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ABSTRACT 
 
The physics of the linear forcing of isotropic 

turbulence allows for some useful estimates of the 
characteristic length scales of the turbulence produced 
during the statistically stationary phase. With such estimates 
we could practically define uniquely the stationary statistics 
by means of the box-size of the simulation, the linear 
forcing parameter and the viscosity of each case. We try to 
explain the estimates and we use them in order to pre-
describe the resulting statistically stationary energy spectra, 
retrieving well documented analytical spectral relations. The 
produced spectra are in very good agreement with the 
numerically calculated average spectra during the 
statistically stationary phase, for a variety of values of the 
dimensionless linear forcing parameter. The analytical 
forms are used as a revised initial condition for the 
production of isotropic turbulence which accelerates 
remarkably the achievement of stationarity, minimizing any 
transient phase and could be generalized for the 
initialization of several different cases. 

 
 

INTRODUCTION 
 
Numerical simulations of isotropic turbulence play a 

key role in studying basic features of turbulent flows. The 
two most frequently studied types of isotropic turbulence 
are freely decaying, and forced statistically stationary 
turbulence. For studies in which one wishes stationarity for 
statistical sampling, forced turbulence is preferable over 
decaying turbulence. In 2003, a very interesting paper by 
Lundgren proposed an alternative to the band-limited 
methods of forcing turbulence, using a linear forcing factor. 
Apart from its simplicity, the profound advantage of linear 
forcing is the possibility of applying this method in both 

physical and Fourier space. Problems that do not admit fully 
periodic boundary conditions, for instance simulating 
interactions of turbulence with combustion in which 
conditions upstream and downstream of the flame are 
inherently different, are often simulated using numerical 
codes formulated in physical space, such as finite 
differences. The application of band-limited forcing 
schemes requires knowledge of the wave numbers and 
Fourier-transformed velocities, quantities that are not 
readily available in codes formulated in physical space. 
Rosales and Meneveau (2005) have shown that the 
application of linear forcing in both physical and spectral 
space renders practically equivalent results, reflecting the 
profound equivalence of the method in both spaces. Thus, 
the linear-forcing method opens wide opportunities for 
application in both physical and spectral space. 
Furthermore, the resemblance of the forcing parameter to an 
applied shear promises the achievement of stationary 
spectra, where the structure of the large scale is more 
realistic. In this direction, Ludgren (2003) showed that 
linear forcing produces statistics at scales between the 
integral scale and the inertial range (e.g., structure function 
curving) that resemble the curving observed from 
experimental data.  

In this study, we continue the work of Rosales and 
Meneveau (2005), investigating the statistical stationarity 
that is produced by applying the linear forcing method in 
spectral space, and we try to quantify the characteristic 
scales of the statistically stationary turbulence produced. 
More specifically, we are focusing on the finding of Rosales 
and Meneveau that the energy-containing length scale, 
which characterizes the large eddies of the turbulence, 
approaches a stationary value, proportional to the 
dimensions of the problem. The constancy of this well-
defined stationary length scale L, determines uniquely the 
statistics during the stationary phase and it could be 
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supported by the dimensional analysis of the linear forcing 
method. In this direction, we extend the past analysis 
explaining the constancy of that length scale by giving some 
theoretical reasoning for the value of the constant of the 
proportionality between L and the box-size of the 
simulation. This reasoning is based on the limitations of the 
linear-forcing application, in terms of the possible 
separation of the scales of turbulence. Furthermore, we 
investigate the stationary spectra of the turbulence produced 
by the linearly forcing method, and we show that they can 
be fitted accurately by the analytical Pope’s (2000) formula 
using the linear forcing parameter, the computational size 
and the viscosity that characterize each case. The analytical 
forms are used for initializing linearly forced DNS of 
isotropic turbulence, minimizing sharp transients and 
accelerating remarkably the computational time needed for 
stationarity. 
 
