the Reynolds stresses. These statistics, at the sur-

face of the roughness, or better near the interface between

the roughness and the flow depend on the shape of the sur-

face. In a laboratory is rather difficult to measure the three

velocity components, because the hot wire or the laser beam

can not be located at the plane of the roughness crest. The

measure of the other quantities, for instance the vorticity

components and the pressure are even more difficult. The

comprehension of all the details of the near wall physics re-

lies on the DNS at low Reynolds number, but the DNS must

be validated.

Orlandi et al. [2006] validated the numerical simula-

tions by a comparison of the pressure distribution on two-

dimensional rods, with that measured by Furuya et al.
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[1976]. Experiments were also designed (Burattini et al.

[2008]) to perform a detailed comparison of the statistics

profiles and even of the spectra at low and high Reynolds

number and the results were satisfactory. Regarding the

flow physics, Leonardi et al. [2003a] explained why max-

imum drag is achieved for square bars at w/k = 7 (w is

the separation between the square bars and k is the height

of the elements). Moreover, Orlandi et al. [2003] demon-

strated that, the normal velocity distribution on the plane

of the crests is the driving mechanism for the modifications

of the near wall structures. The preliminary results were

suggesting that, a new parametrisation for rough flows could

be obtained by ũ′

2
|w, with ũ′

i = 〈u′2
i 〉1/2. (angular brack-

ets 〈〉 indicate averages in the homogeneous directions and

in time, and |w values at the plane of the crests). A con-

tinuous transition between smooth (ũ′

2
|w = 0) and rough

walls (ũ′

2
|w 6= 0) is then reached, avoiding the sharp tran-

sition between ”k” and ”d” type rough surfaces. A useful

parametrisation to be effective should lead to an expression

for U+, similar to Eq.(1), but KS should be substituted by

a quantity with a physical meaning, for example, a quan-

tity controlling the near wall vortical structures. To have

a wide validity the law should be verified for a large num-

ber of different rough surfaces; Orlandi & Leonardi [2006]

for two- and three-dimensional roughness found a very good

correlation between the roughness function ∆U+ and ũ′

2
|w.

This roughness function is different from that introduced by

Hama [1954], as explained by Orlandi & Leonardi [2008],

due to the different assumptions in the effective origin. A

very simple formula relating Ũ+ to y+ and ũ′

2
|w was given

in that paper.

It is important now to understand whether the ũ′

2
|w can

be an useful quantity to state when the transition between

laminar and turbulent regimes occurs. This transition de-

pends on the shape of the protuberances and the sand grain

rough surfaces of Nikuradse [1933] are not appropriate, also

for the lack of reproducibility. As done by Schlichting [1936)]

three-dimensional elements of simple shape are considered.

To understand even better the reasons of the transition iso-

lated elements are inserted in one wall of the channel. The

elements are not completely isolated because of the peri-

odic conditions imposed, and it has been observed that the

density distribution can play a role (Leonardi & Castro this

proceedings). Isolated protuberances, however, show the for-

mation of the near wall vortical structures and by varying

the Reynolds number has been noticed that the Cooleridge

& White [1937] observations were reproduced. An interest-

ing relationship between the friction velocity and ũ′

2
|w can

be obtained. A solid obstacle is very common to promote

the transition in boundary layers, and as it was postulated

by von Karman [1946] this disturbance allows to understand

the nature of turbulent friction.

Regards the transition from a laminar to a turbulent

flow the DNS could give insights. For instance to create

a turbulent flow in a channel or in a circular pipe usually a

laminar Poiseuille velocity profile is assigned with random

disturbances superimposed. This condition should gener-

ate the near wall structures. If the DNS uses a fine grid,

the turbulent kinetic energy, initially distributed in all the

scales, is dissipated, and the flow remains laminar also at

high Reynolds numbers. By decreasing the resolution the

dissipation decreases, and, then, the energy at the energy

containing scales is sustained and the near wall structures

form. At this point the resolution can be increased to per-

form a full DNS at the desired Reynolds number. To be

clear in order to have a fully turbulent flow it is important

to find a way to generate the streamwise vortices. This has

been shown by Orlandi [2008] by temporal evolving sim-

ulations in channels and circular pipes, in an attempt to

reproduce the Osborne Reynolds [1883] experiment. In the

present study it has been shown that the DNS of channels

with solid elements lead to fully turbulent flows without us-

ing the strategy before described.

Returning to the fully turbulent regime it is worth men-

tioning the different results obtained by the DNS which

contributed to a better comprehension of the complex flow

physics. The group in Roma produced a large number of

papers by analysing the influence of rough surfaces and

the differences between two- and three-dimensional surfaces.

Bhaganar et al. [2004] considered an egg cartoon surface,

that produces weak disturbances on the near wall structures,

and as a consequence these remain coherent in the stream-

wise direction. Sen et al. [2007] by the Proper orthogonal

decomposition method (POD) reached the same conclusions

of Orlandi et al. [2006] that the roughness promote a tur-

bulence isotropization in the near wall region. Coceal et al.

[2006] considered staggered cubes, and by imposing free-slip

conditions on the upper surface, they intended to reproduce

flows close to those over urban roughness. Leonardi & Castro

(in this proceedings) are analysing the effect of the density

distribution of the cubic elements, explaining why there is a

peak on the form drag.

