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ABSTRACT

Investigating the multi-point correlation (MPC) equa-

tions for the velocity and pressure fluctuations in the limit

of homogeneous turbulence a new scaling symmetry has been

discovered. Interesting enought this property is not shared

with the Euler or Navier-Stokes equations from which the

MPC equations have orginally emerged. This was first ob-

served for parallel wall-bounded shear flows in Khujadze and

Oberlack (2004) though there this property only holds true

for the two-point equation. Hence, in a strict sense there it is

broken for higher order correlation equations. Presently us-

ing this extended set of symmetry groups a much wider class

of invariant solutions or turbulent scaling laws is derived

for the decay of homogeneous and homogeneous-isotropic

turbulence which is in stark contrast to the classical power

law decay arising from Birkhoff’s or Loitsiansky’s integrals.

Beside two classical solutions two new scaling laws have

been derived. In particular, we show that the experimen-

tally observed specific scaling properties of fractal-generated

turbulence (see Hurst and Vassilicos, 2007 and Seoud and

Vassilicos, 2007) fall into this new class of solutions. Due

to this specific grid a breaking of the classical scaling sym-

metries due to a wide range of scales acting on the flow is

accomplished. This in particular leads to a constant inte-

gral and Taylor length scale downstream of the fractal grid

and the exponential decay of the turbulent kinetic energy

along the same axis. These particular properties can only

be conceived from MPC equations using the new scaling

symmetry. The latter new scaling law may have been the

first clear indication towards the existence of the extended

statistical scaling group.

MULTI-POINT EQUATION IN THE LIMIT OF HOMOGE-

NEOUS TURBULENCE

We investigate the symmetry and invariance structure

of the infinite set of multi-point correlation (MPC) equa-

tions for the velocity and pressure fluctuations u(x, t) and

p(x, t) respectively in the limit of homogeneous turbulence

(for the full equation of inhomogenous turbulence see Ober-

lack, 2000)
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where n varies from 1 to ∞. The system (1) is extended by

its corresponding continuity equations of the form

n
X

j=1

∂Ri{n+1}[i(0) 7→k(j) ]

∂rk(j)

= 0 ,

∂Ri{n+1}[i(l) 7→k(l)]

∂rk(l)

= 0 for l = 1, . . . , n .

(2)

In the latter equations the MPC tensor is defined as

Ri{n+1}
= Ri(0)i(1)...i(n)

= ui(0) (x(0)) · . . . · ui(n)
(x(n)) ,

(3)

and the four variations of it appearing in (1) are given by

Ri{n+1}[i(l) 7→k(l)]
=

ui(0) (x(0)) · . . . · ui(l−1)
(x(l−1))uk(l)

(x(l))·

·ui(l+1)
(x(l+1)) · . . . · ui(n)

(x(n)), (4)

Ri{n+2}[i(n+1) 7→k(l)]
[x(n+1) 7→ x(l)] =

ui(0) (x(0)) · . . . · ui(n)
(x(n))uk(l)

(x(l)), (5)

Pi{n}[l] =

ui(0) (x(0)) · . . . · ui(l−1)
(x(l−1))p(x(l))·

·ui(l+1)
(x(l+1)) · . . . · ui(n)

(x(n)), (6)

t is time and the correlation distance is defined according to

r(l) = x(l) − x(0) with l = 1, . . . , n . (7)

In the definitions (4) and (6) the overbar is meant to be

continued over the entire right hand side.

Similar to Navier-Stokes or Euler equation a Poisson type

of equation for the pressure-velocity correlations Pi{n}
may

be derived applying a divergence though in principle not

need for the further considerations.
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SYMMETRIES OF THE MULTI-POINT EQUATION

In the limit of |r| ≫ ηK , i.e. for length scales beyond

the viscosity dominated Kolmogorov scale (Oberlack, 2000),

we find a new scaling symmetry Gs3 of the system (1). The

system also admits the classical scaling groups Gs1 and Gs2

representing the independent scaling of space and time

Gs1 : t̃ = t, r̃i(l) = ri(l)e
a1 ,

R̃ij = Rije2a1 , R̃ijk = Rijke3a1 , · · · , (8)

Gs2 : t̃ = ea2 t, r̃i(l) = ri(l) ,

R̃ij = Rije−2a2 , R̃ijk = Rijke−3a2 , · · · , (9)

Gs3 : t̃ = t, r̃i(l) = ri(l) ,

R̃ij = Rijea3 , R̃ijk = Rijkea3 , · · · . (10)

The latter scaling symmetries are Lie groups which define

transformations that leave the differential equation under

analysis invariant if written in the new variables and inde-

pendent of the group parameters.