 
STATIONARY ISOTROPIC TURBULENCE BY THE 
LINEAR FORCING METHOD 

 
Linear forcing is applied in the Navier-Stokes equations 

by including the linear term g =Au, proportional to the 
velocity. The time evolution of the energy spectrum 
becomes 

 
                ( )2( , ) ( , ) 2 ( , )t k kE k t T k t k A E k tν∂ = −∂ − −           (1) 

 
where Tk(k,t) is the function of the  spectral transfer of 
energy. Integrating (1) and taking the energy balance for the 
statistically stationary state we see that the dissipation rate, 
ε, is linked with the turbulent kinetic energy, K, through 

 
            22 3 rmsAK Auε = =                             (2) 

 
where urms is the RMS of the fluctuating velocity. Rosales 
and Meneveau showed that, independently of the initial 
conditions, the application of the linear forcing drives the 
turbulence in a statistical steady state where the turbulent 
kinetic energy oscillates around an average value, satisfying 
equation (2). Furthermore, as expected in a statistical sense,  
this steady state was invariant between runs with a physical 
space based finite-difference code and runs using standard 
pseudospectral methods.  

The above relation (2) between the dissipation and the 
turbulent kinetic energy is an immediate physical 
consequence of the energy balance, where the energy 
injection rate equals the dissipation rate for stationarity. It 
also defines the characteristic eddy turnover time scale of 
the turbulence, during the statistically stationary phase,  

 
   ( ) 12 / 3rmsu Aτ ε −

= =                           (3) 
 
which could be visualized as the characteristic time lag 
between energy injection and its eventual dissipation. In 
order to clarify this, we present, in figure 1, the evolutions 
of the energy injection rate and the dissipation rate for 30 
turnover times (dimensional time 150 for this case). The 
results are from new linearly forced DNS of isotropic 
turbulence with a linear forcing parameter A = 0.0666 and 
viscosity ν = 1.041·10-3 in a (2π)3 computational domain 
(more details on the DNS will be given later). The two 

different curves almost coincide when the evolution of the 
dissipation is shifted forward by the time increment given 
from (3), t = (3A)-1.  
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Figure 1: Evolution of the energy injection, 2AK (solid line), 
and dissipation, ε, (dashed line) rates (upper graph). When 
the evolution of the dissipation evolution is shifted by τ = 
(3A)-1, the two curves almost coincide (lower graph). 
 
 
The same picture can be drawn from the more strict 
investigation of the correlation between the two evolutions 
versus their time lag, shown in figure 2. It turns out that the 
correlation coefficient maximizes when the time difference 
equals one turnover time-scale.    
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Figure 2: Correlation between the energy injection rate and 
dissipation rates versus their time difference, for the case 
presented in fig. 1.   

 
 
What it is not immediately evident is a second, very 

interesting, relation that links the values of ε and Κ or urms, 
averaged at the stationary phase, with the dimensions of the 
problem. More specifically, Rosales and Meneveau showed 
that the energy containing length scale, L = u3/ε, 
characterizing the large eddies, approaches a stationary 
value, proportional to the dimensions of the problem, l, 

 
 3 /rmsL u c lε= =                              (4) 

 
Rosales and Meneveau used numerical results from several 
DNS runs, at different Reynolds numbers (30<Reλ<200), 
and estimated the constant of the proportionality to be c = 
0.19. The constancy of this well-defined stationary length 
scale L, could be supported by the dimensional analysis of 
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the linear forcing method. In the following, we extend the 
past analysis in a more systematic way that gives a more 
physical justification for the calculated value of the constant 
c. Apart from the physical interpretation of the linear 
forcing method, the accurate calculation of c is important 
because, in combination with equation (2), it defines 
uniquely the statistics of the application of the linear forcing 
during the stationary phase. For instance, the RMS averaged 
velocity approaches urms=3cAl, and the averaged dissipation 
rate, ε = 27c2A3l2. Also, the values of the Reynolds numbers 
characterizing the produced stationary isotropic turbulence 
are uniquely defined using equations (2) and (4). 
 