Rough channels require a reduced amount of computa-

tional power with respect to boundary layers, this is the

reason why only few simulations are available for boundary

layers, and in particular those by Lee & Sung [2007]. Due

to the high computational cost these authors considered two

dimensional square bars with a ratio w/k = 7, the configura-

tion which Leonardi et al. [2003a] found that was generating

the largest form drag. Lee & Sung [2007] observed a reduc-

tion of the Reynolds stress anisotropy near the roughness as

in rough channels (Leonardi et al. [2004]), and they con-

cluded that the reduction depends on the type of roughness.

The square bars with w/k = 7 can be considered by follow-

ing the Perry et al. [1969] definition of ”k” type, then it

can be asserted that for ”k” type roughness the isotropiza-

tion is strong. For the ”d” type geometries the structure

anisotropy does not differ from that of smooth walls, and

this was found by the Ashrafian & Anderson [2006] DNS.

Leonardi et al. [2007] by analysing in detail the difference

between ”k” and ”d” type roughness, concluded that the dif-

ference between ”d”-type and ”k”-type roughness is related

to the relative magnitudes o the frictional and pressure drag.

The classification of the roughness into two classes is inade-

quate, instead the parametrization before mentioned, linking

the ∆U+ to the ũ′

2
|w allow to consider any kind of fully tur-

bulent flow, including the smooth wall with ũ′

2
|w = 0.

From the results above mentioned it is clear that I be-

lieve that the DNS is a very efficient tool to study the flow

physics near rough surfaces. This holds for smooth walls

as it was demonstrated by del Alamo et al. [2004], but in

these circumstances there is a strong Reynolds dependence,

which requires a large amount of computational power. For

rough walls the Reynolds independence shown by Nikuradse

[1933]suggest that a lot can be learnt at low Reynolds num-

ber, but to understand the influence of the shape of the

roughness a large number of simulations are necessary. From

the numerical side a simple and accurate way to vary the

shape of a body is based on the introduction of the immersed

boundary technique in an efficient numerical method based

on the use of an orthogonal grid. In the last years this ap-

proach become very popular and several different versions
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are available. Peskin [1972] introduced forces in the Navier-

Stokes equations in order to have a zero velocity inside a

solid body, but spurious oscillations were generated near the

boundary. The main drawback was due to the necessity of

small time steps, and, as a result three-dimensional simu-

lations were not possible. The improvement described by

Fadlun et al. [2000] received a lot of interest for the possi-

bility to increase the ∆t making possible the simulations of

fully turbulent flows. To treat complex boundaries, in Fad-

lun et al. [2000], the velocities were set equal to zero in the

solid, and, at the points closest to the boundary, were eval-

uated by linear interpolations. This assumption, for several

flows is satisfactory because, near a solid boundary, the flow

physics implies an almost linear velocity profile. An attempt

was made to apply the linear interpolation to a turbulent

channel with smooth walls, and a constant flow rate was

not maintained. Leonardi & Orlandi [2004] modified the im-

mersed boundary technique, for constant flow rate turbulent

channels simulations with surfaces of any shape. An impor-

tant constrain, however is the insertion of this technique in

a robust Navier-Stokes solver, and the accurate staggered

finite difference scheme (Orlandi [2000]) is very appropriate.

PHYSICAL AND NUMERICAL MODEL

The incompressible non-dimensional Navier-Stokes and

continuity equations may be written as:

∂Ui

∂t
+

∂UiUj

∂xj
= −

∂P

∂xi
+Πδi1 +

1

Re

∂2Ui

∂x2
j

;
∂Ui

∂xi
= 0 , (2)

where Π is the pressure gradient required to maintain a con-

stant flow rate, ui is the component of the velocity vector

in the i direction (1 indicates streamwise, 2 normal and

3 lateral directions) and p is the pressure. The reference

velocity is the centerline laminar velocity profile UP , the

reference length is the half channel width h, hence in Eq.(2)

t is a dimensionless time, and xi are dimensionless coordi-

nates. The Navier-Stokes equations have been discretized in

an orthogonal coordinate system through a staggered cen-

tral second-order finite-difference approximation. The dis-

cretization scheme of the equations is reported in chapter 9

of Orlandi [2000]. To treat complex boundaries, in fully tur-

bulent channel flows Leonardi & Orlandi [2004] modified the

immersed boundary technique by Fadlun et al. [2000]. In

comparison with smooth channels, a large number of points

is necessary to describe the contour of the rough surface.

To maintain a constant flow rate Π, in Eq.(2), has to bal-

ance the friction and form drag. Π is evaluated during the

calculation of the RHSi (Right Hand Side) of Eq.(2). In

a smooth channel, the staggered conservative scheme fur-

nishes Π by the appropriate volume normalisation of the

sum of RHS1. In presence of rough walls, after the discrete

integration of RHS1 in the whole computational domain,

to account for the metrics variations near the body a cor-

rection is necessary. This procedure requires a number of

operations proportional to the number of boundary points,

and the flow rate remains constant within round-off errors.

In principle, there are not large differences in treating two- or

three-dimensional geometries. However, in the latter case, a

greater memory occupancy is necessary to define the nearest

points to the surface.