It is important to note that Gs3 is clearly distinct i.e. lin-

early independent from the classical scaling groups in fluid

mechanics. Interesting enough this property is not shared

with the Euler or Navier-Stokes equations from which the

MPC equations have originally emerged. Hence it is a purely

statistical property of the equations (1) and subsequently re-

ferred to as statistical scaling group (SSG).

This was first observed for parallel wall-bounded shear

flows (see Khujadze and Oberlack, 2004) though there this

property only holds true for the two-point equation. Hence,

in a strict sense there it is broken for higher order correlation

equations. In fact, the new scaling group Gs3 is due to

the linearity of (1) which arise out of the assumption of

homogeneity. At the same time linearity of (1) implies that

there is the general superposition group admitted by (1) a

property shared by all linear differential equations.

Beside the above symmetries the system (1) admits the

classical symmetry translation in time

Gt : t̃ = t + a4, r̃i(l) = ri(l) , R̃ij = Rij , R̃ijk = Rijk , · · · .

(11)

and a translation in correlation space which is also a group

not admitted by Euler or Navier-Stokes equations (and not

to be mistaken for the classical translation in space)

Gt : t̃ = t, r̃i(l) = ri(l)+ai(l) , R̃ij = Rij , R̃ijk = Rijk , · · · .

(12)

Note that the latter is broken due to the Schwarz inequality

in correlation space, e.g. for the two-point tensor for homo-

geneous turbulence Rαβ(r)2 ≤ Rαα(0)Rββ(0).

INVARIANT SOLUTIONS AND TURBULENT DECAY

SCALING LAWS

Classical theories on decaying turbulence such as

Birkhoff’s and Loitsyansky’s integral entirely rely on the

groups Gs1 and Gs2. There these two groups give rise to

a one-parameter family of similarity solution where e.g. the

turbulent kinetic energy decays and the integral length scale

increases according to a power law. The exponent is usually

settled by one of the above proposed conserved integrals.

Presently using the above extended set of symmetry

groups (8)-(11) a much wider class of invariant solutions

or turbulent scaling laws is derived for homogeneous tur-

bulence. For this we need to define an invariant solution,

usually called similarity solution, employing the following

three concepts.

(i) Any Lie symmetry group, and the groups (8)-(11)

with the group parameters a1-a4 are among those, have an

equivalent infinitesimal representation defined by

x̃ = x + ξ(x, y)ε + O(ε2) and ỹ = y + η(x,y)ε + O(ε2) .

(13)

with x and y the vector of independent and dependent vari-

ables respectively and x̃ and ỹ refer to the corresponding

variables in the transformed space, ε is the group parame-

ter and the infinitesimals of the Lie symmetry are defined as

ξ(x, y) = ∂x̃

∂ε

˛

˛

˛

ε=0
and η(x, y) =

∂ỹ

∂ε

˛

˛

˛

ε=0
. Lie’s first theorem

states that the infinitesimals are sufficient for the recovery

of the full symmetry transformation (see e.g. Bluman and

Kumai, 1989).

(ii) The condition of invariance, i.e. implementing any

symmetry transformation into its associated equation leaves

the equation unchanged written in the new variables, has an

infinitesimal correspondent. This is defined by

h

XF(x,y, y(1), . . . ,y(m))
i˛

˛

˛

F=0
= 0 (14)

with F = 0 the set of equations under investigation, here

(1), and X is given by

X = ξi
∂

∂xi
+ ηj

∂

∂yj
. (15)

(iii) Suppose the Lie symmetries of an equation are given,

as is the case here, the invariant solution θ(x) is defined

according to the condition

X (y − θ(x)) = 0 on y = θ(x) . (16)

The latter condition constitutes a hyperbolic partial dif-

ferential equation which may be solved using method of

characteristic. The corresponding ordinary differential equa-

tion
dx1

ξ1
=

dx2

ξ2
= · · · =

dy1

η1

=
dy2

η2

= · · · (17)

is referred to as invariant surface condition of Lie group the-

ory which leads to self-similar or, more general, invariant

solutions.