 
CHARACTERISTIC SCALES AND SIMILARITY OF 
LINEARLY FORCED TURBULENCE 

 
The application of the linear forcing in isotropic 

turbulence imposes a profound time scale which is the 
reciprocal of the linear forcing parameter A (time-1). The 
other scales characterizing the application of the linear 
forcing is the dimension of the box, l (length), and the 
viscosity, ν (length2 time-1). The only dimensionless 
parameter that can be formed combining these scales is then 

 
                                      2Re 3 /A Al ν=                               (5) 

 
which corresponds to a kind of a Reynolds number of the 
linear forcing and defines the similarity of the problem. 
Therefore, cases referring to the same value of this 
parameter should show a similar behavior, approaching the 
same values of the dimensionless Reynolds number 
ReL=uL/ν, and consequently of Reλ =uλ/ν as well. Using the 
definition of L and the stationarity implication (2), we 
express  

 
                                      2Re 3 /L AL ν=                               (6) 
  
and thus, taking the ratio ReL/ReA, we obtain 

 
                                  2Re / e ( / )L AR L l=                             (7) 
 
which implies that L should depend only on the box-size, 
through equation (4). At the same time, using the definition 
of the Taylor length scale λ = (10νK/ε)1/2, and taking the 
statistical balance of dissipation and energy injection from 
equation (2), we see that the Taylor length scale is 
independent of the box-size, l, depending only on the ratio 
ν/Α, through 
 
                                       ( )1 / 25 / Aλ ν=                              (8) 
 
As expected from equations (5) – (7), for a given box size 
(which uniquely defines the length scale L=cl, through 
equation 4), the value of the turbulence Reynolds number is 
proportional to the ratio of the linear forcing divided by the 
viscosity, A/ν, and hence this ratio defines the dynamical 
similarity of all linearly forced simulations. The more often 
used Taylor-scale Reynolds number, Reλ = (15ReL)1/2 or, 
equivalently, Reλ = c (15ReA)1/2, has a slower, ~ (A/ν)1/2, 
dependence, as a consequence of the simultaneous change 
in λ values through equation (8).  

The  above discussion shows  that  the calculation of the  

statistically stationary values of turbulence reduces to 
choosing a value of L given the box size l. We try to 
approach this problem by comparing the L and λ scales for a 
given box-size. The physical interpretation of the Taylor λ 
scale has the sense of an intermediate scale between the 
clearly defined and well-separated η = v3/4/ε1/4 and L scales 
(see also Pope, 2000). In contrast to the stationary value of 
L, which depends only on the dimensions of the box 
(equation 4), the stationary value of λ increases inversely to 
(A/ν)1/2 through equation (8). Setting 2νkc

2E(kc) = 2AE(kc) in 
equation (1), we determine the specific wave number kc, 
where the stationary time-averaged energy production rate 
equals the stationary time average of the dissipation rate and 
relates to λ through 

 
                                1 / 2 1 / 2( / ) 5 /ck A ν λ= =                        (9) 
 
For this specific value of the wave number, the time-
averaged transfer rate <∂Tk(kc)/∂k> becomes zero, and the 
averaged energy transfer function <Tk(kc)> maximizes. The 
minimum possible wave number kc , representing a fully 
three-dimensional state is kmin = 31/22π/l, therefore, we 
should seek the limits of the applicability of the linear 
forcing (in terms of the production of statistically stationary 
isotropic turbulence) within this wave number and the 
immediate following one k = 4π/l, in order to keep the least 
three-dimensional spectrum components with a non-zero net 
energy injection rate active. Through equation (9), this 
demand bounds the maximum meaningful value of λ, which 
permits the production of statistically stationary isotropic 
turbulence to  

 
                       max5 / 2 2 5 / 3l lπ λ< <                        (10)  
 
Furthermore, the application of the linear forcing drives 
turbulence to a stable equilibrium state where the energy 
dissipation and the energy transfer rate minimizes. This is 
equivalent with the minimization of the energy injection 
rate which equals 2AK = 3Au2. Independently of the value 
of A, this implies the minimization of the L scale, in 
accordance with the minimization of the scale difference 
between the large and the small structures. The lowest value 
of L which permits separation of the eddy scales equals the 
maximum possible, for three-dimensional linearly forced 
isotropic turbulence, Taylor length-scale, λ.  This limiting 
equality Lmin= λmax, defines 
 
                    1/ 2 1/ 2

min(5/ 4) / 2 / (5/3) / 2L lπ π< <               (11) 
 

which bounds the constant of proportionality in equation (3) 
between 0.178 < c < 0.205, in excellent agreement with the 
numerical estimation of the coefficient c = 0.19 by Rosales 
and Meneveau (2005).  