A possible criticism of the capability of the method to

deal with complex geometries is that, in contrast to methods

based on a body fitted coordinate system (Orlandi 1989), an

infinitely small resolution is needed. As the latter require-

ment is beyond our reach, the discrete representation of the

roughness elements introduces small scale disturbances re-

lated to the grid size, since these disturbances are generated

at a rather small local Reynolds number, they are rapidly

dissipated and therefore are not important. These small dis-

turbances in transitional flows are useful, because these are

the disturbances producing the instability.

For fully turbulent flows the quality of the numerical

method was demonstrated in Orlandi et al. [2006] by a com-

parison of the pressure distribution on the rods elements

with that measured by Furuya et al. [1976]. They stud-

ied the boundary layer over two-dimensional circular rods,

fixed to the wall transversely to the flow, for several values

of w/k. The results presented for numerical validation, ac-

counted for values of w/k = 3, 7 and 15; in addition, it is

important to point out that circular rods are appropriate for

numerical validation, due to the variation of the metric along

the circle. The pressure accounts for the form drag which,

for these values of w/k, overcomes the frictional drag. The

numerical simulations for circular rods were performed, at

Re = UP h/ν = 4200, in a channel with one wall smooth and

the other rough. The rather good agreement implies that the

numerical method is accurate and can be used to reproduce

the flow past any kind of surface. From the physical point

of view, the agreement between low Re simulations and high

Re experiments (Furuya et al. [1976]) implies a similarity, in

the near-wall region, between boundary layers and channel

flows. In addition it can be asserted that, as in fully rough

flows, (Nikuradse [1933]) a Reynolds number independence

does exist. To our knowledge this detailed comparison be-

tween the pressure distribution on two-dimensional rods in

rough boundary layers and in channel flows was never at-

tempted.

RESULTS

Transition induced by a single roughness element

Difference between isolated and not-isolated.

Colebrook & White [1937] claimed that the individual el-

ements of a rough boundary are important to understand the

differences among smooth and rough walls. The anisotropy

of smooth walls can be appreciated by the vertical pro-

files of the vorticity rms, which show the generation of

the streamwise (ω1) and normal (ω2) components. From

flow visualisations it has been observed an alternation of

positive and negative longitudinal streaks of ω2, which are

longer than those of ω1. Theoretical and numerical study

described the formation of these structures starting from

optimal disturbances, which, depending on the amplitude of

the disturbance, can lead to linear or non-linear amplifica-

tions. In a laboratory a non-linear transition can be obtained

by inserting a small solid element on a wall, which generates

longitudinal vortices. These vortices depend on the inlet

velocity profile and on the shape of the element. Several ex-

periments can be found in the literature; one of the last by

Velte et al. [(2008] considered a boundary layer as the in-

coming flow. In the present simulations a laminar Poiseuille

velocity profile is imposed which produces a weak horse-

shoe vortex around the solid element on the lower wall. The

strength of the horseshoe vortex increases by increasing the

size of the obstacle and the Reynolds number. This has been

demonstrated by the Kwang & Yanga [2004] DNS of flows in

a channel with a cubic obstacle on a wall. In rough flows the

flow structures generated by an obstacle interact with those
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Figure 1: a)Positive contribution to the friction measured by

the sum of ω3|w of opposite sign with respect to that of the

incoming flow, b) negative contribution; large symbols for

non-isolated, small for isolated elements, squares indicates

cubic obstacles, circle cylinders, and triangle prisms.

produced by another obstacle. Numerically this interaction

is reproduced by imposing the periodicity in the stream-

wise direction. The comparison of the periodic simulations

with those obtained by inlet outlet boundary condition in a

box of same length allows to understand the importance of

the interaction. In fact at a certain Reynolds number these

vortices attain sufficient extension to modify the basic flow

impinging on the successive obstacle. We have considered

three different planar geometries: square, circle and a tri-

angle with the wedge pointing upstream all having height

k = 0.2. Three bulk Reynolds numbers Reb = Ub2H/ν were

assumed 2500, 3500 and 4500, the simulations lasted for 24

time units. The lateral dimension of the channel are 4π × π

and the elements were described by a grid of 16× 16 points.

The contour plots of ω3 on the bottom wall show the ef-

fects of the obstacle on the friction drag distribution. ω3|w
corresponds to the wall shear stress, usually visualised in

a laboratory by oil streaks. The integral of this quantity

on the wall surface shows whether the presence of the ob-

stacle produces an increase of the friction drag. Indeed, it

has been found that on the opposite smooth wall, for the

three obstacles, there is no influence of the obstacle at any

Reynolds number and the viscous drag is that due to the

parabolic incoming profile (FS = 2). The obstacle on the

lower wall generates flow reversals with a change of sign for

ω3|w. Fig.1a shows that the favourable friction F+

R increases

with Re and depends on the shape of the obstacle. FR ac-

counts only for the viscous drag. The small values of F+

R are

due to the small areas of flow reversals. This figure in addi-

tion shows that there is a large difference between isolated

(small symbols) and not-isolated (large symbols) elements,

in the latter case the strength of the flow reversal is greater

due to the disturbances of one element on the other. Even

if the horseshoe vortex in front of the cube is bigger than

that in front of the prism, the value of F−

R for the cubic

elements is smaller than that for the prism. This can be un-

derstood by the ω3|w contours in Fig.2a and Fig.2c. These

figures show also that the recirculating regions behind the

obstacle are bigger for the prisms than for the squares. The

region of back flow behind the obstacle are generated by the

strong vorticity layers near the vertical walls of the obstacle,

which for the prism are stronger due to the flow accelera-

tion from the stagnation point. From Fig.2a and Fig.2c. it

is clear why, for not-isolated prisms, in Fig.1b F−

R is bigger

than for the not-isolated squares. Fig.2b and Fig.2d for iso-

 