For the present case the infinite set of equations (1),

which in the turbulence community called scaling laws, we

obtain the invariant surface condition

dt

a2t + a4

=
dr(i)

a1r(i)

=
dR(ij)

[2(a1 − a2) + a3]R(ij)

= · · · (18)

with the group parameters a1-a4 descending from the groups

(8)-(11) and here written in infinitesimal form and the in-

dices in brackets denote no summation but instead each

component is to be taken separately.

It is important to note that any solution for an arbitrary

set of group parameters of the latter system allows for an

invariant solution of (1). Three different cases may be dis-

tinguished.

Firstly we consider the case without the new SSG (10)

i.e. a3 = 0. Further assuming a1 6= a2 and a4 6= 0 we find

the following invariants of the system (18)

r̂(1) =
r(1)

(t + t0)n
, Rij(r(1), t) = (t+t0)−mR̂ij

`

r̂(1)

´

, . . .

(19)
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with n = a1/a2, t0 = a4/a2 and m = 2(1 − a1/a2). The

variables r̂(1) and R̂ij are the constants of integration of

the invariant surface condition (18) or in other words the

invariants of the system. They are to be taken as new inde-

pendent and dependent variables of the system (1) leading

to a similarity reduction depicting the classical power law

behavior. Therein m = 6/5, n = 2/5 and m = 10/7, n = 2/7

respectively correspond to Birkhoff’s and Loitsiansky’s inte-

grals.

At this point a know sub-class of the invariant solution

(19) may immediately be derived by considering that the

scaling of space is broken a1 = 0 or in other words a symme-

try breaking constant length is acting on the decay process.

Practically this may conceived e.g. in a DNS with periodic

boundary conditions and letting the decay process proceed

in a small box of fixed size. Therewith the usual growth

of length scales, in particular the integral length scale, is

inhibited. Hence preventing of the scalability of length im-

mediately leads to n = 0 and m = 2.

For the present purpose of primarily understanding the

scaling behaviour of fractal generated turbulence we need

to consider both the breaking of the two classical scaling

groups due to external symmetry breaking quantities to be

detailed from a physical point of view below. Hence, we set

a1 = a2 = 0. Further, for the present case a non-zero a3

related to the new scaling group is need in order to allow

for the construction of an invariant solution at all. Hence,

employing the latter two informations into equation (18) we

observe two important conclusions.

First, due to a2 = 0 and combining the first and the last

term in (18) we have an exponential scaling of the two- and

MPC with time. Second, because a1 = 0 we have no scaling

of space and hence any r(i) itself is an invariant. Following

the methodology above this leads to a similarity solution for

the infinite set of MPC tensors (1) where the first term in

the row, i.e. the two-point tensor, has the following form

r̂(1) = r(1) , Rij(r(1), t) = e−t/t0Rij

`

r̂(1)

´

, . . . (20)

where Rij is the similarity variable of the reduced set of

MPC equations independent of time and t0 = −a4/a3.

In order to compare (19) and (20) to experimentally

observable one-point quantities we introduce the Reynolds

stress tensor uiuj and the integral length scale Li as func-

tionals of Rij

uiuj = Rij(r = 0, t) (21)

and

Li =
1

2K

Z

Rkk(r) dri . (22)

Employing these definitions and implementing (19) and

(20) into the latter we respectively obtain the rather different

turbulent scaling laws

uiuj ∼ (t + t0)−m , Li ∼ (t + t0)n (23)

and

uiuj ∼ e−t/t0 , Li ∼ const. (24)

where the first one is the classical algebraic decay law while

the second one corresponds to a new exponential decay law.

Note that (23) also covers the sub-class of a constant integral

length scale decay law with n = 0 and m = 2 as given above.

In Hurst and Vassilicos, (2007) it was first reported that

fractal-generated turbulence in a wind tunnel experiment

may lead to an exponential decay law for the turbulent

kinetic energy according to (24) and it was more fully consol-

idated in Seoud and Vassilicos, (2007). For certain cases they

Figure 1: Set of fractal square grids used in the wind tunnel

experiment of Vassilicos etal. 2007. tr is the scaling factor

between the largest to the smallest bar thicknesses. For the

figures above tr is given by 2.5, 5 and 8.5 - from left to right.

Figure 2: ln[(U/u)2] and ln[(U/v)2] as functions of x (in me-

ters) for all five space-filling fractal square grids revealing the

straight line in agreement with equation (24) on which the

turbulence decay curves generated by all these grids even-

tually asymptote to. tr defines the scaling factor between

the largest to smallest bar thicknesses. All results are taken

from Hurst and Vassilicos, (2007).

also find a constant integral length scale (22) (and also Tay-

lor length scale) downstream of the fractal grid. A variety

of different fractal grids were employed for the experiment

such as cross-grids, square-grids and I-grids. A set of three

different square grids are shown in figure 1. Therein tr is

the thickness ratio defined as the scaling factor between the

largest to smallest bar thicknesses.