In figure 3, we present results of the averaged produced 
Reλ as a function of the characteristic ReA from a series 
linearly forced DNS of isotropic turbulence that we have 
recently carried out. We have used an MPI version of a 
pseudospectral code, which has been implemented in the 
vectoral language and tested for accuracy, grid 
independence, and scalability (Kassinos et al., 2007). The 
runs presented here have a resolution of 1283 - 2563 Fourier 
modes in a (2π)3 computational domain and time advance is 
accomplished by a third-order Runge-Kutta method. The 
initial conditions for the velocity were common to all cases, 
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starting with a pulse of energy at low wave numbers in 
Fourier space and a random distribution of phases for the 
Fourier modes. The linear forcing parameter was the same, 
A = 0.0666, for all the runs, and the viscosity, ν, varied from 
2.22·10-2 to 4.63·10-4. The total simulation time was 120 
turnover time scales (t = 600), but the statistics were 
collected during the last 90. The statistically stationary 
average values obtained from the simulations are shown as 
symbols in figure 3. The error bars indicate the calculated 
deviations. The upper line in figure 3 corresponds to Reλ = 
0.205(15ReA)1/2 and the lower to Reλ = 0.178(15ReA)1/2, that 
is, the lines indicate the bounding expected values based on 
the analysis presented in the previous section. Despite the 
deviation (10–15%), the statistically averaged results lie 
well within the previously calculated range.  
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Figure 3: Statistical stationary averages and deviation of Reλ 
versus the characteristic ReA of each case (symbols), from 
new linearly forced DNS. The two lines correspond to the 
solutions Reλ = c (15ReA)1/2, with c = 0.178 (lower line) and 
c = 0.205 (upper line). 
 
 
LINEARLY FORCED DNS WITH A PREDEFINED 
INITIALLY STATIONARY SPECTRUM 

 
In this section, we apply the above calculated 

statistically stationary values to the analytical spectrum 
given in Pope (2000) and we show the agreement of the 
produced forms with the statistically stationary spectra of 
linearly forced isotropic turbulence from numerical 
simulations. The calculated spectra are then used as a 
refined initial condition for new linearly forced DNS of 
isotropic turbulence, in order to accelerate the time needed 
for stationarity. 
 
New initial spectrum  

The Pope’s (2000) spectrum is analytically defined as  
 
                     2 / 3 5 / 3( ) ( , ) ( , )LE k C k f k L f kηε η−=                 (12) 
 
where C is a constant, and fL(k,L), fη(k,η) are non-
dimensional functions which are specified bellow. The 
fL(k,L) function determines the shape of the energy-
containing range at the low wave numbers and is given by 
 

                          
05 / 3

2 2
( , )

p

L

L

kLf k L
k L c

+
⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

                 (13) 

where L = u3/ε (see equation 4) and the function fη(k,η) is 
given by (see also Kraichnan, 1976)  
 

                 ( ){ }1 / 44 4 4( , ) expf k k c cη η ηη β η⎡ ⎤= − + −⎢ ⎥⎣ ⎦
          (14) 

 
In the above, we use β = 5.2 as suggested in Pope (2000) 

(see also the experimental evidences by Saddoughi and 
Veeravalli, 1994). For large Reynolds numbers, and setting 
p0 = 2 and C = 1.5, equal to the Kolmogorov constant 
(Sreenivasan, 1995), the values of the parameters cL and cη 
were estimated in Pope, for large Reynolds numbers (Reλ ≈ 
1000), as cL ≈ 2.00 and cη ≈ 0.40. However, for relatively 
low Reynolds numbers, the above values of the tuning 
parameters should be modified as will be shown. By 
introducing the stationary estimates for ε and η4=v3/ε, in 
equations (12) – (14), we practically define a stationary 
spectrum, which depends solely on the values of A and ν  
 

( )