 
 

 

 
 

 

 
 

 

 
 

Figure 2: Distribution of ω3|w on the wall in a small region

around the prism a) b) and the square c) d); a) c) isolated,

b) d) not-isolated: solid negative ∆ω3|w = −2 for −32 <

ω3|w < −4, dashed negative ∆ω3|w = −2 for −3 < ω3|w <

−1, dotted positive ∆ω3|w = 2 for 2 < ω3|w < 32.

lated vortices explain why in this case there is a geometry

independence of F−

R at any Re.

These results show that the critical Reynolds number

depends on the incoming conditions, and that without

disturbances the transition is delayed. The formation of

streamwise vortices at a certain distance from the wall is

a satisfactory way to detect whether the flow is laminar or

turbulent. In the cases here analysed has been observed

that at Re = 3500 for the triangular not-isolated elements

in the region above the obstacle elongated structures of ω2

form. These structure for the cube are weak and without the

undulations necessary for the transition. From these simu-

lations it can be concluded that for periodic distributions of

solid elements the transition to turbulence is enhanced, and

that the shape of the elements is important. In the next

section the three regimes investigated by Nikuradse [1933]

are discussed together with the influence of the shape of the

elements.

Single elements

Elements of different shape with height and lateral side

k = h/H = 0.2 have been inserted in a channel with the

upper wall at x2 = 1 and the lower wall at x2 = −(1 + k).

At t = 0 the flow is above the elements, its Reynolds number

defined as Re = HUP /ν has been varied from Re = 1500

(laminar for all geometries) to Re = 9600 (fully turbulent).

At this Re even if the resolution is marginal, a difference

with the results at Re = 4500 can be appreciated. The

elements considered are cylinders (C), cubes (S), forward

prisms (Pf ), backward prisms (Pb), transverse wedges (Wt),

longitudinal wedges (Wl) half transverse wedges (Ht). In the

transitional regime a first idea of the passage from laminar

to turbulent flows is given by the time history of the friction

velocity on the smooth wall (uτS
) and on the rough wall

(uτR
). uτR

accounts for the viscous and form drag and can

be evaluated by u2
τR

≈ u2
τS

+ (2 + k)|Π|; Π is the mean

pressure gradient maintaining the flow rate constant. This

expression has been derived by assuming that the volume

of the solid element is negligible with respect to the volume

filled by the fluid. To understand whether the flow remains

laminar or becomes turbulent it is convenient to plot the

time histories of the friction coefficient FS = ReuτS
and

FR = ReuτR
. For laminar flows at any Re FS = 2. At
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Figure 3: Time history of the friction factor on a) the smooth

and b) on the rough wall: • cylinder, �cube, Nback prism

, Hhalf transversal wedges, Re = 2500, Re =

3000, Re = 3500, Re = 4500, Re = 9600.

t = 0 FR = 0, it grows in time and for the laminar regime

remains independent from Re and from the shape of the solid

elements. These two quantities clearly show a large increase

of the drag when the flow becomes turbulent.

Fig.3a shows that for any kind of geometry the flow re-

mains laminar up to Re = 2500. A sharp increase of FR

indicates that transition occurs at different times and dif-

ferent Re, depending on the type of elements. The obstacle

with a longitudinal wedge remain laminar for Re = 4500,

implying that very small fluctuations of u2 are produced by

this element (the values are not reported in Fig.3). For Ht

at Re = 3000 the flow becomes turbulent indicating that the

flow acceleration in the ramp produces high fluctuations of

u2 which excite the formation of streamwise vortices in the

layer above the element. These fluctuations perturb the op-

posite smooth wall, and Fig.3b shows that the flow becomes

turbulent also at this low Re number, when it is rather diffi-

cult to generate a fully turbulent flow in a channel with two

smooth walls. At Re = 3500, for Ht transition occurs at an

early time. The simulations at Re = 4500 and Re = 9600

show that the square (S) is more unstable than the cylinder

(C) and the forward prism (Pf ).

According to Orlandi & Leonardi [2008] the driving

mechanism of the roughness is ũ′+

2
. Then it is interesting to

investigate whether also the transition can be related to ũ′

2
.