The data for the turbulent kinetic energy and the inte-

gral length scale showing both the behaviour according to

(24) are given in figure 2 and 3. Three key results may be

taken from 2 and 3. First, we observe that only the higher

thickness ratios allow for the establishment of an exponential

decay law i.e. beginning with tr = 8.5 and higher the new

scaling laws is clearly visible. Second, the development of
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Figure 3: Longitudinal Lu and lateral Lv integral scales as

functions of x/xpeak approaching a constant downstream of

the grid. Space-filling fractal square grids at U = 10m/s in

the T = 0.46m wind tunnel have been used. tr defines the

scaling factor between the largest to smallest bar thicknesses.

All results are taken from Hurst and Vassilicos, (2007).

the exponential decay downstream of the grid becomes faster

for increasing thickness ratios and is the largest for tr = 17.

Third, the constant integral length scale downstream of the

grid appears to be less sensitive to the thickness ratio.

The physical interpretation of the latter results and in

particular the fact that for large tr the new scaling laws are

established faster are due to the fact that a broad bandwidth

of external scales have been imposed on the flow which are

symmetry breaking. In the present case we have in fact only

one scaling group of space. In the wind tunnel experiment

however the scaling of time, here denoted by a2, may be

re-interpreted as another scaling group of space due to the

relation τ = a/U where a is any fractal grid length scale and

U is the constant mean velocity in the wind tunnel.

Hence, no matter how interpreted the fractal grids im-

pose multiple scales, either time or length scales, on the

flow and this is in particular true for large tr . As a result we

observe a symmetry breaking of a1 and a2 i.e. a1 = a2 = 0

which directly leads to the given multi-point scaling law (20)

or the related one-point scaling law (24).

Beside the classical algebraic scaling laws including the

sub-class of a decay at a constant length scale and the lat-

ter new exponential scaling law for decaying turbulence, we

report another new turbulent scaling law which, to the best

or the authors knowledge, has never been observed experi-

mentally or reported from theoretical considerations.

For this we consider that there is a constant time scale,

say τ0, acting on the flow i.e. the scaling of time is broken

and hence a2 = 0. Employing the latter into the invariant

surface condition (18) and integrate it leads to the following

invariant solution for the correlation tensors

r̂(1) = r(1)e
−t/τ0 , Rij(r(1), t) = e−(2+γ)t/τ0Rij

`

r̂(1)

´

, . . . .

(25)

Translated into the language of one-point quantities we ob-

tain

uiuj ∼ e−(2+γ)t/τ0 , Li ∼ et/τ0 (26)

where in the latter two equations γ emerged from the new

scaling group γ = a3/a4. Imposing the assumption γ = 0

we observe that there is only the factor 2 between the the

turbulent decay and the growth of the integral length scale.

CONCLUSIONS AND OUTLOOK

A variety of significant conclusions may be drawn from

the present results. First, four different scaling laws for

decaying turbulence have been identified two of which are

classical and two new ones. The latter two both exhibit

exponential behavior.

Second, in the context of one of the new scaling laws

a new extended statistical scaling symmetry which goes

beyond the Euler and Navier-Stokes, has been indirectly ob-

served in the fractal grid turbulence experiments for the first

time. The latter experimental result appears to correspond

to one of the new scaling laws.

Third, the second new scaling law has been derived, even

valid in a somewhat reduced form without the new scaling

group. This scaling behavior corresponds to a constant time

scale acting as a symmetry breaking ingredient onto the flow.

At this point it is unclear how this scaling law may be ex-

perimentally generated.

Finally, we may note that none of the existing turbulence

models in particular RANS models i.e. two equation and

Reynolds stress transport model, admit the three scaling

groups. Hence they are all incapable to mimic the above

presented behavior. In the infinite Reynolds number limit

essentially all RANS models admit two scaling groups.

A RANS type of model with multiple length scales is

under development which is supposed to be admitting three

scaling groups and at the same time able to mimic both the

classical algebraic decay as well as the exponential decay

depending on the length scale initial conditions.

The authors are deeply indebted to Ch. Vassilicos for

very helpful discussion on fractal generated turbulence and

leaving the figures from the experiments to their disposition.
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