1 / 45 2 2 3 4
4

11 / 6 3 22 2

13.5( ) exp 5.2
27

L

L A k kE k c c
A Lk L c

η η
ν⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − +⎜ ⎟⎨ ⎬

⎢ ⎥⎝ ⎠+ ⎪ ⎪⎣ ⎦⎩ ⎭

 (15) 

 
given that the value of L  at the stationary phase is fixed    
(L ≈ 1.2 for a cube with side 2π), through equation (11). The 
values of the parameters cL and cη are calculated by the 
requirements that the integrals (or the sums in discrete 
space) of the terms E(k) and 2νk2E(k) equal the kinetic 
energy and the dissipation respectively. Using the non-
dimensional spectrum form E(x) = E(kL)/KL, we see that it 
depends only on the ReL number 
  

     
( )

1 / 42 4
4

11 / 6 32
( ) exp 5.2

ReLL

x xE x c c
x c

η η

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= − + −⎜ ⎟⎨ ⎬
⎢ ⎥⎝ ⎠+ ⎪ ⎪⎣ ⎦⎩ ⎭

  (16) 

   
or, similarly, on the Reλ = (15ReL)1/2 number of the 
turbulence. The connection with the parameters of the linear 
forcing method comes through equations (5) – (7), taking 
the constant c ≈ 0.19. The dimensionless spectrum (16) 
should integrate to unity   
 

                                      
0

( ) 1E x dx
∞

=∫                                (17) 

 
The same holds true for the dimensionless dissipation 
spectrum,  
 

                                   
2

0

3 ( ) 1
ReL

x E x dx
∞

=∫                             (18) 

 
Through the relations (17) and (18), the values of cL and cη 
for the continuous spectral forms are determined uniquely. 
Indeed, a minor dependence on the resolution used should 
appear, since the values of the parameters cL and cη could 
slightly change depending on the range of the resolved wave 
numbers. However given that the criteria for fine resolution 
are fulfilled, the above determination of cL and cη is rather 
accurate.  

In figure 4 we give the dependence of the two 
parameters on the Reynolds number. It is profound that for 
relatively large values of the Reynolds number the two 
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parameters approach the values specified in Pope (2000),   
cL = 2.00, and cη = 0.40. For small Reynolds numbers 
however, they drastically deviate from the above 
calculations.  
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Figure 4. The dependence of the parameters cL (continuous 
line) and cη (dashed line) in Pope’s (2000) spectrum on Reλ  

 
 
In a first attempt to validate the above calculated spectra 
(equations 15 - 18), we compare them with numerical 
results from linearly forced DNS of isotropic turbulence. 
More specifically, in figure 5 we illustrate the energy 
spectra which have been averaged during the statistically 
stationary period, (taken from the figure 2, presented in 
Rosales and Meneveau, 2005), and the corresponding 
results for the same cases, from equation (15). The 
presented cases refer to three different values of the linear 
forcing parameter A and they have a Reλ which varies from 
30 - 54. From the comparison it turns out that the 
numerically calculated stationary spectra are in very close 
agreement to, the analytical forms which, as it has been 
mentioned, are determined exclusively by the values of the 
viscosity ν, and the linear forcing parameter A. 
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Figure 5: Energy spectra presented in Fig. 2 in Rosales and 
Meneveau (2005), averaged over the statistically stationary 
period (symbols) and the respective results (lines) from 
equation (15).   
 
In Table 1, we give the values of the parameters which have 
been used for producing the spectra of the three different 
cases presented. One may note that as the Reynolds number 
increases, the tuning parameters cL and cη, gradually 
approach the values given in Pope (2000). 

Table 1: The values of the parameters cL and cη for the cases 
presented in Fig. 5 

 
A ν Reλ cL cη 

0.0667 4.491·10-3 29 0.89 0.45 
0.1333 4.491·10-3 43 1.07 0.43 
0.2000 4.491·10-3 54 1.18 0.42 

 
Simulations using the new initialization  

Rosales and Meneveau (2005) have shown that, 
independent on the initial conditions, the linearly forced 
turbulence (for the same A and ν values) approaches the 
same statistically stationary steady state. However, 
depending on the initialization used, the transient phases 
preceding stationarity could be remarkably long, thus 
increasing the number of the time-steps needed for the 
calculation of representative statistics. This can prove to be 
extremely time-consuming in runs at large Reynolds 
numbers demanding high resolution. On the other hand, 
starting the simulations from an initial spectrum close to the 
stationary shape could minimize transients, resulting in 
shorter runs and less demands in computational time. In 
order to investigate this possibility, we have performed 
linearly forced DNS of isotropic turbulence using two 
different initializations. Firstly, we have applied the same 
initial spectral form as in Rosales and Meneveau (2005). 
That is a solenoidal isotropic velocity field with random 
phases and the energy spectrum 
 