In the channels above described the lower wall can be con-

sidered a smooth wall with a localised periodic disturbance,

which is different from the distributed disturbances consid-

ered by Orlandi & Leonardi [2008]. For the simulations in

Fig.3, and for several others, at t = 400 ũ′

2
has been evalu-

ated at the plane of the crests, and it has been normalised

with respect to uτR
. Fig.4a shows that this quantity up to

Re = 2500 remains small, and when the transition occurs,

it jumps to higher values tending to 1 by increasing Re. In

this figure are also reported the values of the maximum of

ũ′+

2
in a fully turbulent channel with two smooth walls at

Rτ = 150, 180, 290 and 580. From this figure it can be con-

cluded that ũ′+

2
can be considered the driving mechanism to
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2
versus Reynolds number, b) ũ′+
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Figure 5: ω2 contours in horizontal planes at Re = 9600

for the cylinder at: a) x2 = 0.95 t = 300, b) x2 = −0.976

t = 300, c) x2 = −0.976 t = 100, d) square at x2 = −0.976

t = 100; δω2 = 2.

produce the near wall vortical structures in wall turbulence.

Colebrook & White [1937] claimed that the flow becomes

turbulent when k+ > 14. Fig.4b shows that our simulations

confirm they observations; together with Fig.4a it can be as-

serted that to promote the transition it is necessary to insert

an obstacle on a wall, the transition can be detected by a

jump in ũ′+

2
. By increasing the Reynolds number if k+ > 14

the flow becomes turbulent. The fully rough regime is es-

tablished for k+ > 40 with a rather good independence on

the shape of the obstacle. The time signals on the two walls

in Fig.3 indicate that near the rough walls higher frequen-

cies are generated than those near the smooth wall, implying

that the vortical structures near the rough wall are smaller.

The formation of the near wall structures by the solid

elements can be visualised by the contour plots of ω2 in hor-

izontal planes at x2 = −0.976 a location close to the top of

the elements. At Re = 9600 the grid may not resolve all the

turbulent scales; however, Fig.5a shows that the energy con-

taining scales, related to wall streaks near the smooth wall

at x2 = 0.95 are well resolved. It has been verified that the

separation of the streaks is equal to 100 wall units. Fig.5b
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Figure 6: ω2 contours in horizontal planes for the half

transversal wedge at x2 = −0.976 and t = 300 for: a)

Re = 4500, b) Re = 3500, c) Re = 3000, d) Re = 2500,

δω2 = 1.

shows that, at Re = 9600, the cylindrical element generates

shorter structures indicating a sort of turbulence isotropiza-

tion near the rough surface. At this Re and at t = 100 it

was found (Fig.3) that the sharp transition was not initiated,

however, Fig.5c shows that the disturbance produced by the

element are spreading, and that, at a certain distance, are

clustered in a sort of turbulent spot. This complex struc-

ture travels and grows and in a short time fills the whole

domain, at this point the transition ends and the fully tur-

bulent regime is reached. From Fig.3 it can be speculated

that at t = 200 the flow should not differ qualitatively from

that at t = 300 and this has been observed by ω2 contours

not reported for lack of space. On the other hand, it has

been found that at t = 100 the cubic element produces dis-

turbances with a wider spreading (Fig.5d) in agreement with

the early jump of FR and FS in Fig.3. The isotropization

of the structures has been observed for the cubic element at

t = 200 and t = 300. These flow visualisations indicate that

there is an effect of the shape of the elements on the values

of the transition Re number.

The effects of Re on the shape of the structures formation

can be analysed by visualisations of the flow past the Ht

obstacle at Re = 4500, 3500, 3000 and Re = 2500 at t =

300. Fig.3 shows that, at Re = 2500 the transition does not

occur, at Re = 4500 transition occurs before t = 300, and

that at Re = 3000 the jump in FR starts at t = 300. The

visualisations can explain this behaviour, in fact at Re =

2500, in the laminar regime, (Fig.6d) the element generates

a small amount of ω2 that decreases in the x1 direction for

the effect of the viscosity. The associated u′

2
fluctuations are

weak and do not disturb the incoming flow. By reducing the

viscosity (Re = 3000) the structures survive, spread and at

t = 300 are weak and large (Fig.6c). At a later time these are

thinner and similar to those produced at Re = 3500 (Fig.6b).

The proof that the structures at t = 400 and Re = 3000 and

those at t = 300 and Re = 3500 do not largely differ is given

by the almost equal value of the resistance in Fig.3b. The

small difference can be related to the greater intensity behind

the elements and to the longer persistence. At Re = 4500 the

tendency to form isotropic structures is depicted in Fig.6a.

Laminar and turbulent flows in wall bounded flows are

characterised by a different friction factor Cf = 2(uτ /Ub)
2

as a function of the bulk Reynolds number Reb = UbH/ν.

For laminar flows Cf = 12/Reb, instead for fully turbu-

lent flows the more accepted law is Cf = CRe
−1/4

b
, with

C ≈ 0.07; in the latter regime different laws were proposed

(Patel & Head [1969]) which depend on the length of the

channel before the measuring station. The transition be-
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 1000  10000

C
f
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Figure 7: The resistance coefficient in function of the bulk

Reynolds number for channels with smooth walls. �fully

turbulent finite differences, ♦fully turbulent pseudospectral

del Alamo et al. (2004), △transitional with fully turbulent

at t = 0, ▽transitional with Poiseuille plus fluctuations,

• smooth wall for channel with obstacle, �wall with obsta-

cle.

tween laminar and turbulent regimes as a function of Reb is

smooth. In the introduction it was mentioned that, for the

simulations of transition in a channel with smooth walls, two

different initial conditions can be derived by a flow field of

fully turbulent flow at Rτ = 180. One way consists on the

imposition of the fully turbulent field at t = 0 and in finding

the transition Re number by reducing the Re number. The

transition Re is found when the turbulent kinetic energy de-

cays and the laminar Poiseuille velocity profile is achieved.

The simulations should evolve for very long time because

this is a very slow process. The other way consists on the

assumption of a laminar Poiseuille velocity profile and on

the superimposition of the fluctuating field obtained by sub-

tracting the mean velocity profile from the fully turbulent

field at Rτ = 180. With this initial condition the transi-

tional Re number is found when the turbulent kinetic energy

grows. The common character of these different initial con-

ditions consists on the imposition of the structures of wall

bounded flows. As it was before mentioned these structures

are relevant, in fact by superimposing random disturbances

both on a Poiseuille or on a mean turbulent velocity pro-

file it is rather difficult to generate a fully turbulent flow.

Fig.7 shows that the transition between laminar and turbu-

lent flow is smooth, in the intermediate range of Reb, minor

differences in the values of Cf have been found, depending

on the route chosen to detect the transition. However the

two routes give the same values of Reb when the laminar and

the fully turbulent regimes are achieved. It is important to

remind that in these simulations the disturbance is given

at t = 0. In Fig.7 some of the laminar Cf (open circles)

have been obtained by two-dimensional simulations with a

Poiseuille profile and small random disturbances. The fully

turbulent Cf (open squares) are obtained by the present fi-

nite difference scheme and by the pseudospectral method of

Del Alamo et al. [2004] (open diamond). Both data agree

with the theoretical laws.

In the same figure the Cf of the channels with a solid

element show that in the laminar regime the Cf follows the

theoretical curve. To evaluate the Cf in these simulations

it should be taken into consideration that the full channel

height is 2+k, and that at t = 0 the laminar flow is above the

solid elements. The solid circles are evaluated at the upper

and the solid squares at the lower wall with the obstacle.

Fig.7 shows that for the channels with the solid obstacle

there is a sharp transition between laminar and turbulent

flows at Reb between 3333 and 3666. This different trend
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Figure 8: Contour plots of ω2 at a distance k from the plane

of the crests at Re = 2000 for: a) longitudinal wedges (Wl),

b) cubes (S), c) transversal wedges (Wt), d) cubes (S); a)

and b) at t = 80, c) and d) at t = 240, ∆ω2 = 0.5.

of Cf (Reb) for the smooth and non-smooth channels is due

to the production of fluctuations by the obstacle which are

energising the outer flow. These fluctuations are due to the

formation of vortical structures of size close to the dimen-

sions of the obstacle. These vortical structures survive only

at a certain Reynolds number, and, in particular, when their

size is comparable to the thickness of the buffer layer as it is

shown in Fig.4b. The simulations with one element explain

clearly that the transition is caused by the generation and

survival of the near wall structures. In presence of a single

obstacle we have a geometrical set-up not too different from

that of a channel with two smooth walls; this is the reason

why the friction laws in Fig.7 do not differ from those for

smooth walls. The friction laws change for rough distur-

bances uniformly distributed, as shown in the next section.

Big Distributed elements

To study the effects of a large number of elements a first

set of simulations have been performed by putting elements

with k = 0.4 and different forms in a channel of dimension

8H in the streamwise and 4H in the spanwise directions.

Since the size of the elements is comparable to the size of

the channel a low Re transition number as well as a strong

dependence on the shape of the elements is expected. Stag-

gered elements, in particular cylinders, cubes, transverse and

longitudinal wedges have been considered. These are the

same elements considered by Orlandi & Leonardi [2008] for

fully rough turbulent flows. The size should have a large

influence on the transitional process, then in the following

section the analysis is repeated for k = 0.2.

Contour plots of ω2 at a distance k from the plane of the

crests show the effect of the shape of the roughness. In fact,

for the longitudinal wedges (Wl) the disturbances emerg-

ing from the rough surface into the external field are weak

and the flow, at Re = 2000, remains laminar (Fig.8a). To

see better the vortex structures, in Fig.8, only part of the

channel in the streamwise direction is visualised. For Wl

the small disturbance are weak and these form elongated

and ordered structures which do not promote the transition

(Fig.8a). The amplitude of the disturbances produced by

the square elements (S) increases and, at the same Reynolds

number, undulations are generated (Fig.8b); these undula-

tions are the precursors of the near wall structures in fully

turbulent flows. The visualisation in Fig.8b is at t = 80

when the jump in the wall stress was starting (Fig.9a). In
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Figure 9: Time history of the resistance of: a) rough wall,

b) smooth wall; • cylinder, �cube, Ntransversal wedges,

Hlongitudinal wedges, Re = 1600, Re = 2000,

Re = 2800, for Wt at Re = 800 �, ♦Re = 1200.

agreement with the flow visualisation, Fig.9a shows that for

Re = 2000 the jump in the friction for Wl occurs at a greater

time than for the squares (S). The transverse wedge ele-

ments (Wt) at Re = 1200 (ω2 not shown) at t = 120 show

three-dimensional ordered structures that approximately at

t = 140 produce the jump in the total friction of the lower

wall (Fig.9a). This geometry, among those here considered,

gives the smaller transition Re number. When the flow is

in a fully turbulent regime the structures at a distance k do

not maintain the imprinting of the shape of the underlying

elements and become isotropic as it emerges from the com-

parison between the contours in Fig.8c (Wt) and Fig.8d (S)

obtained by the fields at T = 240.