                      
4 2

2
0 5 2

0 0

16( ) exp 2
/ 2

k kE k u
k kπ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
                (19) 

 
where u0

2 is the initial rms velocity, and k0 is the 
wavenumber at which the maximum of E(k) maximizes. 
The choice of k0 = 2 was proved as the most rapid and thus 
we kept this value in our simulations. The second 
initialization uses the stationary spectrum defined by 
equation (15). The comparison which is presented here 
corresponds to a linearly forced case with A = 0.0666 and ν 
= 4.1·10-4, which correspond to a Reλ around 100. The runs 
have been done using the code which was described in the 
previous section, with a fine resolution of 2563. In figure 6 
and 7, we compare the evolutions of the turbulent kinetic 
energy and the Reλ for the two different initializations.  
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Figure 6: Evolution of twice the turbulent kinetic energy 
q2=2K, for linearly forced DNS of isotropic turbulence with 
A = 0.0666 and ν = 4.1·10-4. The two lines correspond to 
different initializations: (a) initial spectrum as in Rosales 
and Meneveau (2005) (dashed line) and (b) initial spectrum 
given by equation (15) (solid line). 
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Figure 7: Evolution of Reλ. Lines are as in figure 6. 
 
In the case of the simulation using the initialization given by 
(19) the transient period is long because of the choice of an 
initial energy spectrum very different from the form to 
which it finally converges (fig. 8). The profound transient 
needs around 17 turnover times (approximately 15000 time 
steps) in order to converge to a statistically stationary state 
with small oscillations around the statistical mean. In the 
same figure, the simulation which was initialized using the 
spectrum given by (15) is already in a stationary state 
without any profound transient.  

The picture becomes clearer in figure 8, where the 
evolution of the energy spectra during the two simulations is 
shown. The first simulation needs about 20 turnover times 
to reach the shape of the average spectrum of the second 
case, which is very close to its initial form given by 
equation (15).  
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Figure 8: Energy spectra from the simulations presented 
here. (a) The simulation with an initial spectrum as in 
Rosales and Meneveau (2005) (continuous lines) for t/τ = 0, 
1, 5, 20 and (b) the simulation with an initial spectrum given 
by equation (15) (dashed line) and the average spectrum 
during all the simulation (points). 
 
 
CONCLUSIONS 

 
Previous studies of linearly forced isotropic turbulence 

have clearly shown that the energy containing length scale, 
L, characterizing the large eddies of the turbulence, 
approaches a stationary value, proportional to the 

dimensions of the size of the simulation. We tried to explain 
the constancy of that length scale giving, also, some 
theoretical reasoning for the value of the constant of 
proportionality with the box-size of the simulation, based on 
the separation of the scales of isotropic turbulence. The 
outcomes of the theoretical analysis are in excellent 
agreement with the calculated statistics from linearly forced 
DNS. Apart from the physical interpretation of the linear 
forcing method, the accurate calculation of the L scale is 
important, because in combination with the stationarity 
equation (2), it defines uniquely the statistics of the linearly 
forced turbulence during the stationary phase. In other 
words, we can practically define uniquely the stationary 
statistics by means of the box-size of the simulation, the 
forcing parameter and the viscosity. In this direction, we 
made use of these estimates in order to pre-describe 
analytically the resulting statistically stationary energy 
spectrum, retrieving well documented analytical spectral 
relations (Pope, 2000). The produced spectra are in very 
good agreement with the numerically calculated averaged 
spectra during the statistically stationary phase, for a variety 
of values of the dimensionless linear forcing parameter. The 
analytical forms can be used as a revised initial condition 
for the production of linearly forced isotropic turbulence, 
accelerating remarkably the achievement of stationarity, 
minimizing any transient phase and could be generalized for 
the initialization of several different cases. 
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