As for the single elements the flow in a short interval of

time goes from a laminar to a turbulent regime. The insta-

bility is generated near the rough surface, and, at any Re

number, a strong interaction between the two walls occurs,

and, therefore also the upper wall becomes turbulent. The

transverse wedges produce a turbulent flow at Re = 1200

also near the smooth wall (Fig.9b). The achievement of a

turbulent flow at this low Re is peculiar, but it could be

expected because the channel can be considered a closed

system with the disturbances propagating in any point of

the field. At this low Re the structures near the smooth and

the rough regions are rather different;this differences can be

qualitatively appreciated by the different time fluctuations

of the friction coefficients in Fig.9. The higher frequency in

Fig.9a is characteristic of smaller vortical structures, which

should be more isotropic. However, in Fig.10 the ω2 visual-

isations give a more quantitative picture, where it appears

that the high viscosity produces near the smooth wall fat

ω2 contours with a large degree of anisotropy (Fig.10b).

The vortical structures are more isotropic near the rough

wall (Fig.10a). The DNS demonstrate that the disturbances

ejected from the rough surfaces reach the opposite smooth

surfaces; here, these disturbances interacting with the ap-

propriate mean shear, which depends on the Reynolds num-

ber, organise in structures that are fatter the smaller is Re
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Figure 10: Contour plots of ω2 for the transversal wedges

(Wt) at: Re = 1200 for and t = 240: a) x2 = −0.947, b)

x2 = 0.954; ∆ω2 = 0.5.

(Fig.10b). This scenario has been often suggested for the

transition, that is, that the disturbances in the outer region

are those driving the transition from laminar to turbulent

flows near a smooth wall. The near-wall structures, those

producing the wall friction, are affected by the wall bound-

ary conditions. Then, it can be asserted that, to control a

turbulent flow the action should be made at the wall, for

instance by changing the boundary condition of the velocity

components. This has been demonstrated by Orlandi et al.

[2003], where it was proved that among the three velocity

components the normal velocity is the most important to

mimic a rough surface.

The Cf versus Reb for these surfaces composed by rather

big elements indicates a different trend with respect to that

found by Nikuradse [1933]; in fact, Fig.11a shows that the

transition Re number depends on the shape of the elements.

For instance also at the low Reb = 1066 the transverse

wedges (Wt) produce a turbulent flow on both walls. On the

other hand the longitudinal wedges (Wl) up to Reb = 3000

do not lead to a transition. The square (S) and the cylin-

ders (C) produce friction factors slightly smaller than those

by the transverse wedges (Wt). However by increasing the

Reynolds number they tend to the same values. Fig.11a

shows that at low Reb the Cf of the smooth wall do not

agree with the theoretical law, but that, instead, at high

Reb the agreement is good. The different trend at low and

high Reb is a consequence of the interaction between the two

walls at low Reb. To corroborate the observation that the

u′

2
at the plane of the crest affect the transition, in Fig.11b

the profiles of ˜〈u′2
2
〉1/2, scaled by the friction velocity of the

rough wall, versus the distance from the plane of the crests

y = x2 + 1 shows that there is a threshold value. If ũ′+

2

at y = 0 does not reach a value close to 1 the flow remain

laminar. This quantity for rough flows has been suggested

by Orlandi & Leonardi [2008] to be useful to find a new

parametrization for the roughness function.

Small Distributed elements

The big elements discussed in the previous section were

useful to investigate the shape and the Re dependence. Usu-

ally in the rough surfaces studied in laboratory experiments

the size of the elements is rather small. Jimenez [2004]

claimed that to understand the interaction between inner

and outer layer H/k > 50; to perform DNS with this ratio a

very large number of grid points are necessary. For k = 0.4

this ratio is 2.5, for k = 0.2 we are still far from 50 but at

least a tendency can be analysed. For k = 0.2 a large number

of simulations were performed in a substantial wide range of

Reynolds numbers. The same shape of the elements consid-

ered in the previous section are used, but in this case further

simulations with cubes followed by transversal wedges have

been performed (this case is indicated by 2G). The Cf in

Fig.12 shows that, by reducing the size the cylinders, the

flow remains laminar up to Reb = 8000; instead, at this Reb
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Figure 12: The resistance coefficient in function of the bulk

Reynolds number for rough channels with elements of height

k = 0.2, open symbols smooth wall, closed symbols rough

wall: squares (S), circles (C), nablas (Wt), diamonds (2G),

for Wt the flow becomes turbulent. When two different kind

of obstacles are inserted the transition to turbulence occurs

at a smaller Reb (Reb = 3500). The set-up with two differ-

ent kind of elements can be considered an attempt towards

the simulations with random disturbances. The comparison

between Fig.12 and Fig.11a demonstrates that with smaller

elements the transition is delayed, and that in both cases it

seems that the transition is sharp in agreement with the

arguments by Colebrook & White [1937]. The compari-

son between the Cf versus Reb for a single (Fig.7) and for

distributed elements of same height (Fig.12) shows for the

former a smaller transition Reb. This can be explained be-

cause for the distributed elements there is of a reduction of

the fluctuating velocities generated by the elements, and in

particular of ũ′+

2
at the plane of the crests.

FULLY TURBULENT FLOW

In this section is reported the analysis by Orlandi &
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Leonardi [2008] proposing a new parametrisation for fully

turbulent rough flows. The new parametrisation intended to

relate the roughness function to a flow variable to improve

the Nikuradse [1933] parametrisation based on the equiv-

alent sand grain roughness height KS . This quantity does

not have an exact physical meaning, but it is useful and nec-

essary for a good fit of the experimental data. To find the

new parametrisation have been in large part used numer-

ical data, because of the easy evaluation of the necessary

quantities at the roughness plane of the crests. Only two

experiments were used, that by Cheng & Castro [2002] and

that by Burattini et al. [2008]. The DNS allow to measure

at the plane of the crest (ỹ = 0) the mean streamwise veloc-

ity U0 and ũ′

2
|w. The dimensionless friction velocity of the

rough surface uτR
allows to evaluate Ũ+ = (U − U0)/uτR

versus ỹ+. It was shown that for the different surfaces the

following law holds

Ũ+ = κ−1 ln(ỹ+) + B − ∆U+ , (3)

with k = 0.41, B = 5.5, and ∆U+ is the roughness function.

Orlandi & Leonardi [2008], showed that, also at low Re,

satisfactory long log-law regions are obtained, to evaluate

∆U+.

Fig.13 shows that numerical and experimental data fit

well with the relationship ∆U+ = B/κũ′+

2
|w. For values of

ũ′+

2
|w up to 0.8, the data agree well with the linear rela-

tionship, some disagreement is encountered at high ũ′+

2
|w.

In addition, Fig.13 establishes a limit on the value of the

roughness function, which can be estimated as ∆U+ ≈ 15.

Without a correction at high ũ′+

2
|w, Eq.(3) becomes

Ũ+ = κ−1 ln(ỹ+) + B(1 −
ũ′+

2
|w

κ
) (4)

which can be useful in engineering applications.

Often the measure of the friction velocity is rather dif-

ficult, therefore Eq.(4) could be used to find the friction

velocity uτR
measuring the mean velocity and the normal

to the wall velocity rms at the crests plane. Equation (4)

can be of greater help in simulations: in RANS (Reynolds

Averaged Navier-Stokes) the Reynolds stresses equations are

introduced, and often it is necessary to simulate the near

wall region (low Reynolds number turbulence closures). The

transport equation for the normal stress requires boundary

conditions at the plane of the crests. By assigning ũ′

2
|w

Eq.(4) shows that we are mimicking a particular rough sur-

face. The improvement with respect to the KS approach

consists on the fact that ũ′

2
|w enters in the system of equa-

tions. On the same grounds, ũ′

2
|w could be of help in

engineering LES, to avoid the description of the real rough

surfaces, which requires a large number of grid points, espe-

cially for three-dimensional surfaces. In these simulations,

the resolved vertical fluctuations to assign at the plane of

the crests should be evaluated through Eq.(4).

This new parametrisation suggests that profiles of statis-

tics related to ũ′

2
account for the complex physics of the

thin layer near the plane of the crests. This corroborate

the results obtained for the transitional regime where it was

demonstrated that a fully rough regime is obtained when the

peak value of ũ′+

2
is close to 1.

CONCLUSIONS

This paper is devoted to increase our knowledge of rough

turbulent flows in channels. The channels allow to reduce

the amount of computational power and the physics does

not differ from that in circular pipes or boundary layers.

The previous numerical simulations were focused on the

fully turbulent regime at intermediate Reynolds numbers.

The same numerics can be applied to increase the Reynolds

number to see whether the friction factor Re independence

observed experimentally by Nikuradse [1933] is reproduced.

To this purpose an enormous amount of computational time

is necessary also because of the necessity to perform the

simulations with different rough surfaces. Personal clusters

on the other hand allows to perform simulations devoted to

understand the transitional regime where the friction fac-

tor is Re and roughness dependent. Also in this regime

to perform the same number of numerical experiments as

those reported by Nikuradse [1933] is a rather hard task.

The study has been limited to simulations with a single and

with distributed solid elements. In the former conditions

the element is necessary to generate the velocity fluctua-

tions leading to a turbulent flow and the friction coefficient

agrees with the theoretical and empirical laws. For flows

past distributed elements has been observed that the tran-

sition from laminar to turbulent flows is sharp, that is, it

occurs at a well defined Reynolds number, which strongly

depends on the size and shape of the solid elements. In

agreement with the results for the fully turbulent regime

it has been found that the most relevant physical quantity

to promote the transition is the normal velocity rms at the

plane of crests. Only if ũ′+

2
is close to 1 it is possible to have

a fully turbulent rough flow. Flow visualisations of ω2 have

shown that near the roughness for laminar flows the vortical

structures are ordered and that for turbulent flows these be-

comes more isotropic and then are completely different from

the near wall structures near smooth walls. The simulations

of rough surfaces with a random shape is rather difficult,

but by considering a surface with two different kind of ele-

ments has been observed that the transitional Re number is

drastically reduced.
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